Having A Plurality Of Windings Or Winding Portions Patents (Class 318/724)
  • Patent number: 10298078
    Abstract: A motor includes a stator having windings and a rotor. The rotor includes a rotor core and a first magnet magnetic pole, a second magnet magnetic pole, and a protrusion provided next to each other in the circumferential direction. The second magnet magnetic pole has an opposite polarity to the first magnet magnetic pole. The protrusion projects in the radial direction in the rotor core. The windings include a first winding and a second winding. The first winding and the second winding are excited at the same timing, and are serially connected. The protrusion faces the second winding at the rotor rotation position at which the first magnet magnetic pole or the second magnet magnetic pole faces the first winding.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 21, 2019
    Assignee: DENSO CORPORATION
    Inventors: Seiya Yokoyama, Yoji Yamada, Koji Mikami, Akihisa Hattori
  • Patent number: 10128739
    Abstract: A first offset voltage which is added to voltage commands in a first three-phase voltage command calculated on the basis of a control command for an AC rotary machine, and a second offset voltage which is added to voltage commands in a second three-phase voltage command calculated on the basis of a control command for the AC rotary machine, are set in such a manner that a period during which one of a first power converter and a second power converter outputs an effective vector and the other thereof outputs a zero vector occurs during a carrier period of a first carrier wave signal and a second carrier wave signal.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: November 13, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tatsuya Mori, Akira Furukawa
  • Patent number: 9570960
    Abstract: A driving-device-integral-type rotary electric machine includes a driving device 8 having a first inverter 27a and a second inverter 27b, which can supply power to stator windings 5a and 5b of the rotary electric machine 2, and the first inverter 27a and the second inverter 27b are arranged and installed in a heat sink 19, in a state where the inverters are linearly symmetrical with respect to an axis X of the rotary electric machine 2, and the heat sink is configured in such a way that at least a heat capacity of a portion with respect to the first inverter 27a is roughly equal to a heat capacity of a portion with respect to the second inverter 27b.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: February 14, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoru Akutsu, Yoshihito Asao
  • Patent number: 9564847
    Abstract: An ac synchronous electrical machine includes a stator and a multi-phase stator winding that defines a plurality of stator poles. The stator winding has two or more coil groups, each coil group including a plurality of coils for each phase that are received in winding slots in the stator. The stator winding is connected to a power source/sink. The coil groups are connected in series and each coil group is connected to a power source/sink by a respective switch (26a, 26b . . . ). This allows one or more of the coil groups to be selectively supplied with power from the associated power source/sink or selectively supply power to the associated power source/sink. The switches are operated by a controller. The coils in each coil group are arranged substantially symmetrically around the circumference of the stator to define selected poles of the electrical machine and to produce a constant and balanced rotating torque when any particular coil group or combination of coil groups is active.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 7, 2017
    Assignee: GE Energy Power Conversion Technology LTD.
    Inventor: Eric Anthony Lewis
  • Patent number: 9467086
    Abstract: An object of the present invention is to achieve reductions in size and costs of a vehicle-mounted motor driving control board in a configuration which allows the redundancy of a power supply to be ensured. The vehicle-mounted motor driving control board is formed by one printed circuit board on which are formed two inverter driving circuits for driving two inverter circuits for three-phase motors, and a voltage step-up/step-down driving circuit for driving a voltage step-up/step-down circuit for supplying electric power to the inverter circuits. The vehicle-mounted motor driving control board further includes a first power supply circuit for supplying electric power to part of constituent circuits constituting the voltage step-up/step-down driving circuit and the two inverter driving circuits, and a second power supply circuit for supplying electric power to the remainder of the constituent circuits in the voltage step-up/step-down driving circuit and the two inverter driving circuits.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 11, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shoji Saito, Yoshikazu Tsunoda, Khalid Hassan Hussein, Shintaro Araki
  • Patent number: 9444296
    Abstract: In a three-phase, four-pole, four-parallel-circuit stator winding of an electrical rotating machine, each of two sets of U-phase output terminals U1, U2 is formed of two sets of parallel circuits each formed of windings having a same pitch (one is formed of first and second winding circuits 1, 2 and the other is formed of third and fourth winding circuits 3, 4). The winding of each winding circuit is formed of two serially-connected coil phase bands (coil phase bands a and b form the first winding circuit 1 and coil phase bands c and d, coil phase bands e and f, and coil phase bands g and h form the second, third, and fourth winding circuits 2, 3, 4, respectively). A voltage vector phase difference and a voltage difference between the winding circuits can be eliminated without providing a jumper wire to winding end portions.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 13, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Funasaki, Kiyonori Koga, Susumu Maeda
  • Patent number: 9032238
    Abstract: Systems and methods detect when a transition from a first power module to a second power module is taking place and generates a lockout pulse when the transition is detected. The lockout pulse initiates the blocking of a predetermined number of gate pulses from reaching the second power module. When the predetermined number of gate pulses are blocked, the systems and methods reset to allow complete gate pulses to reach the second module, and continues to detect when the next transition takes place.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 12, 2015
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Joseph V. Kreinbrink, Joseph S. Klak, Jr.
  • Patent number: 8981704
    Abstract: Provided are a motor controller for suppressing a torque pulsation with a simple configuration and obtaining a sufficient output torque in the case of an open-type fault occurring in any one of windings of a motor and inverters, and an electric power steering device using the motor controller. In the motor controller for controlling a current supplied from and a voltage applied from a power source with respect to the motor including winding sets of a plurality of systems, when a fault determination unit (31) determines the occurrence of the open-type fault, the supply of the currents to the windings of one of the systems in which the fault has occurred is stopped by control performed on switching elements included in the inverter of the faulty system, whereas the supply of the currents to the windings of the normal system in which the fault has not occurred is continued.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Electronic Corporation
    Inventors: Masaya Endo, Isao Kezobo, Yoshihiko Kimpara, Jiro Okada
  • Publication number: 20150069949
    Abstract: Motor drives and drive systems are provided. A motor drive of the subject invention can be an asymmetrical, multi-lane, multi-phase motor drive. The motor drive can include a master lane and slave lane having fewer phases than the master lane has. Each lane can be powered by a single direct current link.
    Type: Application
    Filed: July 18, 2014
    Publication date: March 12, 2015
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Ali MOHAMMADPOUR, Leila PARSA
  • Publication number: 20150061567
    Abstract: The invention relates to a vehicle having a multiphase electric machine, comprising a first onboard power subsystem provided with a first nominal DC voltage level, and a second onboard power subsystem provided with a second nominal DC voltage level, wherein the electric machine comprises a rotor, a first stator system, and a second stator system. The first onboard power subsystem comprises a first inverter having a first intermediate circuit capacitor. The first stator system is dedicated to the first inverter. The second onboard power subsystem comprises a second inverter having a second intermediate circuit capacitor, and the second stator system is dedicated to the second inverter. The first stator system is configured in a star connection, the second stator system is configured in a star connection, and a transfer circuit connects the star point of the first stator system to the star point of the second stator system.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Matthias GORKA, Daniel FINDEISEN, Dominik HECKER
  • Patent number: 8890450
    Abstract: A motor control device includes an inverter circuit having switching elements on/off controlled according to a predetermined PWM signal pattern to convert an input direct current to three-phase alternating current supplied to drive an electric motor. A phase current of the motor is detected based on a detection of the input direct current and the PWM signal pattern. A PWM signal generation unit which generates a three-phase PWM signal pattern to enable detecting two-phase currents twice in synchronization with four time-points within a carrier wave period of the PWM signal respectively and so that a detection of current follows a magnetic pole position of the motor. A current differential unit supplies, as current differential values, differences between twice detected current values regarding the two phases respectively, and a magnetic pole position estimation unit estimates the magnetic pole position of the motor based on the current differential values.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Sari Maekawa
  • Publication number: 20140239876
    Abstract: An electric drive system for a PM electric machine, where the machine includes a stator, a rotor and an inverter. Each phase of the machine includes a stator winding separated into a first winding section and a second winding section and two switches in the inverter electrically coupled to the winding sections. The drive system includes a switch assembly for each phase electrically coupled to the inverter switches and the first and second winding sections, where the switch assembly includes at least two switch states. A first switch state of the switch assembly electrically couples the first winding section and the second winding section in series to the inverter switches and a second switch state electrically couples the second winding section to the inverter switches and electrically disconnects the first winding section from the inverter switches.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Hao, Chandra S. Namuduri
  • Publication number: 20140210397
    Abstract: Provided is an inverter apparatus 20 configured to switch a current winding to an optimal winding when a rotation speed of a rotor of an AC electric motor 40 is within a hysteresis region defined by first and second switch timings for switching a state of an armature winding between a first winding and a second winding and when the current winding differs from the optimal winding.
    Type: Application
    Filed: May 16, 2013
    Publication date: July 31, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Masashi TAKENOUCHI, Tomohiro KAWACHI, Kenji TOMOHARA, Koji HIGASHIKAWA
  • Patent number: 8736216
    Abstract: A stator phase circuit for an electric machine includes a phase winding circuit including a plurality of series coupled sub-winding circuits, each sub-winding circuit includes a respective sub-winding coupled in parallel across a respective first controllable switch.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Sanjeev M. Naik, Lei Hao
  • Publication number: 20140132197
    Abstract: In an electrical actuator, the number of piece of an inverter is made one in order to miniaturize a control circuit suitable to a mechanically and electrically integrate type, a motor is configured to include two independent three-phase windings thereinside, and motor relays are disposed at neutral points of the independent three-phase windings.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 15, 2014
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroshi KANAZAWA, Junnosuke NAKATSUGAWA, Shozo KAWASAKI, Yasunaga HAMADA, Kenji NAKAYAMA
  • Patent number: 8716967
    Abstract: A motor control device for controlling a three-phase brushless motor that has a rotor and field coils includes: a load range determining unit that determines a rotor rotation angle range, in which the three-phase brushless motor becomes a load, as a load range when a short-circuit fault occurs in one of a plurality of switching elements. The load range determining unit determines a rotor rotation angle range, in which load current is presumed to flow through a closed circuit formed of the short-circuit switching element and any one of regenerative diodes connected in parallel with the respective normal switching elements when the rotor is rotated in a state where all the switching elements other than the short-circuit switching element are turned off, as the load range.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 6, 2014
    Assignee: JTEKT Corporation
    Inventor: Shigekazu Okumura
  • Patent number: 8680802
    Abstract: A stator phase circuit for an electric machine includes a phase winding circuit including a plurality of series coupled sub-winding circuits, each sub-winding circuit includes a respective sub-winding coupled in parallel across a respective first controllable switch.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: March 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Sanjeev M. Naik, Lei Hao
  • Publication number: 20140009101
    Abstract: An electric drive is disclosed, in particular for a power tool, including a rotor, a stator, and a first coil arrangement, which is designed to drive the rotor by a first rotating field, and including a first motor control arrangement, which is designed to supply the first coil arrangement with electric current in order to generate a first rotating field. The stator has a second coil arrangement for generating a second rotating field. The second coil arrangement can be actuated and energized separately from the first coil arrangement so as to actuate the second coil arrangement in an arbitrary commutation sequence.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 9, 2014
    Inventor: Lothar Dietl
  • Publication number: 20140002002
    Abstract: A control unit is disclosed for actuating an electric machine, having a first and a second voltage connection for connecting the control unit to a voltage source, a first control arrangement which is arranged between the voltage connections and is designed to electrically actuate a first electric consumer and to supply it with multi-phase current, wherein the first control arrangement has at least two electric connections for connection of the first electric consumer, wherein at least one second control arrangement is also connected in series with the first control arrangement between the voltage connections and is designed to electrically actuate a second electric consumer and to supply it with current.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Inventors: Radu Barza, Lothar Dietl, Thomas Riemay
  • Publication number: 20140002001
    Abstract: A motor drive system has a brushless motor having coils classified into a group A and a group B, a stator having 12 teeth, around each of which any one of the coils classified into the group A and the group B is wound, and a shaft and a rotor which are provided inside the stator; a controller which applies three-phase voltages to each coil of the group A; a controller which applies the three-phase voltages to each coil of the group B; and a sensor portion which outputs an electric signal according to the rotation angle of the shaft to the controllers. Both the total number of the coils of the group A and the total number of the coils of the group B are 6.
    Type: Application
    Filed: June 3, 2013
    Publication date: January 2, 2014
    Applicant: ICHINOMIYA DENKI CO., LTD.
    Inventor: Yoshikazu KINASHI
  • Publication number: 20130299271
    Abstract: Provided are a motor controller for suppressing a torque pulsation with a simple configuration and obtaining a sufficient output torque in the case of an open-type fault occurring in any one of windings of a motor and inverters, and an electric power steering device using the motor controller. In the motor controller for controlling a current supplied from and a voltage applied from a power source with respect to the motor including winding sets of a plurality of systems, when a fault determination unit (31) determines the occurrence of the open-type fault, the supply of the currents to the windings of one of the systems in which the fault has occurred is stopped by control performed on switching elements included in the inverter of the faulty system, whereas the supply of the currents to the windings of the normal system in which the fault has not occurred is continued.
    Type: Application
    Filed: February 21, 2013
    Publication date: November 14, 2013
    Inventors: Masaya ENDO, Isao KEZOBO, Yoshihiko KIMPARA, Jiro OKADA
  • Publication number: 20130292941
    Abstract: An electromagnetic machine, comprising: a first stator winding having a first number of pole pairs; a second stator winding having a second number of pole pairs which is different to the first number of pole pairs; and, a modulator having a plurality of pole pieces arranged relative to the first and second stator windings so as to modulate the electromagnetic fields produced by the first and second stator windings, thereby matching harmonic spectra of the first and second stator windings.
    Type: Application
    Filed: January 26, 2012
    Publication date: November 7, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventors: Stephen J. Mountain, Ellis FH Chong
  • Patent number: 8575880
    Abstract: An apparatus and method are provided for adjusting torque and speed of a motor, while remaining within the voltage limit of a power supply. The invention provides a brushless direct current motor with independently driven and switchable stators. In an aspect, each stator and the rotor is structured to function as an independent motor separate from another stator and the rotor. A first power electronics directs energy to a first stator, and a second power electronics directs energy to a second stator. A rotor rotates relative to the stators. In an aspect, a commutation electronics determines electrical position of the rotor relative to the stators, and synchronizes current pulses directed to a sequentially selected phase of the stators, to generate a rotating magnetic field that communicates with the rotor. A controller sets the connection of the first power electronics in series or in parallel with the second power electronics.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: November 5, 2013
    Inventor: Alan L. Grantz
  • Publication number: 20130285591
    Abstract: In a control device for a three-phase rotating machine with first and second winding sets, a current feedback computing section includes a current sum controller and a current difference controller. The current sum controller multiplies, by a sum gain, an error between a sum of current command values for alternating currents output from first and second inverters and a sum of sensed current values and computes a sum of voltage command values. The current difference controller multiplies, by a difference gain, an error between a difference of the current command values and a difference between the sensed current values, and computes a difference of voltage command values. In a variable-responsiveness mode, a gain ratio between the sum gain and the difference gain is varied according to a reference frequency such that the current sum controller and the current different controller are different in responsiveness.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Applicant: DENSO CORPORATION
    Inventor: Takashi SUZUKI
  • Patent number: 8508180
    Abstract: A motor drive apparatus receiving power from a power source and driving a motor with independent polyphase systems of excitation coils, comprises: a control circuit and power converters each corresponding to one system, each including an inverter circuit, an interrupter circuit, and a temperature detector, the inverter circuits being connected in series to the power source and, while not short-circuited, supplying power to the excitation coil, wherein the control circuit detects an operating state of the motor, short-circuits the inverter circuits and interrupts the interrupter circuits for a subset of power converters defined according to the operating state, such that a source voltage is supplied to non-short-circuited inverter circuits, and, when a power converter exceeds a predetermined temperature, the control circuit short-circuits the inverter circuit and interrupts the interrupter circuit thereof, and, in another power converter not exceeding the predetermined temperature, operates the inverter circui
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Tagome, Shun Kazama
  • Patent number: 8427092
    Abstract: A permanent magnet generator system provides protection from fault conditions. The system includes a permanent magnet generator having a first, second, and third winding wherein each winding has a first end and a second end. During the normal mode of operation, the first ends of the windings are shorted to a first neutral point and alternating current (AC) voltage developed in the first, second and third windings is provided to a primary output associated with the second ends of the windings. In response to a fault condition on the primary output side of the system, the second ends of the windings are shorted together to a second neutral point and the first ends of the windings are disconnected from the first neutral point. During the backup mode, AC voltage developed in the windings is provided to a secondary output associated with the first ends of the windings.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: April 23, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Steven J. Moss
  • Patent number: 8405342
    Abstract: A motor including a stator, a rotor, and a current supply unit. The stator includes a stator core, which has a plurality of teeth, and a plurality of coils, which are wound around the teeth. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. Each of the salient poles is arranged between adjacent magnets spaced apart by a clearance from the magnets. When P represents the number of poles in the rotor and S represents the number of coils, a ratio P/S of the pole number P and the coil number S is represented by (4n?2)/3m (where n and m are integers that are greater than or equal to 2). The plurality of coils includes a plurality of coil groups including coils for three phases. The current supply unit executes a different current control for each coil groups.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: March 26, 2013
    Assignee: Asmo Co., Ltd.
    Inventors: Yoji Yamada, Shinji Santo, Seiya Yokoyama, Yoko Tateishi, Yoshiaki Takemoto, Shigemasa Kato
  • Publication number: 20130026968
    Abstract: A motor drive apparatus receiving power from a power source and driving a motor with independent polyphase systems of excitation coils, comprises: a control circuit and power converters each corresponding to one system, each including an inverter circuit, an interrupter circuit, and a temperature detector, the inverter circuits being connected in series to the power source and, while not short-circuited, supplying power to the excitation coil, wherein the control circuit detects an operating state of the motor, short-circuits the inverter circuits and interrupts the interrupter circuits for a subset of power converters defined according to the operating state, such that a source voltage is supplied to non-short-circuited inverter circuits, and, when a power converter exceeds a predetermined temperature, the control circuit short-circuits the inverter circuit and interrupts the interrupter circuit thereof, and, in another power converter not exceeding the predetermined temperature, operates the inverter circui
    Type: Application
    Filed: February 2, 2012
    Publication date: January 31, 2013
    Inventors: Masaki Tagome, Shun Kazama
  • Patent number: 8294407
    Abstract: A motor controller and an electric power steering system including the motor controller are provided. The motor controller has a microcomputer. When the on time of one of the lower potential-side FETs corresponding to the respective phases in a drive circuit becomes shorter than the detection time for detecting the phase current value, the microcomputer estimates the phase current value of the electric current undetectable phase based on the phase current values of the two phases other than the electric current undetectable phase corresponding to the relevant FET (blind estimation). When electric current detection is performed in the blind estimation, motor control signals are output, by which the switching state of the switching arm of the electric current undetectable phase is maintained and the power loss caused by the switching operation of the FETs in the two phases other than the electric current undetectable phase is compensated for.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 23, 2012
    Assignee: JTEKT Corporation
    Inventors: Satoru Mikamo, Atsuo Sakai
  • Patent number: 8294396
    Abstract: A compact field programmable gate array (FPGA)-based digital motor controller (102), a method, and a design structure are provided. The compact FPGA-based digital motor controller (102) includes a sensor interface (206) configured to receive sensor data from one or more sensors (104) and generate conditioned sensor data. The one or more sensors (104) provide position information for a DC brushless motor (108). The compact FPGA-based digital motor controller (102) also includes a commutation control (210) configured to create switching commands to control commutation for the DC brushless motor (108). The commutation control (210) generates commutation pulses from the conditioned sensor data of the sensor interface (206). The compact FPGA-based digital motor controller (102) also includes a time inverter (208) configured to receive the commutation pulses.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: October 23, 2012
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventor: Robert P. Wichowski
  • Patent number: 8288979
    Abstract: An apparatus for controlling a wheel motor is provided. A plurality of switches is provided for controlling a direction of current through motor coils of the wheel motor. A brushless motor control circuit is connected to each of the plurality of switches. Responsive to a request to adjust one of an angular velocity and an angular acceleration of the wheel motor, the plurality of switches are activated to place the motor coils in a predetermined configuration to maximize torque or reduce a total back electromotive force (BEMF) from the motor coils.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Allen Keith Bates, Nhan Xuan Bui, Reed Alan Hancock, Wayne Isami Imaino, Daniel James Winarski
  • Patent number: 8278858
    Abstract: A permanent magnet comprises a primary winding, a secondary winding, a permanent magnet, an output terminal for connection to an external load, and a switching mechanism with two modes. In a first mode of the switching mechanism, the primary winding is connected between neutral and the output terminal, and the varying magnetic flux from the permanent magnet induces a nonzero voltage at the output terminal. In the second mode, the secondary winding provides a return path to neutral for the primary winding, thereby providing negligible voltage and current at the output terminal and substantially canceling change in magnetic flux from the permanent magnet.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 2, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Si J. Fang, Richard A. Himmelmann, James H. Clemmons
  • Patent number: 8269438
    Abstract: An apparatus and method for driving a motor of an air conditioner are disclosed. A method for driving a motor of an air conditioner includes driving the motor in response to a predetermined speed command, sequentially detecting first and second mechanical angles in response to the speed command or a reference speed being spaced apart from the speed command by a predetermined range, calculating a maximum speed mechanical angle corresponding to a maximum speed ripple of the motor on the basis of the detected first and second mechanical angles, and compensating for load torque of the motor on the basis of the calculated the maximum speed mechanical angle. As a result, the speed ripple is decreased during the constant speed operation.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 18, 2012
    Assignee: LG Electronics Inc.
    Inventors: Youngho Hong, Yangkwang Choi, Wonseok Kim
  • Patent number: 8264190
    Abstract: A control apparatus for a multi-phase rotary machine includes a control unit and a plurality of power supply systems including respective inverter units. When a short-circuiting failure occurs in one of the systems due to an ON-failure in any one of FETs in an inverter unit of the failure system, the control unit stops driving of the rotary machine by bringing all the FETs in the failure system into the OFF state. The control unit controls FETs of the non-failure system such that a brake torque generated in the failure system is cancelled or the influence of the brake torque exerted on the driving of the motor is reduced.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 11, 2012
    Assignee: Denso Corporation
    Inventor: Takashi Suzuki
  • Patent number: 8222856
    Abstract: A control system for a motor, including a first detector providing signals indicative of the sign and zero-crossings of a supply voltage, and a second detector providing signals indicative of the sign and the zero-crossings of BEMF developed in the stator winding. A switch is driven to cause a first current pulse through the winding at a first delay relative to the zero-crossing of the supply voltage. The system checks if the BEMF has a first zero-crossing within a predetermined period of time preceding a third zero-crossing of the voltage, and if so, causes an opposite second current pulse through the winding with a second delay relative to the third zero-crossing of the supply. If not, the first current pulse is repeated, reducing or increasing the duration of the first delay if the first zero-crossing of the BEMF took place after or before the predetermined period of time.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: July 17, 2012
    Assignee: Askoll P&C S.r.l.
    Inventors: Sebastiano Acquaviva, Piergiorgio Ricco
  • Publication number: 20120161689
    Abstract: Each of a first and a second inverter circuit supplies a driving current to an electric motor in a different power supply line. A custom IC has a first pre-driver circuit for outputting control signals to the first inverter circuit and a second pre-driver circuit for outputting control signals to the second inverter circuit. A micro-computer for outputting operation signals to the first and second pre-driver circuits is mounted to a control board on a center line. A distance between the center line and the first inverter circuit and a distance between the center line and the second inverter circuit is equal to each other. First and second output terminals of the micro-computer as well as first and second input and output terminals of the custom IC are symmetric with respect to the center line.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 28, 2012
    Applicant: DENSO CORPORATION
    Inventor: Masashi Yamasaki
  • Publication number: 20120119690
    Abstract: A synchronous motor drive system improves the design flexibility regarding torque characteristics as compared with conventionally available design flexibility. A synchronous motor has a rotor and a stator. Each of at least two adjacent stator teeth has a slit formed at the tip thereof. Each of a plurality of stator teeth has a main coil wound therearound in concentrated winding. Between each two adjacent teeth having a slit, a sub-coil is wound around in a manner of being accommodated in the respective slits. The drive device separately controls electric current supplied to the main coils and electric current supplied to the sub-coil.
    Type: Application
    Filed: February 15, 2011
    Publication date: May 17, 2012
    Inventors: Noriyoshi Nishiyama, Makoto Kitabatake
  • Patent number: 8120297
    Abstract: A synchronous motor having phase windings which are split or tapped and in which the conduction angle of the applied alternating current is varied at one or more taps to allow the motor to start in a controlled direction and be torque controlled to synchronous speed.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: February 21, 2012
    Assignee: Wellington Drive Technologies Limited
    Inventor: Jamie Jon Aorangi Wilkinson
  • Publication number: 20110291599
    Abstract: An electric machine is disclosed comprising a first energy source, a second energy source, and a stator which comprises a first set of windings and a second set of windings. The electric machine has a rotor and a controller, the controller configured to control the first energy source to supply a first current to the first set of windings and control the second energy source to supply a second current to the second set of windings. The controller also detects an angular position of the rotor, detects the first current, detects the second current, and determines an optimum phase shift angle of the first current based on the angular position of the rotor, the first current, and the second current. The controller controls the first energy source based on the optimum phase shift angle to modify the first current supplied to the first set of windings.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Inventors: Ahmed Mostafa El-Antably, Robert Dean King, Ayman Mohamed Fawzi El-Refaie
  • Patent number: 8058830
    Abstract: Systems and methods are provided for charging energy sources with a rectifier using a double-ended inverter system. An apparatus is provided for an electric drive system for a vehicle. The electric drive system comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A first energy source is coupled to the first inverter, wherein the first inverter is configured to provide power flow between the first energy source and the electric motor. A second inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A rectifier is coupled to the second inverter and configured to produce a direct current output. The second inverter is configured to provide power from the rectifier to the electric motor.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: George John, Sibaprasad Chakrabarti, Brian A. Welchko, Gregory S. Smith, James M. Nagashima, Milun Perisic
  • Patent number: 8035330
    Abstract: The synchronous motor driving apparatus including position sensors provided in the synchronous motor, a current polarity detection circuit for detecting the polarities of the currents in the respective phase windings of the synchronous motor, an inverter driving the synchronous motor, a motor speed calculation unit calculating the rotational speed of the synchronous motor depending on the output signals from the position sensors, a speed control unit outputting a first voltage adjusting component (q-axis current command value Iq*) to cause the rotational speed of the synchronous motor to approach a speed command value and a phase control unit outputting a second voltage adjusting component (d-axis current command value Id*) to cause the phase differences between the phases of the position sensor signals and of the currents in the respective phase windings of the synchronous motor to become a predetermined value.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: October 11, 2011
    Assignees: Hitachi, Ltd., Hitachi Information & Control Solutions, Ltd.
    Inventors: Daisuke Maeda, Tsunehiro Endo, Hidefumi Shirahama, Kenji Sakurai, Hiroyuki Hasegawa, Mitsuhiro Mishima
  • Publication number: 20110241599
    Abstract: In a system, a plurality of motors are provided. Each of the plurality of motors has a plurality of phase windings. Each of the plurality of motors is rotated when a unidirectional current is supplied to each of the plurality of phase windings thereof. A motor select unit includes a plurality of selectors connected to the plurality of motors, respectively. The motor select unit selects at least one of the plurality of motors via a corresponding at least one of the selectors. A phase current supplier is connected in series to each of the plurality of selectors. The phase current supplier supplies a direct current as the unidirectional current to each of the plurality of phase windings of the selected at least one of the plurality of motors via a corresponding at least one of the selectors.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 6, 2011
    Applicant: DENSO CORPORATION
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa
  • Publication number: 20110227523
    Abstract: An apparatus and method are provided for adjusting torque and speed of a motor, while remaining within the voltage limit of a power supply. The invention provides a brushless direct current motor with independently driven and switchable stators. In an aspect, each stator and the rotor is structured to function as an independent motor separate from another stator and the rotor. A first power electronics directs energy to a first stator, and a second power electronics directs energy to a second stator. A rotor rotates relative to the stators. In an aspect, a commutation electronics determines electrical position of the rotor relative to the stators, and synchronizes current pulses directed to a sequentially selected phase of the stators, to generate a rotating magnetic field that communicates with the rotor. A controller sets the connection of the first power electronics in series or in parallel with the second power electronics.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 22, 2011
    Inventor: Alan L. Grantz
  • Publication number: 20110204839
    Abstract: A motor drive apparatus has a plurality of motor drive parts and a control unit. The control unit performs first and second failure detection processing for the motor drive parts before starting to drive the motor. If the first motor drive part is determined to have failure by the first failure detection processing, a first power supply relay for the first motor drive part is turned off and the second failure detection processing for the first motor drive part is inhibited. If the second motor drive part is determined to have no failure by the first failure detection processing and then by the second failure detection processing, the motor is started to operate.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 25, 2011
    Applicant: DENSO CORPORATION
    Inventors: Yasuhiko MUKAI, Nobuhiko URYU
  • Publication number: 20110181230
    Abstract: A motor including a stator, a rotor, and a current supply unit. The stator includes a stator core, which has a plurality of teeth, and a plurality of coils, which are wound around the teeth. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. Each of the salient poles is arranged between adjacent magnets spaced apart by a clearance from the magnets. When P represents the number of poles in the rotor and S represents the number of coils, a ratio P/S of the pole number P and the coil number S is represented by (4n?2)/3m (where n and m are integers that are greater than or equal to 2). The plurality of coils includes a plurality of coil groups including coils for three phases. The current supply unit executes a different current control for each coil groups.
    Type: Application
    Filed: September 29, 2010
    Publication date: July 28, 2011
    Applicant: ASMO CO., LTD.
    Inventors: Yoji Yamada, Shinji Santo, Seiya Yokoyama, Yoko Tateishi, Yoshiaki Takemoto, Shigemasa Kato
  • Publication number: 20110074333
    Abstract: A control apparatus for a multi-phase rotary machine includes a control unit and a plurality of power supply systems including respective inverter units. When a short-circuiting failure occurs in one of the systems due to an ON-failure in any one of FETs in an inverter unit of the failure system, the control unit stops driving of the rotary machine by bringing all the FETs in the failure system into the OFF state. The control unit controls FETs of the non-failure system such that a brake torque generated in the failure system is cancelled or the influence of the brake torque exerted on the driving of the motor is reduced.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 31, 2011
    Applicant: DENSO CORPORATION
    Inventor: Takashi SUZUKI
  • Patent number: 7917017
    Abstract: If a PWM duty instruction D1 determined by a duty calculation circuit exceeds an upper limit value, a duty signal processing circuit in a motor drive apparatus divides a switching current supply period in each of the phases into a first current supply period and a second current supply period. In the first current supply period, the duty is set to the upper limit value. In the second current supply period, the duty is set to 100%, and the length of the second current supply period is set depending upon the duty instruction.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 29, 2011
    Assignee: DENSO CORPORATION
    Inventor: Atsushi Kanamori
  • Patent number: 7888904
    Abstract: An axial flux electric motor comprising a rotor and a first and second stator. The first and second stators have a first and second air gap located between the first and second stators and the rotor, respectively, and the second air gap is greater than the first gap. In one embodiment, the coils of the first stator and the coils of the second stator are in parallel. The motor further comprises switches which alternatingly energize the coils of the first stator and of the second stator based upon required torque and required speed of the motor. In a second embodiment, the coils of the first stator and the coils of the second stator are in series and the motor further comprises switches which selectively bypass the coils of the second stator in order to reduce the back EMF of the motor and increase the maximum speed of the motor at a given input voltage.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: February 15, 2011
    Assignee: The Timken Company
    Inventor: Bradley S. Mularcik
  • Patent number: 7839113
    Abstract: The synchronous motor driving apparatus including position sensors provided in the synchronous motor, a current polarity detection circuit for detecting the polarities of the currents in the respective phase windings of the synchronous motor, an inverter driving the synchronous motor, a motor speed calculation unit calculating the rotational speed of the synchronous motor depending on the output signals from the position sensors, a speed control unit outputting a first voltage adjusting component (q-axis current command value Iq*) to cause the rotational speed of the synchronous motor to approach a speed command value and a phase control unit outputting a second voltage adjusting component (d-axis current command value Id*) to cause the phase differences between the phases of the position sensor signals and of the currents in the respective phase windings of the synchronous motor to become a predetermined value.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: November 23, 2010
    Assignees: Hitachi, Ltd., Hitachi Information & Control Solutions, Ltd.
    Inventors: Daisuke Maeda, Tsunehiro Endo, Hidefumi Shirahama, Kenji Sakurai, Hiroyuki Hasegawa, Mitsuhiro Mishima
  • Patent number: RE45388
    Abstract: A compact field programmable gate array (FPGA)-based digital motor controller (102), a method, and a design structure are provided. The compact FPGA-based digital motor controller (102) includes a sensor interface (206) configured to receive sensor data from one or more sensors (104) and generate conditioned sensor data. The one or more sensors (104) provide position information for a DC brushless motor (108). The compact FPGA-based digital motor controller (102) also includes a commutation control (210) configured to create switching commands to control commutation for the DC brushless motor (108). The commutation control (210) generates commutation pulses from the conditioned sensor data of the sensor interface (206). The compact FPGA-based digital motor controller (102) also includes a time inverter (208) configured to receive the commutation pulses.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Robert Wichowski, Harold J. Hansen, Kevin G. Hawes