With Particular Modulator Or Detector (e.g., Choppers) Patents (Class 318/684)
  • Patent number: 8624543
    Abstract: A method of controlling a motor is provided. The method may determine a speed of the motor, and engage a soft chopping routine on a first switch and a second switch of each phase if the motor speed is relatively low. The first switch may be driven by a first pulse width modulated PWM signal and the second switch being driven by a second PWM signal. The first and second PWM signals may be alternatingly configured such that at least one of the first switch and the second switch is closed at any point during the distributed soft chopping routine and both the first switch and the second switch are never simultaneously open.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 7, 2014
    Assignee: Caterpillar Inc.
    Inventors: Ahmed Khalil, Jackson Wai, Jesse Gerdes, James Siegle, Mark Hartman, Joshua Williams
  • Patent number: 8198843
    Abstract: A first duty ratio of a drive command signal is computed by comparing a level of the drive command signal with a first threshold value at a motor controller of a blower motor apparatus. A second duty ratio of the drive command signal is computed by comparing the level of the drive command signal with a second threshold value at the motor controller. A control signal is generated based on the first duty ratio and the second duty ratio in the motor controller and is used to drive a blower motor of the blower motor apparatus.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: June 12, 2012
    Assignee: ASMO Co., Ltd.
    Inventor: Takayuki Kitagawa
  • Patent number: 8159176
    Abstract: A motor-driving device comprising: a switching element to control a current passed through a first coil of a stepping motor including the first and a second coils electromagnetically coupled; a rectifier element to be energized in a ground-side-to-second-coil direction; a coil-current-detection unit to detect a current passed through the first coil; a regeneration-current-detection unit to detect a current passed through the rectifier element; a control unit to turn off the switching element when the current passed through the first coil reaches a predetermined-set current based on a detection result of the coil-current-detection unit; and a negative-current-detection unit to detect whether a negative current greater in absolute value than a predetermined-set value is passed through the rectifier element based on a detection result of the regeneration-current-detection unit, the control unit keeping the switching element off when the negative current is not passed, based on a detection result of the negative-
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 17, 2012
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Mitsuji Arai, Takeshi Oike
  • Publication number: 20080272717
    Abstract: A control system and method to determine position of a rotor relative to a stator for a synchronous multipole electrical machine is presented, including one for application on a fuel/electric hybrid powertrain for a vehicle. The machine includes a stator, a rotor, and a rotor position sensing mechanism. The control system controls the electrical machine, in conjunction with an electrical storage device and an inverter, using algorithms and calibrations which derive a rotor position based upon a sensorless position sensing technique, and determine an offset from a sensed rotor position. Electrical output from the inverter to the machine is controlled based the offset, which is stored non-volatile memory. A rotor position is derived based upon a sensorless position sensing technique during initial machine operation after startup of the machine, and includes operation in a torque-generative mode and in an electrical energy-generative mode.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Inventors: Sean E. Gleason, Steven E. Schulz, Patrick M. Prihoda
  • Patent number: 7368887
    Abstract: A servo control device that displays, by a two-dimensional image, evaluation of control precision of a servo system, includes: an instruction unit that instructs a position instruction having periodicity; a unit that records a track of position data based on a position feedback of a servo system according to the position instruction; and a first drawing unit that draws position data based on the position feedback, data before a quarter cycle or after a quarter cycle of the position data or position data based on the position instruction before a quarter cycle or after a quarter cycle, on a two-dimensional plane including orthogonal two axes, as the axis data of the orthogonal two axes respectively.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: May 6, 2008
    Assignee: Fanuc Ltd
    Inventors: Yasusuke Iwashita, Takahiro Akiyama, Masakazu Niwa
  • Patent number: 7102326
    Abstract: A motor variator and a driving method thereof are provided for controlling the operating speed of a fan, which employ an alternate current chopper to change the working cycle and the rotary speed of a stepless motor. The motor variator includes a high-frequency alternate current chopper connected to an induction coil of an induction motor, an alternate current power supply connected to the high-frequency alternate current chopper and a controller connected to the high-frequency alternate current chopper for outputting a switch signal to the high-frequency alternate current chopper, such that the high-frequency alternate current chopper is controlled by the switch signal to perform a chopper action for the alternate current power supply and output a drive voltage, so as to change the rotary speed of the induction motor.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 5, 2006
    Assignee: Fego Precision Industrial Co., Ltd.
    Inventors: Yu-Kai Chen, Tsai-Fu Wu, Wen-Yang Wang, Yung-Chun Wu, Chin-Hsiung Chang
  • Patent number: 7005824
    Abstract: A shutter mechanism includes a drum (2), a stepping motor (5), a driver (20), a microcomputer (10), a memory (16), and a load magnitude detection circuit (30) that detects the magnitude of the load on the stepping motor (5) when an object such as a shutter (3) is either wound or unwound from the drum (2). The microcomputer (10) can set the upper and lower limit stopping positions of the shutter (3) by resetting the number of command pulses stored in the memory (16) when the load magnitude detection circuit (30) detects an increase in the load at the stepping motor (5), and storing the number of command pulses output to that point from the memory (16) when the load magnitude detection circuit (30) next detects an increase in the load at the stepping motor (5) after the outputting of the command pulses is next restarted.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 28, 2006
    Assignee: Minebea Co., Ltd.
    Inventor: Naotaka Akiwa
  • Patent number: 6781336
    Abstract: A servomechanism having an actuator configured to convert electrical energy into mechanical energy and a controller configured for electrical connection to a power source. A power cable electrically connects the actuator and the controller. The power cable is configured to transmit electrical current from the controller to the actuator. At least one transducer is coupled to the actuator. The transducer is electrically connected to the power cable and is configured to transmit data over the power cable.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: August 24, 2004
    Assignee: GE FANUC Automation North America, Inc.
    Inventor: William B. Henry
  • Patent number: 6759817
    Abstract: A window lifter system comprises a first window lifter motor and a master control device for the first window lifter motor. The master control device is able to detect a position of a window pane driven by the first window lifter motor and to drive the first window lifter motor at a variable speed. The system further comprises at least one second window lifter motor and a slave control device for the second window lifter motor. The slave control device is able to detect a position of a window pane driven by the second window lifter motor and to drive the second window lifter motor at a variable speed. A bus system is provided by means of which the master and slave control devices are able to communicate with each other. There is also proposed a method of controlling such a window lifter system.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: July 6, 2004
    Assignee: ArvinMeritor GmbH
    Inventor: Gerhard Mersch
  • Patent number: 6617818
    Abstract: A DC brushless motor operation speed control method is disclosed. First, a linearly voltage dependent current source is used to charge a capacitor and the terminal voltage of the capacitor is coupled to a linearly voltage dependent base frequency level detector. When the output voltage of the capacitor reaches the base frequency reference voltage, the signal output from the base frequency level detector will make the capacitor discharge, outputting a series of base frequency triangular waves. Under different supply voltages, all the generated base frequency triangular waves have the same cycle time. The base frequency triangular waves are transmitted to a speed control comparator. Through pulse width modulation, the speed control reference voltage adjusts the output pulse width of the comparator and thereby controls the speed of the motor.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: September 9, 2003
    Assignee: Prolific Technology Inc.
    Inventors: Chia-Chang Hsu, Chih-Shih Yang
  • Publication number: 20030160586
    Abstract: A control system for individually controlling power from a single voltage source to a plurality of motors is described. A chopper circuit, in conjunction with the control system, generates drive-pulses, which operates the IGBT switching devices to sequentially provide pulses to each motor.
    Type: Application
    Filed: February 27, 2002
    Publication date: August 28, 2003
    Inventors: Frank Wegner Donnelly, Brian Ward Gulayets
  • Patent number: 5910715
    Abstract: The present invention provides a current control apparatus for a DC motor system having a motor field coil and a motor armature and driven by the power of a battery, and a chopper transistor for controlling the amount of the current supplied to the DC motor from the battery, which current control apparatus has current amplifying means for detecting the current amount at the rear end of the motor and amplifying the current value; on-off control means for comparing the input current with the current supplied from the current amplifying means and outputting an on-off control signal according to the current amount; and a microcomputer for controlling the duty value of the pulse wave of a predetermined frequency occurring in accordance with the on-off control signal from the on-off control means and controlling the on-off time of the chopper transistor.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: June 8, 1999
    Assignee: Samsung Heavy Industries Co., Ltd.
    Inventors: Jong Gun Kim, Seong Chul Huh, Ki Ryong Kwon
  • Patent number: 5619112
    Abstract: A limited angle torque motor and control circuit are adapted to convert an electrical demand signal of varying magnitude into a motor shaft position relating to the magnitude of the demand signal. More particularly, a bidirectional motor is provided having two stator coils wound in phase opposition, so that the torques produced by the currents in the opposedly wound coils are summed such that the coil having the greater current controls the direction of rotor rotation. A position sensor provides feedback of the present shaft position; the magnitude of the feedback signal being indicative of motor shaft position. Finally, an electronic control circuit which is responsive to both the demand signal and the shaft position signal is provided and has two outputs for simultaneously driving the current in each respective stator coil. A summing means is included in the control circuit for combining the shaft position signal and demand signal so as to produce an error signal.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: April 8, 1997
    Assignee: Woodward Governor Company
    Inventors: Ramin Younessi, Brian Houghton
  • Patent number: 5298871
    Abstract: A microcomputer having a signal generating circuit which generates pulse width modulation signals defined by a carrier wave, and which controls controlled portions according to pulse width modulating signals. The signal generating circuit comprises a carrier wave defining timer which outputs a value varying the same as a waveform providing a carrier wave, a control register which controls the time period of the timer, a reload register which holds a count value, control blocks which generate pulse width modulation signals according to the value of the timer and the count value of the reload register.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: March 29, 1994
    Assignee: NEC Corporation
    Inventor: Kazunari Shimohara
  • Patent number: 4539608
    Abstract: A low offset position demodulator that may be used in the positioning servo of a disk drive or similar device. A first stage of the demodulator circuit multiplies or switches a servo carrier signal, modulated with position information, with a synchronized gate signal. This first stage of the demodulator circuit includes a differential output and means for controlling the common mode operating point thereof with an external control voltage. A low pass filter, also having a differential output, is coupled to the differential output of the first stage of the demodulator. A differential-to-single-ended conversion stage is tied to the low pass filter output to provide a single position output signal. Also coupled to the low pass filter differential output is an averaging network that averages the signal appearing on one of the two differential signal lines with the signal appearing on the other differential signal line.
    Type: Grant
    Filed: December 8, 1982
    Date of Patent: September 3, 1985
    Assignee: Storage Technology Corporation
    Inventors: John P. Hill, James J. Touchton
  • Patent number: 4480938
    Abstract: A servomotor drive system for a printer escapement is provided which minimizes power supply requirements. The drive system has means for accelerating and decelerating the printhead escapement having a fixed current source applied to a servomotor which drives the escapement. In order to minimize power requirements, the system includes means for controlling the current in the motor which comprise means for sensing the actual motor current and feeding back the sensed current to a comparing means. A preselected varying current profile is applied to the comparing means which compares this profile to the actual motor current. Means are then provided responsive to these comparing means for altering the actual motor current to conform with this preselected varying motor current profile.
    Type: Grant
    Filed: August 23, 1982
    Date of Patent: November 6, 1984
    Assignee: International Business Machines Corporation
    Inventors: Darryl R. Polk, Richard A. Southworth
  • Patent number: 4337426
    Abstract: A photoelectric transducer (14) produces first and second periodic signals (A), (B) which are 90.degree. out of phase with each other in response to rotation of a servo motor shaft (12a). The first and second signals (A), (B) are differentiated, directly full wave rectified and summed to produce a velocity signal (Vw-) having a magnitude proportional to the rotational velocity of the shaft (12a). The peaks of the first and second signals (A), (B) are detected to produce a reference signal (Vr) having a magnitude corresponding thereto. The magnitude of the reference signal (Vr) is reduced in accordance with the difference between the present position of the shaft (12a) and a command position to produce a velocity command signal (Vc+). The velocity signal (Vw-) is compared with the velocity command signal (Vc+), to produce a drive signal corresponding to the difference therebetween which is applied to the motor (12). Fluctuations in the amplitude, D. C.
    Type: Grant
    Filed: August 28, 1980
    Date of Patent: June 29, 1982
    Assignee: Ricoh Co., Ltd.
    Inventor: Tomoatsu Imamura
  • Patent number: 4328451
    Abstract: The device comprises for each window an electric driving motor and a selector which is adapted to ensure the selective supply of current to the motor, in one direction or the other, through a control circuit acting on a supply source. The supply source is of the type capable of delivering at least two distinct energy levels. The control circuit comprises means for applying to an input of the supply source an energy level control signal which produces, as a function of the position of the selector, the application of a torque to the motor when raising the window which is higher than the torque applied when descending the window.
    Type: Grant
    Filed: June 25, 1980
    Date of Patent: May 4, 1982
    Assignee: Aciers et Outillage Peugeot
    Inventor: Jean A. Barge
  • Patent number: 4232259
    Abstract: A servo-system includes a high-gain direct-coupled direct current (dc) differential amplifier to which a dc input signal is fed. An adder adds the dc amplifier output to a comparison voltage, and the adder output is applied through a filter circuit to a second input of the differential dc amplifier. A servo-amplifier drives a servo-motor in accordance with the dc amplifier output. Means are provided for zero-balancing the dc amplifier output while varying the comparison voltage by the servo-motor.
    Type: Grant
    Filed: December 27, 1977
    Date of Patent: November 4, 1980
    Assignee: Yokogawa Electric Works, Ltd.
    Inventors: Nobuo Kaieda, Yoshihiro Okano
  • Patent number: 4161678
    Abstract: A servo-system is provided for self-balancing systems using an ac servomotor capable of maintaining loop gain substantially constant irrespective of span adjustment and without capacitor coupling. It includes a direct-coupling dc amplifier for comparing input and comparison signals and amplifying the result, a servo amplifier having a differential direct-coupling amplifier with inverting and non-inverting input terminals, with feedback from its output to the inverting input terminal and a switch to the non-inverting input terminal operating at the same frequency as the ac power source for the servomotor, to maintain the loop gain constant irrespective of span adjustment, and means causing the ac servomotor to move a slide resistor to bring the compared signal into balance with the input signal.Provision is also made for receiving input signals from thermoelectric or resistance thermometers and balancing the system using these signals.
    Type: Grant
    Filed: November 4, 1976
    Date of Patent: July 17, 1979
    Assignee: Yokogawa Electric Works, Ltd.
    Inventors: Nobuo Kaieda, Kenji Kawakami, Yoshihiro Okano, Hiroshi Ohtsu
  • Patent number: 4016471
    Abstract: A level detection system and a servo system employing the level detection system are disclosed. The level detection and servo system employs the use of a reasonably broad band-pass characteristic to avoid criticality in narrow band-pass systems. The level detection system includes an input level comparison circuit responsive to an input signal having a recurrent frequency and a reference signal. A filter having a band-pass characteristic which will pass the recurrent frequency of the input signal and its side-bands is responsive to the input level comparison circuit. The output of the filter is coupled to a second comparison circuit. The second comparison circuit is employed as a control means to drive the servo motor in the servo system.
    Type: Grant
    Filed: May 6, 1974
    Date of Patent: April 5, 1977
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiichi Matsumoto, Kazuya Hosoe