Pulse-counting Systems Patents (Class 318/603)
  • Patent number: 10401192
    Abstract: Disclosed is a method for counting events occurring during a period T carried out by a mechanical counter including two toothed wheels with the same pitch, the occurrence of an event causing the rotation of each wheel by an angle corresponding to the pitch of the teeth thereof, the method including: counting or calculating, for each wheel at the end of T, the difference in the number of teeth between the initial and final position thereof, the step being at least partially carried out either by an optical unit, requiring the presence on each wheel of at least one marker, or by a unit for measuring the angular displacement of each wheel and associated calculation unit; and calculating the number of occurred events N in accordance with the difference between the values counted or measured and in accordance with the number of teeth of the wheels.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 3, 2019
    Assignees: ETAT FRANCAIS REPRESENTE PAR LE DELEGUE GENERAL POUR L'ARMEMENT, SILMACH
    Inventors: Pierre-Francois Louvigne, Patrice Minotti, Vianney Sadoulet, Pascal Girardin, Charles Haye
  • Patent number: 10317479
    Abstract: A sensor unit for detecting an encoder at a predefined position, having a circuit device and a threshold signal present at the circuit device, and a magnetic field sensor. The magnetic field sensor has a supply and ground terminal and first and second outputs, and outputs an analog sensor signal that is dependent on the distance of the encoder, and a supply unit connected to the supply terminal of the magnetic field sensor, the supply unit having a control input, and the circuit device is connected to the magnetic field sensor. The circuit device is configured to provide the sensor signal as an amplified signal value, and the circuit device is configured to determine an amount from the difference between the amplified signal value and the threshold signal and to control the amplification of the signal value and the supply unit as a function of the magnitude of the amount.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 11, 2019
    Assignee: TDK—Micronas GmbH
    Inventor: Joachim Ritter
  • Patent number: 10320594
    Abstract: A method of determining a direction of rotation of a shaft is disclosed, as well as an integrated circuit chip that uses the disclosed method. The method includes receiving a first binary signal and a second binary signal from a transducer attached to the shaft, with the first and second binary signals being in quadrature. A present quadrant identification number, QIDPRESENT, is determined as a two-digit binary number by left-shifting a value of the first signal and adding a value of the second signal. After a sampling interval has elapsed, the method sets a past quadrant identification number, QIDPAST, to the value of said QIDPRESENT, determines a new value of QIDPRESENT and calculates a value of a transition code using an equation that operates on QIDPRESENT and QIDPAST. The method uses the transition code to determine a direction of rotation of the shaft.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 11, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Richard Mark Poley
  • Patent number: 10299359
    Abstract: The lighting control console and a control method using the lighting control console are disclosed. The lighting control console includes an operation device, a control device that controls a lighting fixture, and a storage that stores position information of a plurality of points. The storage stores a plurality of paths connecting two points. The operation device accepts first and second operation inputs. The control device controls the lighting fixture so as to move a lighting position along a first path determined out of the plurality of paths in accordance with the first operation input at a speed in accordance with an input amount of the first operation input. The control device controls the lighting fixture so as to change the lighting position onto a second path adjacent to the first path upon the second operation input exceeding a predetermined threshold while the lighting position is moving along the first path.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: May 21, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Akane Matsuo
  • Patent number: 10267691
    Abstract: A system and method determines torque applied to a rotating shaft by a load. Two sensors determine the rotation of the shaft at two spaced-apart axial positions. Controller(s) analyze two pulse trains associated with signals received from the sensors corresponding to rotation of the shaft at the respective axial positions under the load. The controller(s) determine a delta phase value for each pulse of one pulse train with respect to a corresponding pulse of another pulse train, and aggregate each delta phase value for a prescribed period of pulses to determine an aggregate delta phase value. The controller(s) determine a load phase value as a ratio of the aggregate delta phase value to the prescribed period, a total delta phase value as a difference between the load phase value and a reference phase value, and a torque value from the load based on the total delta phase value and physical parameters of the shaft.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: April 23, 2019
    Assignee: Deere & Company
    Inventors: Jared F. Leonard, Robert J. White
  • Patent number: 10238917
    Abstract: A plurality of belt/pullet sets. Each belt/pulley set has a weight set. Each weight set is based on a formula of (2)n-power(X) where X is a basic weight and n is integral number for selecting a weight by a user. Each weight uses a different n-power. A carrier plate is utilized for bearing a weight set during a movement of an exercise. A clamping mechanism is utilized to couple each belt/pulley set to the carrier plate. In addition, the weight system includes an exercise device for a user to exercise, such as a bar or handle. A cable is coupled to the carrier plate, weight set, and the exercise device. In another embodiment, the formula may be utilized in a variable distance system or robotic arm where a plurality of cylinders moves an object, such as a travel arm.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: March 26, 2019
    Inventor: Arto Kojayan
  • Patent number: 10210042
    Abstract: According to one embodiment, a memory system includes a decoder configured to correct an error of the data stored in a memory based on result of the first read and the second read, and output a first signal of a first value indicating corrected data and a second signal of a second value indicating corrected data; a generator configured to count the first and second signals for first data items based on the result of the first and second read for generating count numbers of the first and second signals for each of the first data items; and a controller configured to compare a magnitude relation of the count numbers in order of read levels, determine the first data item when the magnitude relation changes.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 19, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Kenji Sakurada
  • Patent number: 10126734
    Abstract: A servo control apparatus which includes: a difference calculation unit that calculates difference between an integral value of speed deviation of a master axis and an integral value of speed deviation of a slave axis; a filter unit that performs filtering of the difference by way of a low-pass filter; and an addition unit that adds a result of the filtering to the integral value of the speed deviation of the slave axis, in which a current command for driving the master-axis motor is calculated for the master axis by using the integral value of the speed deviation of the master axis; and a current command for driving the slave-axis motor is calculated for the slave axis by using an integral value after addition by way of the addition unit.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 13, 2018
    Assignee: FANUC CORPORATION
    Inventor: Naoto Sonoda
  • Patent number: 9899945
    Abstract: A motor driving apparatus included in a home appliance may include an inverter to convert a direct current (DC) power into an alternating current (AC) power through a switching operation and to output the converted AC power to a motor, an output current detector to detect an output current flowing through the motor, a controller to control the inverter, wherein, during a first interval after the motor stops, the controller controls a phase current of a predetermined frequency to flow through the motor to estimate a position of a rotor of the motor, and estimates the position of the rotor of the motor based on the detected output current while the phase current of the predetermined frequency flows through the motor. Thereby, the sensorless motor driving apparatus can easily estimate the position of the motor rotor.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 20, 2018
    Assignee: LG ELECTRONICS INC.
    Inventors: Minho Jang, Junho Lee, Chungill Lee
  • Patent number: 9819288
    Abstract: A motor drive system configured to detect and prevent undesired movement of an item that is configured to be driven by the motor drive system. The motor drive system having: an electronic control unit operatively coupled to a rotor of the motor drive system, the electronic control unit being configured to detect undesired rotation of a shaft of the rotor, wherein the undesired rotation of the shaft is not caused by a force applied by the rotor; and wherein the electronic control unit of the motor drive system is configured to short windings of the motor drive system after a predetermined amount of undesired rotation of the shaft is detected by the electronic control unit such that further rotation of the rotor is prevented.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: November 14, 2017
    Assignee: INTEVA PRODUCTS FRANCE SAS
    Inventor: Stéphane Barbier
  • Patent number: 9802430
    Abstract: The ink discharge unit includes a biasing member. The biasing member is fixed to a fixing member immovably fitted to a carriage body that moves relative to a recording medium. The biasing member, while being thus fixed, biases an inkjet head in a direction illustrated with an arrow and in a direction illustrated with another arrow for position alignment of the inkjet head relative to the fixing member. The inkjet head, while being biased by the biasing member, is fixed to the fixing member. The fixing member has curved portions that regulate movements of the inkjet head in the directions illustrated with the arrows by way of contacts with the inkjet head.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 31, 2017
    Assignee: MIMAKI ENGINEERING CO., LTD.
    Inventor: Tomomi Igawa
  • Patent number: 9796084
    Abstract: An electric gripper system includes a motor driving a gripper mechanism, a sensor, and a controller. The sensor is assembled onto the motor for generating a current position of the gripper mechanism. The controller has a control segment, a transceiver segment, an accessible segment, and a driving segment. The control segment generates a target position according to a relative-position command value of the transceiver segment and an absolute cumulative position of the accessible segment. The control segment generates a driving datum based on a difference between the current position and the target position, and on a rotation rate of the motor. The driving segment uses the driving datum to drive the motor to move the gripper mechanism. With calculation among the relative-position command value, the absolute cumulative position, and the current position, the motor is prevented from accumulating positional deviation.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 24, 2017
    Assignee: HIWIN TECHNOLOGIES CORP.
    Inventors: Wei-Shao Chen, Kai-Hsiang Huang, I-Hsiang Tseng
  • Patent number: 9742330
    Abstract: A motor control apparatus includes a high-resolution encoder for position control and a low-resolution encoder for velocity control, position control means for generating a velocity command in accordance with a difference between a given position command and the output of the high-resolution encoder, and velocity control means for generating a current command in accordance with a difference between the velocity command and a detected velocity that is based upon the output of the low-resolution encoder. A velocity control cycle based upon the velocity control means is made faster than a position control cycle based upon the position control means.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: August 22, 2017
    Assignee: IAI CORPORATION
    Inventors: Akihiro Yamada, Ryoma Hashimoto
  • Patent number: 9383231
    Abstract: A photoelectric encoder includes an absolute scale provided with an absolute pattern based on pseudo-random data, and a detection head including a light source that emits light to the absolute pattern of the absolute scale, and a light receiving unit that receives light from the absolute pattern, and it detects an absolute position of the detection head with respect to the absolute scale. In the photoelectric encoder, the absolute pattern is composed of a grating part and a dark part arranged in a repetitive manner. The photoelectric encoder further includes an interference pattern generation means that generates an interference pattern in combination with the grating part, and an interference pattern signal processing unit that detects the pseudo-random data of the absolute pattern based on the interference pattern received by the light receiving unit.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: July 5, 2016
    Assignee: MITUTOYO CORPORATION
    Inventors: Toru Yaku, Yoshiaki Kato
  • Patent number: 9369068
    Abstract: Multipliers 21a and 21b output values, which are obtained by multiplying a total drive command value Es by first and second gains G1 and G2, respectively, as first and second drive command values E1 and E2. Controllers 23a and 23b control first and second actuators (motors) 5 and 7, respectively, on the basis of the first and second drive command values. The detection values of the drive amounts of the actuators are denoted by Ef1 and Ef2, respectively, and the detection value of the drive amount of a driven body is denoted by Ef. A gain calculator 27 calculates the gains G1 and G2 on the basis of Ef1, Ef and Ef2. An upper limit value of Ef, which denotes the drive amount of the driven body, is denoted by Lmax. When Ef1, Ef2 or Ef approaches zero, the first gain G1 is brought close to (Ef1?Lmax/2)/(Ef?Lmax).
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: June 14, 2016
    Assignees: IHI AEROSPACE CO., LTD., SINFONIA TECHNOLOGY CO., LTD.
    Inventors: Hitoshi Oyori, Yoshito Ohta, Keisuke Onishi
  • Patent number: 9343896
    Abstract: A safety circuit arrangement for the failsafe monitoring of a movement variable of a moving machine part has a signal input for supplying an encoder signal, with the encoder signal being representative of the movement variable to be monitored. The arrangement also has a reference signal path for supplying a reference signal, a tap connected to the signal input and to the reference signal path in order to provide a superposition signal by superposing the reference signal on the encoder signal, and a measuring unit which is connected to the tap and is designed to detect whether the superposition signal reaches at least one predefined signal level or is within a predefined signal level range.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 17, 2016
    Assignee: PILZ GMBH & CO. KG
    Inventor: Andre Laturner
  • Patent number: 9298177
    Abstract: A machine tool according to an embodiment includes a drive mechanism configured to move a control target; a motor configured to operate the drive mechanism; a first encoder configured to detect a position of the control target; a second encoder configured to detect a position of the motor; a servo control unit configured to control the motor; and a numerical control unit configured to receive or calculate an error between the position of the control target obtained from a detection result of the first encoder and a position of the control target obtained from a detection result of the second encoder from the servo control unit, and to estimate a transmission error of the drive mechanism based on a change amount of the error between before and after inversion of a moving direction of the control target.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: March 29, 2016
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Jun Fujita, Chihiro Saga
  • Patent number: 9252691
    Abstract: One embodiment includes a back-electromagnetic force (BEMF) sense system. The system includes a sense amplifier configured to measure an amplitude of a selected one of a plurality of phase voltages relative to a center tap voltage associated with a servo motor for the calculation of an associated BEMF voltage. The plurality of phase voltages can be provided to the sense amplifier via a respective plurality of control nodes. The selected one of the plurality of phase voltages on a respective one of the control nodes can be selected based on coupling the other of the plurality of control nodes associated with the other of the plurality of phase voltages to a voltage source configured to provide a predetermined voltage magnitude.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 2, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Qunying Li, Joao Carlos Felicio Brito
  • Patent number: 9230593
    Abstract: A data storage device is disclosed comprising a spindle motor configured to rotate a disk, wherein the spindle motor comprises a plurality of windings. The windings are commutated based on a commutation sequence while applying a driving voltage to each winding, wherein the driving voltage comprises an operating amplitude during normal operation. When a supply voltage falls below a threshold, the spindle motor is configured into a power generator by at least reducing the amplitude of the driving voltage to substantially zero and then incrementally increasing the amplitude of the driving voltage by at least two steps toward the operating amplitude.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 5, 2016
    Assignee: Western Digital Technologies, Inc.
    Inventor: Michael T. Nicholls
  • Patent number: 9199387
    Abstract: A method and apparatus for performing an order change in a corrugator uses a minimum slit head configuration with all slit heads carried on two sides of a single tool support structure. A single robot is operable on the support structure to independently reset the positions of slit heads during a running order to prepare for subsequent order change in a most efficient manner, utilizing order scheduling that eliminates order changes that cannot be formed with the minimum slit head configuration.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: December 1, 2015
    Assignee: Marquip, LLC
    Inventors: James A. Cummings, John J. Kondratuk, Ronald H. Schmidt
  • Patent number: 9132624
    Abstract: A contact pressure adjusting method and a contact pressure adjusting apparatus for a printing press, which can adjust a contact pressure automatically and always highly accurately without the influence of mechanical oscillations (disturbance such as noise), are provided. For this purpose, the contact pressure (load) of a wiping roll on an intaglio cylinder is converted into the torque value (electric current value) of a wiping roll drive motor, and given as feedback to a wiping roll contact pressure adjusting motor.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 15, 2015
    Assignee: KOMORI CORPORATION
    Inventors: Kenzo Otake, Norihiro Kumagai, Hideki Mori, Hiromitsu Numauchi, Soichi Nakamura
  • Patent number: 9128073
    Abstract: The invention provides a needle moving device which can detect a fault in a signal provided by a system controller to a performing device. An X-direction driving motor (4a) and a Y-direction driving motor (4b) in a driving portion (4) of an autosampler (1a) are provided with encoders (12a, 12b) for measuring moving distances of a needle (2) in respective directions from rotation numbers of the respective driving motors (4a and 4b). A determining portion (20) provided to a system controller (1b) locates a position of the needle (2) after the movement based on signals from the encoders (12a, 12b) and determines whether the position is a position of a designated sample vessel.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: September 8, 2015
    Assignee: SHIMADZU CORPORATION
    Inventor: Takafumi Nakamura
  • Patent number: 9110458
    Abstract: A positioning control apparatus has a moving body, a feed device having a guide mechanism for guiding the moving body in the direction of its feed axis and a drive mechanism for moving the moving body, a structural body supporting the feed device and a controller for controlling a moving position of the moving body with respect to a reference position on a machine tool by controlling the operation of the drive mechanism, and further has a calculating section calculating displacement of the feed device in the feed-axis direction with respect to the reference position caused by displacement of the structural body and a compensating section receiving the displacement data measured by the calculating section and adding modification data for eliminating the displacement to a control signal in the controller.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 18, 2015
    Assignee: DMG Mori Seiki Co., Ltd.
    Inventors: Akira Kimura, Koji Yamamoto, Katsuhiko Ono, Kimiyuki Nishimura, Kenichiro Ueno, Keiichi Nakamachi
  • Publication number: 20150130387
    Abstract: A motor controller includes a motor, an encoder, and a control circuit. The motor drives a target object to be controlled. The encoder outputs a pulse signal synchronously with rotation of the motor. The control circuit rotates the motor based on a count value of the pulse signal. The control circuit switches to a sleep mode when making sure that a rotation position of the motor is stable after finishing rotating the motor or when a predetermined time necessary for the rotation position of the motor to be stable elapses after finishing rotating the motor. When a change in the pulse signal during a period of time where the control circuit is in the sleep mode is not smaller than a predetermined amount, the control circuit performs a learning process to learn a reference position of the motor when returning to a wakeup mode from the sleep mode.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 14, 2015
    Inventor: Jun TARUI
  • Patent number: 8963470
    Abstract: A motor control apparatus that controls rotation of a rotor of an electric motor powered from an electric power source includes a learning portion that executes an initial drive learning process, and a controller that executes a normal drive operation to sequentially change an exciting phase of the electric motor based on a count value of a counter which is corrected by a correcting portion such that the rotor is rotated to a target position after an initial drive operation is finished. The learning portion re-executes the initial drive learning process after a predetermined condition is satisfied, when the initial drive learning process is failed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 24, 2015
    Assignee: Denso Corporation
    Inventors: Kiyoshi Kimura, Jun Yamada, Masaaki Shinojima
  • Patent number: 8963453
    Abstract: An inverter executing a PWM routine is configured to synchronize the switching periods of the PWM routine to an external signal. The external signal is generated, for example, by another inverter, a converter, or a high level controller. The external signal is preferably generated periodically, and the switching period is resynchronized to the external signal each time the external signal is received. Optionally, either the start time or the midpoint of the switching period may be aligned with external signal. Further, the external signal may be sent to multiple inverters. Preferably, a first portion of the inverters align the start time of their respective switching period to the external signal and a second portion of the inverters align the midpoint of their respective switching period to the external signal.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: February 24, 2015
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Bok Young Hong, Craig R. Winterhalter
  • Patent number: 8890449
    Abstract: A lock state occurrence determination apparatus includes a counter, a reset device, a reference time changing device, a lock state determination device, and an invalidation device. The invalidation device performs, in a case where a false determination of occurrence of a lock state of a motor is caused by the lock state determination device due to an operation input to operate a rotation speed of the motor, at least one of a first invalidation operation to invalidate the lock state determination device and a second invalidation operation to invalidate continuation of a counting operation by the counter.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Makita Corporation
    Inventors: Jiro Suzuki, Takuya Kusakawa
  • Patent number: 8866427
    Abstract: When it is determined that the number of times that motor rotation-indicative quantity has been detected has exceeded a measurement interval, a feedback speed value is calculated from a motor rotation-indicative quantity detected immediately before, a motor rotation-indicative quantity detected immediately before the last time a measurement interval determination means determined that the number of times had exceeded the measurement interval, and time that has elapsed since the last time the measurement interval determination means determined that the number of times had exceeded the measurement interval, and the measurement interval having a length calculated from a greater one between the calculated feedback speed value and a speed command value is set for the measurement interval determination means to refer to.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 21, 2014
    Assignees: IHI Aerospace Co., Ltd., Sinfonia Technology Co., Ltd.
    Inventors: Hitoshi Oyori, Masaaki Monte
  • Patent number: 8847538
    Abstract: An electric motor includes at least one first brush and at least one second brush, which are arranged in a stationary fashion and arranged to contact a commutator that rotates with a rotor. The commutator includes at least one cylindrical section with a circumferential surface on which a plurality of segments are arranged with insulating sections interposed between them. In order to detect the rotating speed and position of the rotor, the motor includes brushes with asymmetric circumferential widths or angles or a stator with an uneven magnetization. The motor is arranged to detect only one signal when the rotor rotates for an angle between two adjacent segments.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 30, 2014
    Assignee: Nidec Motors & Actuators (Germany) GmbH
    Inventors: Rainer Bruhn, Thomas Voegerl, Andrè Ebel, Che sakre Bin Shamsol
  • Patent number: 8836268
    Abstract: A pulse signal output unit sends three-phase pulse signals according to movement of the movable member. A counter unit adds a first predetermined value or a second predetermined value to a count value or subtracts the first predetermined value or the second predetermined value from the count value, according to a combination of the pulse signals appearing when all the pulse signals are normal and a combination of the pulse signals appearing when one of the pulse signals malfunctions. A position detection unit detects the position of the movable member according to the count value.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 16, 2014
    Assignee: Denso Corporation
    Inventor: Takuya Yoshida
  • Patent number: 8810183
    Abstract: A PWM-signal-output circuit includes a detecting unit to detect periods in which a speed signal with logic level changing alternately and having a period corresponding to a motor-rotation speed is at one and the other logic levels, a dividing unit to divide each of the periods into first to third periods; a first output unit to change a PWM-signal duty-cycle in a stepwise manner toward an input-signal duty-cycle in the first period, a second output unit to cause a PWM-signal duty-cycle to become equal to an input-signal duty-cycle, to maintain a current flowing through the motor coil constant, in the second period; and a third output unit to change a PWM-signal duty-cycle in a stepwise manner from an input-signal duty-cycle, to decrease a current flowing through the motor coil, in the third period.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Takashi Ogawa
  • Patent number: 8786240
    Abstract: The invention realizes a method for controlling an electric cylinder and a control system for the cylinder that can prevent a load for pressurizing from significantly exceeding a target load and can shorten the time for the pressurization. A servo controller 17 can set the speed of the rod 11 and a load for stopping Ps that is used for determining whether the rod 11 should be stopped so that the load for pressurizing Pm does not significantly exceed the target load Pt. The servo controller 17 drives the rod 11 under the position control mode and determines whether the load for pressurizing Pm that is detected by a load detector 13 is bigger than or equal to the load for stopping Ps.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: July 22, 2014
    Assignee: Sintokogio, Ltd.
    Inventors: Yoichiro Shirai, Masahiko Nagasaka
  • Publication number: 20140167671
    Abstract: A motor position controller includes a temporary setting portion, a position command generating device, a motor controlling part, and a second conformity determination portion. The motor position controller drives a motor based on an input of a command pulse signal and a setting of a desired pulse form. The temporary setting portion is configured to consecutively temporarily set a plurality of the pulse form settings following a predetermined order. The position command generating device is configured to generate a position command signal from the command pulse signal in accordance with the desired pulse form setting. The motor controlling part is configured to supply power to the motor based on the position command signal. The second conformity determination portion is configured to input the command pulse signal, input the pulse form setting temporarily set by the temporary setting portion.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Tadashi OKUBO
  • Publication number: 20140139171
    Abstract: A range switching device provides a feedback control for rotating a motor toward a target rotation position. When a target shift range is switched, the range switching device rotates the motor toward a target rotation position by sequentially switching power supply phases of the motor based on an encoder count value. When the motor rotates within a predetermined stop range, the feedback control ends and a power supply to the motor is stopped. However, if the motor has not rotated to the target rotation position after a predetermined time has elapsed from the stopping of the power supply to the motor, an open drive is performed, in which the power supply phase of the motor is sequentially switched by open-loop control and the motor is rotated in small and/or minute steps toward the target rotation position. In such manner, position accuracy of the shift range switching is improved.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 22, 2014
    Applicant: DENSO CORPORATION
    Inventors: Kazuhiro YOSHIDA, Jun YAMADA
  • Patent number: 8729849
    Abstract: When a servo device receives the frequency setting signal as a control signal through the receiver from the transmitter, it select the information in conformity with the received frequency setting signal among the driving frequency setting information as stored in advance. When the handling signal is input as the control signal by the transmitter, the servo device is configured to transform the difference data taken synchronously with the difference data timing signal from the pulse width comparison part into the selected driving frequency. The servo device is configured to generate the driving signal from the transformed difference data signal of the desired corresponding count value range, and to perform drive control the driving feature.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: May 20, 2014
    Assignees: Futaba Corporation, Semiconductor Components Industries, LLC
    Inventors: Hiroyuki Tsuchiya, Yoshihisa Yamada
  • Publication number: 20140070752
    Abstract: The present invention provides a motor control device capable of operating a robot properly without stopping a motor that operates the robot even when an instantaneous voltage drop occurs.
    Type: Application
    Filed: August 6, 2011
    Publication date: March 13, 2014
    Applicant: NIDEC SANKYO CORPORATION
    Inventors: Jun Otsuji, Akihiro Ito, Hirokazu Watanabe, Hideyuki Odagiri
  • Patent number: 8649676
    Abstract: A motor control device includes a counter that counts pulses output from a one-phase encoder according to rotation of a DC motor, and a controller that recognizes rotation number of the DC motor based on the number of pulses counted by the counter. After the DC motor is braked, the controller starts applying a predetermined voltage to the DC motor at first timing before the DC motor stops, and stops applying the predetermined voltage at second timing after the DC motor stops. The controller subtracts the number of pulses generated after the second timing from a value counted by the counter. The predetermined voltage is lower than a lowest voltage necessary for driving a driven object, and is higher than a lowest voltage necessary for rotating the DC motor against an attracting force between a magnet and a coil in the DC motor.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 11, 2014
    Assignee: Panasonic Corporation
    Inventor: Yoshihiro Ohtani
  • Publication number: 20140015467
    Abstract: A motor control apparatus includes a motor that rotates a controlled object, an encoder that outputs a pulse signal in synchronization with a rotation of the motor, and a control section that performs a feedback control so as to rotate the motor to the target rotational position. The control section includes a stopping and holding control portion. The stopping and holding control portion performs a stopping and holding process in which the stopping and holding control portion supplies electric current to the motor so as to stop and hold the motor for a current-supply holding time. The stopping and holding control portion sets the current-supply holding time on the basis of a rotation speed of the motor just before the stopping and holding process.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Kiyoshi KIMURA, Jun YAMADA
  • Patent number: 8513909
    Abstract: A method processes a motor variable of a DC motor of an actuating device for a motor vehicle. The DC motor is supplied by an on-board system DC voltage, in which the armature current and the motor voltage of the DC motor are detected and the actuating position of an actuating element is determined from a time profile of the armature current by counting the current ripple contained therein. During an initial phase, the armature current which rises over time is replicated by a function which is determined from pairs of values for the motor voltage and the armature current which are detected in a time interval. A current value of the armature current expected at a later point in time is extrapolated. In the event of a discrepancy between the armature current detected at this later point in time and the extrapolated armature current, a ripple count is started.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 20, 2013
    Assignee: Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Hallstadt
    Inventor: Jovan Knezevic
  • Patent number: 8510069
    Abstract: A feedback system for controlling a servo motor comprising at least one rotary angle sensor and at least one rotary speed sensor, wherein the rotary angle sensor supplies a measured rotary angle value to a computer, wherein the rotary speed sensor supplies a measured rotary speed value to the computer, the actual rotary speed values are the measured rotary angle values interpolated according to the integrated measured rotary speed values, and wherein at high rotary speeds, the actual rotary speed values are the calibrated measured rotary angle values, differentiated with respect to time, and at low rotary speeds, the actual rotary speed values are the measured rotary speed values.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: August 13, 2013
    Assignee: Sick Stegmann GmbH
    Inventors: Ulrich Armbruster, Josef Siraky
  • Publication number: 20130201389
    Abstract: A motor control device includes a counter that counts pulses output from a one-phase encoder according to rotation of a DC motor, and a controller that recognizes rotation number of the DC motor based on the number of pulses counted by the counter. After the DC motor is braked, the controller starts applying a predetermined voltage to the DC motor at first timing before the DC motor stops, and stops applying the predetermined voltage at second timing after the DC motor stops. The controller subtracts the number of pulses generated after the second timing from a value counted by the counter. The predetermined voltage is lower than a lowest voltage necessary for driving a driven object, and is higher than a lowest voltage necessary for rotating the DC motor against an attracting force between a magnet and a coil in the DC motor.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 8, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Patent number: 8482557
    Abstract: An instructed position, which includes an instruction area for receiving a predetermined instruction and is displayable two-dimensionally and three-dimensionally, on a display means where an instruction image is displayed is detected. Upon setting on the display means a control range corresponding to the instruction area displayed on the display means such that the control range is changed between during the two-dimensional display and during the three-dimensional display, information of a tentative instructed position is obtained by receiving an instruction directed to the instruction area during the three-dimensional display. A horizontal shift on the display means of the tentative instructed position during the three-dimensional display relative to a position of the instruction area during the two-dimensional display is calculated.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: July 9, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Tomonori Masuda
  • Patent number: 8478439
    Abstract: A numerical control device includes a primary distribution pulse calculator that calculates primary distribution pulses obtained by distributing movement amounts in first and second directions included in a movement command of a work or a tool for each of predetermined calculation cycles. A secondary distribution pulse calculator calculates, for each movement direction, secondary distribution pulses obtained by distributing the primary distribution pulses of each calculation cycle calculated by the primary distribution pulse calculator, before and after corresponding calculation cycles within ranges of distribution sections across the corresponding calculation cycles and having an acceleration-deceleration time constant of the corresponding movement direction as a section width, and then accumulating the primary distribution pulses for each calculation cycle.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: July 2, 2013
    Assignee: Shin Nippon Koki Co., Ltd.
    Inventor: Nobutaka Nishibashi
  • Patent number: 8471506
    Abstract: A motor control apparatus includes a resolver and a R/D converter in which an electrical angle of 360° is set smaller than a mechanical angle of 360° and that outputs a two-phase encoder signal corresponding to the electrical angle; a two-phase encoder counter that counts the two-phase encoder signal and outputs a digital value corresponding to the electrical angle; a multiplication factor of angle detecting portion that detects a position of the mechanical angle to which an angle indicated by a signal output from the R/D converter corresponds, based on a change in a count value; and a motor controlling portion that corrects a current command value determined based on a torque command value, according to an output of the multiplication factor of angle detecting portion.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shizuo Manabe
  • Patent number: 8466646
    Abstract: The position of a rotor of a motor is determined. The motor includes a stator having a plurality of coils. The rotor includes at least one rotating magnetic field device. When the rotor is moving below a threshold speed, the current in the coils is measured. A pre-programmed data structure is accessed. The data structure stores stator currents associated with predetermined rotor positions. A first absolute position of the rotor is determined from the data structure according to the measured current from each of the coils. When the rotor is moving above the threshold speed, one or more rising or falling edges of magnetic field strength associated with the at least one rotating magnetic field device are sensed. At least one timing aspect of the rising and falling edges of magnetic field strength are compared to determine a second absolute position of the rotor.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Patrick A. O'Gorman, Rene Vivanco, Alex Kurnia
  • Patent number: 8461795
    Abstract: A motor drive device in which the torque vector of the motor is controlled so that the correlation between the number of pulses of a clock signal and the phase of the torque vector of the motor is held in common for multiple excitation methods. The excitation method having the greatest number of steps is used as a reference, and the torque vector of the motor is maintained in the same phase as before switching when the excitation method is switched. The torque vector is in the closest phase in the rotation direction of the motor when there is no phase that is the same as the phase prior to switching.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: June 11, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Motohiro Ando, Kenji Hama
  • Publication number: 20130141031
    Abstract: When a failure of a feedback control operation of an electric motor is sensed, a control unit changes the feedback control operation to an open loop control operation. At the time of executing the open loop control operation, the control unit sequentially changes the exciting phase of the motor without executing feedback of information of the count value of the encoder counter and rotates a rotor of the motor until a count value of an exciting phase change counter reaches an open loop target count value, which corresponds to a target rotational position of the rotor. When the control unit changes the feedback control operation to the open loop control operation, the control unit sets the open loop target count value by correcting a feedback target count value based on an exciting phase deviation correction value for the count value of the encoder counter.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: DENSO CORPORATION
    Inventor: DENSO CORPORATION
  • Patent number: 8456126
    Abstract: There is provided a motor control system and motor control method which can shorten settling time by restraining vibration and deviation relative to an advancing direction during operation. Moreover, according to the present invention, it is possible to cause a motor to be operated with an ideal track and, since it is possible to always monitor a present position, it is made easy to cause a plurality of axes to be synchronously operated. The motor control system is provided with a unit generating command waveforms from a jerk data which has significant effects on the vibration relative to the advancing direction, and a unit performing a real time real position control of regenerating future command waveforms according to a deviation amount, while always performing jerk-limit, whereby the vibration and the deviation relative to the advancing direction when the motor operates at high speed are restrained.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Hitachi High-Tech Instruments Co., Ltd.
    Inventors: Mitsuaki Tate, Yasushi Ishii, Masamichi Kihara
  • Patent number: 8456111
    Abstract: A linear drive based on linear motors, for panels, in particular sliding doors, movable along a respective travel path. A linear drive for at least one panel, in particular a sliding door leaf, movable along a travel path, has at least one linear motor for this at least one panel. The linear motor is provided with a stator member and a carriage. Furthermore, the linear drive has a control circuit. The control circuit is adapted to stop the linear motor in the event of failure of power supply to the linear motor, by switching-off the linear motor and operating it as a generator. Thereupon, in terms of its displaceability, this movable panel is enabled by the control circuit. In addition, the linear drive has a switch for switching-off the energy supply to the at least one linear motor.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: June 4, 2013
    Assignee: Dorma GmbH & Co. KG
    Inventor: Sven Busch
  • Patent number: 8444224
    Abstract: A seat controlling mechanism includes motors for actuating a plurality of seat sections, a position detecting apparatus detecting positions of the seat sections and a controlling apparatus controlling the seat sections to move to a predetermined position, wherein an interfering range, an interference avoidable range in which an interference avoidance control is executed and a normal operation range are set in the controlling apparatus, and when at least one of the seat sections positions in the interference avoidable range, the controlling apparatus prohibits the movement of the at least one of the seat sections toward the interfering range.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: May 21, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Misato Maeda, Kazuyuki Kashiwabara