Antihunting Or Damping Patents (Class 318/702)
  • Patent number: 11843332
    Abstract: A control device for an electric motor includes a control circuit that controls an operation of an inverter circuit on the basis of a voltage command value corresponding to a difference between a current command value calculated on the basis of the position of a rotor of the electric motor, and a current flowing through the electric motor. A current estimation unit estimates the current flowing through the electric motor by substituting the voltage command value, a parameter unique to the electric motor, and a rotational speed calculated on the basis of the position of the rotor into a voltage equation serving as a model of the electric motor. An LR estimation unit estimates an inductance and a resistance of the electric motor serving as parameters on the basis of the difference between the current obtained by a current acquisition unit and the current estimated by the current estimation unit.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: December 12, 2023
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Keigo Nomura, Daisuke Matsuoka, Masamichi Nawa
  • Patent number: 11293756
    Abstract: A microelectromechanical gyroscope includes a drive loop having a drive element and a drive loop circuitry. The drive loop circuitry includes a clock generating circuitry for generating from the quadrature-phase detection signal a test clock signal, an angular rate phase demodulation signal and a quadrature phase demodulation signal. A sense loop includes a sense element and sense loop circuitry for detecting angular rate and producing a force-feedback signal. A test signal generator receives a quadrature-phase detection signal to be used as a quadrature-phase carrier signal and the test clock signal A summing element sums a test signal with the force-feedback signal to form a sense feedback signal. A rate phase demodulator produces a rate signal by demodulating a sense signal received from the sense loop with the angular rate phase demodulation signal, and a quadrature-phase demodulator produces a quadrature-phase output signal.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Lasse Aaltonen, Jouni Erkkilä
  • Patent number: 10447189
    Abstract: An electric motor control device includes a drive waveform generating unit configured to generate a drive waveform (a sine wave or a pseudo-trapezoidal wave) to an electric motor. A plurality of photo interrupters detect a rotational phase of an electric motor, and a information of rotational speed is detected by an encoder circuit based on a detected signal of the rotational phase of the electric motor. The control unit controls the drive waveform generating unit on the basis of detection information of the rotational phase of the electric motor and performs control so that a phase relationship between the rotational phase of the electric motor and the phase of the drive waveform is kept constant. Furthermore, the control unit sets an amplitude value of the drive waveform generated by the drive waveform generating unit in accordance with a difference between a target speed and the detected information of rotational speed and performs speed control so that a speed of the electric motor is kept constant.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: October 15, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshihiro Mizuo
  • Patent number: 9960719
    Abstract: A variable speed drive for an electrostatic motor provides feedback control by conversion of measured current phases provided to the motor into a vector in a rotating rotor framework. This vector is used for evaluating corrective voltages and then reconverted to a non-rotating framework for application to the motor electrodes. Current-source drive circuits provide current stabilized outputs making such sophisticated control tractable.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: May 1, 2018
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Aditya N. Ghule, Baoyun Ge, Daniel Colin Ludois
  • Publication number: 20150091492
    Abstract: A system and methods are provided for controlling a motor of a rod pumping system using previous RPMs of the motor and predicting an RPM of the motor; correcting a power factor of a motor of a rod pumping system; allocating energy consumption and allocating energy generation for a set of wells connected to an electricity meter using an amount of energy generated by each well; and generating an alert if a set of data is beyond a threshold for the set of data.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Applicant: LONG MEADOW TECHNOLOGIES, LLC
    Inventors: Jeffrey J. DaCunha, Richard M. Myers
  • Patent number: 8874297
    Abstract: Disclosed are a method and system of controlling anti-jerk for reducing vibration of an electric vehicle using power of a motor. The method includes outputting an actual speed of the motor; outputting a model speed of the motor; obtaining a vibration component based on a deviation between the output motor speed and actual speed of the motor; high pass filtering the vibration component to remove an error component in the vibration component; delaying a phase of the filtered vibration component for a preset time to compensate for phase error occurring during the high pass filtering; and applying a preset gain to the vibration component in which the phase is delayed for the preset time to generate an anti-jerk compensation torque based on the applying of the preset gain.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 28, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Jae Sung Bang
  • Patent number: 8847534
    Abstract: A converter includes three AC reactors, a three-phase diode bridge, a plurality of smoothing capacitors connected in series between a DC output side of the three-phase diode bridge and a DC load, two flywheel diodes connected to positive and negative terminals on the DC side of the three-phase diode bridge, respectively. A reactor is inserted between the midpoint of the two flywheel diodes and the midpoint of the smoothing capacitors, three both-way energizing switches are arranged between the AC side of the three-phase diode bridge and the midpoint of the two flywheel diodes. The three both-way energizing switches are controlled to reduce higher harmonic components of power source current, and by the reactor interposed between the midpoint of the two flywheel diodes and the midpoint of the smoothing capacitors, reverse recovery currents of the three-phase diode bridge during turn-on of the three both-way energizing switches are suppressed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 30, 2014
    Assignees: Hitachi Appliances, Inc., Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Dongsheng Li, Yasuo Notohara
  • Patent number: 8847522
    Abstract: In a motor, a stationary member is provided with a number M (M is a positive integer) of first poles within 360 electrical degrees at spaces therebetween. A plurality of windings are at least partly wound in the spaces, respectively. A movable member is movably arranged relative to the stationary member and provided with a number K (K is a positive integer) of second poles. The number K of second poles is different from the number M of first poles. A unidirectional current supply unit supplies a unidirectional current to at least one of the windings so as to create an attractive force between at least one of the first poles and a corresponding at least one of the second poles to thereby move the movable member relative to the stationary member.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 30, 2014
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa, Yuichiro Ito
  • Publication number: 20140203754
    Abstract: A method of controlling an AC machine that includes a stator and a rotor. The method includes observing a stability parameter that is indicative of the stability of the AC machine and dependent on a current state of the AC machine; and controlling the AC machine based on the observed stability parameter so as to promote stable operation of the AC machine. The method may include controlling the AC machine to operate as a motor or as a generator. The AC machine may be a permanent magnet synchronous machine. A controller suitable for performing the method is also disclosed.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 24, 2014
    Inventors: Bikramjit Singh BHANGU, Chandana Jayampathi GAJANAYAKE, Don Mahinda VILATHGAMUWA, Gilbert Foo Hock BENG
  • Patent number: 8669733
    Abstract: A power supply circuit for an electric motor, the circuit comprising a plurality of inverter bridge arms, each having means for connection to a respective winding of the motor, each inverter bridge arm comprising in series a first insulated gate bipolar transistor and a junction field effect transistor that are connected to a controller, the circuit including a second insulated gate bipolar transistor connected in series with each field effect transistor and connected to the controller, and a damping resistor connected in parallel with the second bipolar transistor. An aircraft flight control member including a movable airfoil associated with at least one drive motor connected to such a power supply circuit.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 11, 2014
    Assignee: Sagem Defense Securite
    Inventors: Roland Casimir, Tony Fourmont
  • Publication number: 20130200839
    Abstract: A torsional mode damping controller system connected to a converter that drives a drive train including an electrical machine and a non-electrical machine. The controller system includes an input interface configured to receive measured data related to variables of the converter or the drive train and a controller connected to the input interface. The controller is configured to calculate at least one dynamic torque component along a section of a shaft of the drive train based on the measured data from the input interface, generate control data for a rectifier of the converter for damping a torsional oscillation in the shaft of the drive train based on the at least one dynamic torque component, and send the control data to the rectifier for modulating an active power exchanged between the converter and the electrical machine.
    Type: Application
    Filed: March 30, 2011
    Publication date: August 8, 2013
    Applicant: NUOVO PIGNONE S.P.A.
    Inventors: Simon Herbert Schramm, Christof Martin Sihler, Alfredo Sebastian Achilles, Paola Rotondo
  • Publication number: 20130175970
    Abstract: The present invention includes a voltage applying step of applying an applied voltage including a DC component and a plurality of frequency components to a PM motor, a motor current detecting step of detecting a motor current flowing depending on the applied voltage, and a current control gain adjusting step of calculating a current control gain based on frequency characteristics of the applied voltage and the motor current. In this manner, a stable current control gain having a high current response can be adjusted within a short period of time.
    Type: Application
    Filed: September 28, 2011
    Publication date: July 11, 2013
    Applicant: Panasonic Corporation
    Inventors: Toru Tazawa, Masaru Nishizono
  • Patent number: 8441223
    Abstract: Disclosed herein is a torque control method for a high-speed Switched Reluctance Motor (SRM), which controls a torque in the high-speed operation of a 2-phase SRM. In the torque control method for a high-speed SRM, a positive torque (T*mA) of an active phase (A phase) of the two phases of the SRM is compensated for based on a negative torque attributable to an inactive phase (B phase) of two phases during a compensation control enable interval (ENA) ranging from a time point at which the active phase (A phase) is turned on to a time point at which tail current of the inactive phase (B phase) remains. Accordingly, the present invention can remarkably reduce a torque ripple occurring in high-speed operation mode in consideration of the influence of a negative torque attributable to tail current.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: May 14, 2013
    Assignee: Kyungsung University Office of Industry-Academy Cooperation
    Inventors: Jin-Woo Ahn, Dong-Hee Lee
  • Patent number: 8427082
    Abstract: The invention relates to a method for absorbing the displacement, under the influence of an external force, of at least one plunger (10,20) in a linear electrodynamic motor comprising a least an induction coil (11, 21) magnetically coupled with the plunger. Said method comprises the steps of: detecting in said induction coil a current induced (I?ind) amplified relative to the induced current. The invention can be applied to cryogenic machines on board space ships.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: April 23, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Gerald Aigouy, Jonathan Buquet, Thierry Trollier
  • Patent number: 8415914
    Abstract: An electric power supply system has a power bus for providing DC power, and a control unit for a source of power to supply the power bus. The power unit includes a damping algorithm to provide damping to power supplied on the power bus. A motor and a motor control include a compensation block for tapping power from the bus, and identifying a portion of a supplied signal due to the damping. The compensation block provides a signal to a summing block that addresses the damping on the power bus prior to the power being supplied to the motor. A method of utilizing such a system is also disclosed.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: April 9, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Donal E. Baker, Raymond J. Beckmann, Curtis J. Plude
  • Patent number: 8362727
    Abstract: A control technology for a synchronous motor for suppressing rotational pulsation caused by variation in individuals without making a control algorithm complex is provided. In a motor drive system which is a control device for a synchronous motor, in order to suppress the pulsation component of N times as high as the AC frequency for driving the synchronous motor, a controller in which the phase property of the disturbance response of the controller with respect to the pulsation frequency is within ±45° is arranged. Therefore, the torque pulsation component generated from distortion in induction voltage or variation between phases is suppressed.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Iwaji, Yasuhiko Kokami, Minoru Kurosawa, Junnosuke Nakatsugawa
  • Patent number: 8339081
    Abstract: Methods and apparatus are provided for startup of a permanent magnet alternating current (AC) motor. The method comprises the steps of detecting startup of the permanent magnet AC motor; detecting a mechanical oscillation of the permanent magnet AC motor when startup of the permanent magnet AC motor is detected; and, in response to detection of the mechanical oscillation of the permanent magnet AC motor when startup is detected, suppressing the mechanical oscillation of the permanent magnet AC motor.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 25, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Nitinkumar R. Patel, Yo Chan Son
  • Patent number: 8248008
    Abstract: A motor control device includes a measurement unit, a speed control unit, a correction unit, a drive unit, and a disturbance suppressing unit. During a time period before a measurement value of speed of one of a motor and a driven object which is driven by the motor measured by the measurement unit becomes greater than zero the correction unit corrects a manipulated variable such that a reduced correction amount which is from zero percent to less than 100 percent of a correction amount determined by the disturbance suppressing unit, is added to the manipulated variable determined by the speed control unit corresponding to a target speed of the one of the motor and the driven object.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 21, 2012
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Kenichi Iesaki
  • Patent number: 8138693
    Abstract: A computing unit simulates an ideal operation of a vibration excitation actuator by using at least a model operation parameter and the vibration-excitation movable mass data and calculates a parameter corresponding to acceleration/deceleration thrust for moving the vibration-excitation movable mass. A vibration isolation controller determines a control content of a vibration isolation driving unit based on the parameter corresponding to the acceleration/deceleration thrust and controls an operation of the vibration isolation driving unit so that a force canceling a reaction force, which acts on an apparatus when a vibration-excitation movable mass is moved, acts on the apparatus by moving the vibration isolation movable unit.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 20, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kei Terada, Tetsuaki Nagano, Kiyoshi Maekawa, Emiko Hayasaka
  • Patent number: 8076894
    Abstract: The present invention provides a superconductive rotating electric machine drive control system that has higher efficiency and is smaller size and lighter in weight than conventional systems, and also provides a superconductive rotating electric machine drive control method to be implemented in the superconductive rotating electric machine drive control system. By the superconductive rotating electric machine drive control system and the superconductive rotating electric machine drive control method in accordance with the present invention, a control operation is performed so that the field current If2 applied to the superconductive field winding of the synchronous rotating electric machine satisfies an equation for the field current If2 in accordance with the variation of the electric power exchanged between the synchronous rotating electric machine and the power unit.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 13, 2011
    Assignee: National University Corporation Tokyo University of Marine Science and Technology
    Inventors: Mitsuru Izumi, Naoki Maki
  • Publication number: 20110234144
    Abstract: A motor control device includes a current detecting unit detecting current flowing into a motor winding, a speed/electrical angle estimating unit estimating a rotational speed and an electrical angle of the motor, based on the current, a load torque estimating unit estimating load torque to be developed by a load, from a torque current obtained based on the current and the electrical angle, a motor constant and inertia moment of the motor inclusive of the load, a load torque phase calculating unit calculating a phase of periodic fluctuation indicated by the load torque, a torque-compensating current determining unit determining a sinusoidal torque-compensating current, based on the load torque phase, and an amplitude/phase adjusting unit detecting speed fluctuation of the motor to adjust amplitude and phase of the torque compensating current by increasing or decreasing the amplitude and the phase so that the speed fluctuation is reduced.
    Type: Application
    Filed: January 26, 2011
    Publication date: September 29, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Sari MAEKAWA
  • Patent number: 7944087
    Abstract: A method and an apparatus for damping voltage oscillation of a voltage intermediate circuit of a frequency converter, the frequency converter comprising a half controlled rectifier bridge coupled to a supply network. The method comprises determining magnitude (Uc) of voltage of the voltage intermediate circuit, determining magnitude (Uin) of rectified voltage of the supply network, forming a derivative of a difference (Uin?Uc) between the rectified voltage of the supply network and the voltage of the voltage intermediate circuit, delaying firing of controllable components of the rectifier bridge on the basis of the formed derivative.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: May 17, 2011
    Assignee: ABB OY
    Inventor: Markku Talja
  • Publication number: 20110062902
    Abstract: Methods and apparatus are provided for startup of a permanent magnet alternating current (AC) motor. The method comprises the steps of detecting startup of the permanent magnet AC motor; detecting a mechanical oscillation of the permanent magnet AC motor when startup of the permanent magnet AC motor is detected; and, in response to detection of the mechanical oscillation of the permanent magnet AC motor when startup is detected, suppressing the mechanical oscillation of the permanent magnet AC motor.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 17, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: NITINKUMAR R. PATEL, YO CHAN SON
  • Patent number: 7859209
    Abstract: A control technology for a synchronous motor for suppressing rotational pulsation caused by variation in individuals without making a control algorithm complex is provided. In a motor drive system which is a control device for a synchronous motor, in order to suppress the pulsation component of N times as high as the AC frequency for driving the synchronous motor, a controller in which the phase property of the disturbance response of the controller with respect to the pulsation frequency is within ±45° is arranged. Therefore, the torque pulsation component generated from distortion in induction voltage or variation between phases is suppressed.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Iwaji, Yasuhiko Kokami, Minoru Kurosawa, Junnosuke Nakatsugawa
  • Publication number: 20100315033
    Abstract: A system and method for controlling an AC motor drive includes a control system programmed with an energy algorithm configured to optimize operation of the motor drive. Specifically, the control system receives input of an initial voltage-frequency command to the AC motor drive, receives a real-time output of the AC motor drive generated according to the initial voltage-frequency command, and determines a real-time value of a motor parameter based on the real-time output of the AC motor drive. The control system also inputs a plurality of modified voltage-frequency commands to the AC motor drive, determines the real-time value of the motor parameter corresponding to each of the plurality of modified voltage-frequency commands, and identifies an optimal value of the motor parameter based on the real-time values of the motor parameter.
    Type: Application
    Filed: November 17, 2009
    Publication date: December 16, 2010
    Inventors: Bin Lu, Charles John Luebke, Joseph Charles Zuercher, John Charles Merrison, Thomas M. Ruchti
  • Patent number: 7820992
    Abstract: A neutron chopper according to the present invention includes a housing which internally forms a sealed space, the housing having window portions through which neutrons pass, a fixed shaft which is fixed inside the housing, a rotor which is rotatably supported by the fixed shaft, the rotor provided with a blocking portion which can block neutrons passing through the housing, and a motor which is provided inside the housing for rotating the rotor of the neutron chopper, where a stator of the motor is fixed to the fixed shaft, and a rotor of the motor receives a rotating force from the stator around the fixed shaft, and is fixed to the rotor of the neutron chopper. The neutron chopper is formed with small size, and neutron guides are easily disposed closely, consequently vacuum leak is hardly occurred in the neutron chopper.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: October 26, 2010
    Assignee: Kobe Steel, Ltd.
    Inventor: Katsuhiko Yoshida
  • Publication number: 20100245409
    Abstract: A motor control device includes a measurement unit, a speed control unit, a correction unit, a drive unit, and a disturbance suppressing unit. During a time period before a measurement value of speed of one of a motor and a driven object which is driven by the motor measured by the measurement unit becomes greater than zero the correction unit corrects a manipulated variable such that a reduced correction amount which is from zero percent to less than 100 percent of a correction amount determined by the disturbance suppressing unit, is added to the manipulated variable determined by the speed control unit corresponding to a target speed of the one of the motor and the driven object.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 30, 2010
    Applicant: BROTHER KOGYO KABUSHIKI KAISHA
    Inventor: Kenichi Iesaki
  • Publication number: 20100237821
    Abstract: There is provided a vector control device for an alternating-current electric motor having a damping controller which automatically calculates an optimum damping operation amount and does not require any gain setting itself, whereby an adjustment work of a control system can be simplified. The vector control device is equipped with a vector controller 30 for executing vector control on the alternating-current electric motor 6 in accordance with a current command or a torque command, and a damping controller 40 for calculating a damping operation amount for suppressing variation of a capacitor voltage Efc.
    Type: Application
    Filed: August 29, 2006
    Publication date: September 23, 2010
    Applicant: Mitsubishi Electric Corporation
    Inventor: Hidetoshi Kitanaka
  • Patent number: 7746038
    Abstract: A controller employed in conjunction with a synchronous generator monitors the output voltage of the generator. The controller employs the monitored output voltage as feedback that is used to control the excitation provided to an exciter field winding. In addition, the controller applies a control loop to the monitored output voltage that detects and modifies voltage ripple signals within the monitored output voltage to generate a compensated signal that is used to control the excitation to the exciter field winding. In particular, by detecting and modifying voltage ripple signals within the monitored output voltage, the controller is able to counteract armature reaction voltage ripples caused by unbalanced short-circuit faults, thereby preventing the build-up of voltage on the DC link.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: June 29, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Vijay K. Maddali, John F. Defenbaugh
  • Publication number: 20100042262
    Abstract: A control system and associated methods for an air treatment system. In one aspect, the present invention provides a control system and method for controlling blower speed as a function of separately determined smoke and dust concentrations. In one embodiment, the control system and method provides a variable delayed between changes in motor speed to address undesirable rapid changes between speeds. In another aspect, the present invention provides a system and method for calibrating a sensor to provide more uniform operation over time. In yet another aspect, the present invention provide a system and method for calibrating motor speed to provide more consistent and uniform motor speed over time. The present invention also provides a system and method for tracking filter life by as a function of time, motor speed and/or a sensed variable, such as particulate concentration in the environment.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Thomas A. Niezgoda, Thomas J. Leppien, Gregory K. Evans
  • Patent number: 7622882
    Abstract: The invention indicates a correct one of multiple rotor positions. For example, the invention can determine, in a PM machine, which of two possible positions a rotor is in when the position is known only within ±? radians. If the actual rotor position is known to be one of ? and ?+?, for example as indicated by a resolver, the proposed invention can be used to determine whether the actual position is ? or ?+?.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 24, 2009
    Assignee: Magna Electronics Inc.
    Inventors: Lei Hao, Zilai Zhao
  • Publication number: 20090256516
    Abstract: There is provided an electromechanical machine control system for variable speed controlling an electromechanical machine which can realize a desired control response and a stable control system by online regulating the gain of a linear differential controller by current feedback based on an electric parameter or mechanical parameter of the electromechanical machine. The electromechanical machine control system includes a current coordinate transformer (15) for coordinate transforming a current detection value of the electromechanical machine (13) which is inputted into a ?-axis current having the same phase as a position reference and a ?-axis current which advances 90 degrees further than the position reference, a ?-axis stabilizer (16) for implementing a linear differential control on the ?-axis current which is inputted to output a ?-axis current voltage correction amount and a ?-axis stabilizing gain regulator (17) for regulating the linear differential control gain of the ?-axis stabilizer.
    Type: Application
    Filed: February 6, 2007
    Publication date: October 15, 2009
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Masanobu Inazumi
  • Publication number: 20090009129
    Abstract: A generator control unit (GCU) provides active damping of a synchronous generator by monitoring the speed of the synchronous generator and detecting oscillations in the monitored speed. The oscillations are indicative of torsional oscillations within the mechanical drivetrain including the synchronous generator or generators. In response to detected oscillations in the monitored speed, the GCU generates a varying set-point value that is used to control the excitation voltage provided to the synchronous generator. Varying the excitation voltage provided to the synchronous generator causes a variation in synchronous generator torque. By selectively varying the torque in the synchronous generator, the GCU provides active damping in the synchronous generator that decreases or dampens the torsional oscillations.
    Type: Application
    Filed: July 2, 2007
    Publication date: January 8, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Albert L. Markunas, Vijay K. Maddali
  • Patent number: 7459876
    Abstract: Motors comprising stators and rotors having a plurality of north poles and south poles and methods of controlling the same. A first sensor and a second sensor are provided. The first and second sensors are disposed on the stator in a manner that the first and second sensors never simultaneously detect boundaries between the north and south poles during rotation of the rotor. If any one of the first and second sensors continuously detects a north pole or a south pole for a predetermined duration, the motor is shut off.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: December 2, 2008
    Assignee: Delta Electronics, Inc.
    Inventors: Magellan Chiu, Venson Kuo, Wen-Shi Huang, Ming-Shi Tsai
  • Patent number: 7208906
    Abstract: A switched reluctance drive is supplied from a power source. The phases of the machine are controlled by a current controller which uses an excitation strategy to minimize the supply current drawn for a particular output. The strategy alternates the excitation between two phases for a given time until the rotor moves to a desired position. A method of starting a switched reluctance motor having a stator with at least two phases, a moveable part, and a position transducer includes determining from transducer output a plurality of phases that are available to produce force in a desired direction, energizing a first phase of the available phases for a predetermined time period that is independent of the transducer output, and energizing a second phase of the available phases after energization of the first phase is initiated.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: April 24, 2007
    Assignee: Switched Reluctance Drives Limited
    Inventors: Michael James Turner, Paul Andrew Sykes
  • Patent number: 7068005
    Abstract: A motor controller having a damper that dampens resonance in a motor drive of a common mode filter to prevent it from becoming over excited by operation of the motor drive at a resonant frequency of the common mode filter. The damper is connected to an output feeder line of a motor drive in the motor controller and provides a common mode path to ground for the common mode filter. Thus, even if the motor drive is operating at a resonant frequency of the common mode filter, the resulting resonance in the common mode filter is attenuated by rather than amplified by the common mode filter, thereby preventing the common mode filter from excessive excitation.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: June 27, 2006
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Donal E. Baker
  • Patent number: 6984957
    Abstract: While a rotor 4 of a permanent-magnet rotary machine 1 is rotating and an armature current thereof is substantially zero, a motor controller 2 performs a dq vector control process to control the permanent-magnet rotary machine 1 in a dq coordinate system which has a d-axis representing the direction of a magnetic field of the rotor 4 and a q-axis representing a direction perpendicular to the d-axis, and determines a magnetic pole position correcting quantity ?ofs to correct a magnetic pole position ?act detected by a magnetic pole position detector 8 so that a d-axis voltage command value Vdc determined by the dq vector control process will be substantially zero. The motor controller 2 controls the phases of armature voltages Vuc, Vvc, Vwc with magnetic pole positions corrected by the magnetic pole position correcting quantity ?ofs.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 10, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Shigeru Tajima, Hideki Inoue
  • Patent number: 6982538
    Abstract: An apparatus is described which reduces a time delay and a resultant phase shift in a gyroscope motor drive signal. The motor drive signal originates from a numerically controlled oscillator whose output is sampled at a predetermined rate. The apparatus includes a first element which upsamples the oscillator output signal samples and a band pass filter configured to receive an output from the first element and remove spectral components from the output of the first element. The apparatus further includes a third element which generates a tuning parameter, ??o, for tuning of the band pass filter and a scaling multiplier configured to normalize an output of the filter.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 3, 2006
    Assignee: Honeywell International Inc.
    Inventor: Stanley A. White
  • Patent number: 6850030
    Abstract: There are performed converting electric currents Iu, Iv, and Iw flowing through the synchronous motor into a d-axis actual current Idfb and a q-axis actual current Iqfb on rotational coordinate axes which rotate synchronously with a rotor magnetic flux vector, on the basis of an actual position ? of the rotor of the synchronous motor; estimating a d-axis simulated current Idob and a q-axis simulated current Iqob on the basis of the d-axis actual current Idfb, the q-axis actual current Iqfb, a d-axis actual voltage command Vdref, and a q-axis actual voltage command Vqref; generating a d-axis actual voltage command Vdref and a q-axis actual voltage command Vqref on the basis of a d-axis current command Idref, a q-axis current command Iqref, a d-axis simulated current Idob, and a q-axis simulated current Iqob; and converting the d-axis actual voltage command Vdref and the q-axis actual voltage command Vqref into actual voltage commands Vuref, Vvref, and Vwref on the basis of the actual position ? of a rotor of t
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: February 1, 2005
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Souki Kaku, Ryuichi Oguro
  • Patent number: 6765358
    Abstract: A variable motor (1) having reduced audible noise. This advantage is achieved by reducing or eliminating ripple torque by making the individual phase torques follow a certain profile, so that when the torques are summed, they are substantially constant. Therefore, the motor (1) back EMF is used as a reference waveform to control the winding currents to achieve reduced ripple torque. The back EMF reference is amplified and provided to the motor windings, and may be derived in a number of ways including use of sense windings, electronic derivation, and approximation by sensing the voltage applied to the windings.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: July 20, 2004
    Assignee: Wellington Drive Technologies Limited
    Inventors: Ernest John Noble, David James Howell
  • Publication number: 20040066167
    Abstract: A multi-axes industrial processing machine with a multi-axes electrical drive system and at least two axle drives that have each an axle module and a built-in motor is disclosed. The machine further includes an impedance that is transformer-coupled with a supply module through an annular core. Either the phase lines on the AC side of the supply module or the output lines of the DC side of the supply module as well as an additional winding are wound on the annular core. The impedance is connected in parallel to the additional winding.
    Type: Application
    Filed: July 31, 2003
    Publication date: April 8, 2004
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Tobias Hofmann, Sebastian Raith, Bernd Segger
  • Patent number: 6583598
    Abstract: A system and method for damping of resonant peaks in an electric motor which is operated using a converter with an intermediate voltage circuit, by means of a matched impedance to ground at the motor star point, and a corresponding electric motor is disclosed. In a converter system having an intermediate voltage circuit which operates with a mains system input inductor in the step-up converter mode or has other input-side inductances, there is a risk of natural system oscillations being formed via discharge capacitances in conjunction with motors. If the motor now has an amplitude/frequency response with a pronounced resonant frequency in the region of such natural system oscillations, then there is a risk of higher voltages occurring at the motor star point than in the motor phases.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: June 24, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Sebastian Raith, Bernd Segger
  • Patent number: 6580248
    Abstract: In a converter system having an intermediate voltage circuit which operates with a supply network-side input inductor in the step-converter mode or has other input-side inductances, there is a risk of natural system oscillations being formed via discharge capacitances in conjunction with motors. If the motor now has an amplitude/frequency response with a pronounced resonant frequency in the region of such natural system oscillations, then there is a risk of higher voltages occurring at the motor star point (S) than in the motor phases (I, V, W). This is prevented by the present invention by introducing an impedance (Z), in particular at the input to the motor, in order to damp capacitive discharge currents to ground potential, which are caused by system oscillations (fsys) (excited asymmetrically with respect to ground in the motor phases (U, V, W)) of the converter system (LK, UR, LT, M) in the winding sections.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: June 17, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Sebastian Raith, Bernd Segger
  • Patent number: 6498447
    Abstract: A controller for an electronically commutated electrical machine receives a feedback signal indicative of a parameter which it is desired to minimize, e.g. torque ripple, current, voltage, vibration or acoustic noise. The controller computes the amplitude and phase of a set of harmonics in the parameter and sequentially injects harmonics of the correct amplitude and phase to minimize the parameter. An optimizing routine iterates through the set of harmonics to further reduce the parameter.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: December 24, 2002
    Assignee: Switched Reluctance Drives, Ltd.
    Inventors: Raymond Mann, Austin Hughes, John Michael Stephenson
  • Patent number: 6456030
    Abstract: A synchronous motor control system includes a synchronous motor 1, an inverter 3 and a controller 4 wherein a current differential detecting unit 13 detects a variation of a motor current when the three phases of the motor 1 is short circuited by the inverter 3, namely at the moment when a carrier wave in a PWM signal generator 9 assumes maximum or minimum value, in a calculating unit 14 a phase &ggr; from &agr; axis of a stationary coordinate system to a three phase short circuited current differential vector is calculated, a phase &dgr; is estimated from d axis to the three phase short circuited current differential vector by making use of d axis current id and q axis current iq on d-q axes coordinate system in the controller 4, thereafter the magnetic pole position &thgr; with respect to &agr; axis is calculated from the phases &ggr; and &dgr;, based on thus calculated magnetic pole position &thgr;, d-q axes control units 11, 7 and 8 are constituted to control the synchronous motor, thereby a highly reliab
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: September 24, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Ryoso Masaki, Satoru Kaneko
  • Patent number: 6441580
    Abstract: A switched reluctance machine uses a Hall-effect device to detect the flux in the flux path for each machine phase. The flux signal from the Hall-effect device is fed back to a controller which compares the flux feedback with a demand signal to produce an error signal. The error signal is used to control the machine flux using a control law function actuating timed switches for each phase.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 27, 2002
    Assignee: Switched Reluctance Drives, Ltd.
    Inventor: Joseph Gerald Marcinkiewicz
  • Patent number: 6408130
    Abstract: The invention relates to an electric drive device with a DC motor (2) comprising a control circuit with an electronic commutator (3). The invention is characterized in that a derivation of a control signal (V_i_ref) is obtained from an induced motor voltage (E_sample) detected by a measuring device and from a reference value (V_i_av) which serves to regulate the speed of the DC motor (2), and in that the derived control signal (V_i_ref) serves to achieve a substantially constant torque of the DC motor (2) through adjustment of the motor currents (ia, ib, ic).
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: June 18, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Reinhold Elferich
  • Patent number: 6281656
    Abstract: A synchronous motor control system includes a synchronous motor 1, an inverter 3 and a controller 4 wherein a current differential detecting unit 13 detects a variation of a motor current when the three phases of the motor 1 is short circuited by the inverter 3, namely at the moment when a carrier wave in a PWM signal generator 9 assumes maximum or minimum value, in a calculating unit 14 a phase &ggr; from &agr; axis of a stationary coordinate system to a three phase short circuited current differential vector is calculated, a phase &dgr; is estimated from d axis to the three phase short circuited current differential vector by making use of d axis current id and q axis current iq on d-q axes coordinate system in the controller 4, thereafter the magnetic pole position &thgr; with respect to &agr; axis is calculated from the phases &ggr; and &dgr;, based on thus calculated magnetic pole position &thgr;, d-q axes control units 11, 7 and 8 are constituted to control the synchronous motor, thereby a highly reliab
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: August 28, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Ryoso Masaki, Satoru Kaneko
  • Patent number: 6215266
    Abstract: A system for low acoustic noise spindle motor commutation is disclosed. The system contains a control device that generates commutation control signals which cause spindle motor drivers to source or sink current through windings of a spindle motor. The windings create electromagnetic fields which induce rotational movement in a spindle motor rotor. Low acoustic noise snubber devices are coupled to each winding and are dynamically configurable by the control device to provide low spindle motor driver charging current upon initial application of power to the spindle motor, and reduced acoustic noise and back EMF-generated current and voltage surges at the spindle motor driver during spindle motor commutation.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: April 10, 2001
    Assignee: Seagate Technology LLC
    Inventors: Nan Ling Goh, James Lai Kein Chang, Yam Pheng Tham, Utt Heng Kan, Kah Liang Gan
  • Patent number: 6204617
    Abstract: A device which detects the angle of rotation of a rotor with respect to a stator of a brushless multi-phase d.c. motor. The rotor comprises a permanent magnet and the stator comprises a plurality of electrical windings. Electric drive signals are applied to the windings in order to drive the rotor. The device includes a drive circuit for applying pulse-shaped electric test signals to the windings while the rotor does not rotate. A measurement circuit detects flyback pulses generated by the motor in response to the test signals. A processing unit processes the durations of the detected flyback pulses in combination in order to determine the angle of rotation. On the basis of the angle of rotation thus determined, the motor can be started such that the rotor is set into rotation in a predetermined direction of rotation.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: March 20, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Henricus M. Van Hout, Catharinus T. Galema