Separate Primary Running Winding For Each Pole Number, Alternately Energized Patents (Class 318/775)
  • Patent number: 8305026
    Abstract: A PSC/PSC motor for 2-pole operation and 4-pole operation. The motor uses an independent 2-pole main winding and an independent 4-pole main winding. An auxiliary winding includes an independent 2-pole auxiliary winding, an independent 4-pole auxiliary winding, and a shared auxiliary winding used in both the 2-pole operation and the 4-pole operation.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: November 6, 2012
    Assignee: Nidec Motor Corporation
    Inventors: Renyan W. Fei, Larry L. Stevens, John G. Schrader
  • Publication number: 20120062165
    Abstract: A dual-speed single-phase AC motor, including: a stator, including a stator core, and a coil winding, including a starting winding, a first main winding, and a second main winding, a rotor, and a starting circuit, including a rectifying and voltage-stabilizing circuit, a detecting circuit, a voltage comparison circuit, a first switching circuit, a second switching circuit, and a third switching circuit. The number of poles of the starting winding is the same as that of the first main winding. The number of poles of the first main winding is less than that of the second main winding.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 15, 2012
    Applicant: Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd.
    Inventor: Yong ZHAO
  • Publication number: 20110109258
    Abstract: A PSC/PSC motor for 2-pole operation and 4-pole operation. The motor uses an independent 2-pole main winding and an independent 4-pole main winding. An auxiliary winding includes an independent 2-pole auxiliary winding, an independent 4-pole auxiliary winding, and a shared auxiliary winding used in both the 2-pole operation and the 4-pole operation.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 12, 2011
    Applicant: EMERSON ELECTRIC CO.
    Inventors: Renyan W. Fei, Larry L. Stevens, John G. Schrader
  • Patent number: 7911175
    Abstract: A six lead, two speed, consequent wound, single phase induction motor with a tapped auxiliary winding having a 2-pole high speed mode and 4-pole low speed mode. A portion of the auxiliary winding is connected in series with the four pole main winding. The 4-pole low speed mode has an efficiency of over 80%.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: March 22, 2011
    Assignee: Emerson Electric Co.
    Inventors: Vincent Fargo, Dick Cao, Yang Xilai
  • Patent number: 7602594
    Abstract: To provide a motor control apparatus, including a rotational number detecting means for detecting the rotational number of a motor; a current detecting means for detecting a motor current; a voltage detecting means for detecting an impressed voltage to be supplied to a motor; a temperature estimating means for obtaining a motor temperature from the rotational number of a motor, the motor current, and the impressed voltage; and a protection signal generating means for generating an operational signal in order to protect the motor when the obtained motor temperature exceeds a predetermined value.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: October 13, 2009
    Assignee: JTEKT Corporation
    Inventor: Yasuhiro Yukitake
  • Patent number: 7518837
    Abstract: A control device for soft starting and protecting overload of a motor in a power tool is disclosed. The control device comprises a power switch, a varistor, several diodes, several resistors, several capacitors, a relay, a transistor, a triac, and a microcontroller. The microcontroller is embedded with program such that, after the power switch is turned on, the microcontroller generates a smooth soft start voltage to drive the power tool. With the characteristics of power-control device, the voltage sent to motor is increased from low to full range. When the speed of motor is increased from low to the maximum, the microcontroller turns off the power-control device and turns on a relay.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: April 14, 2009
    Assignee: Uan Chung Enterprises Co., Ltd
    Inventors: Tai-Yuan Tseng, Mu-Hsien Huang
  • Patent number: 6930464
    Abstract: A driving circuit for improving starting of a hybrid induction motor and its method includes a capacitor for operation electrically connected between a main coil and a auxiliary-coil, and a starting and current cutting-off means electrically connected with the capacitor for operation, applying a high starting current to a motor in starting, and cutting off the starting current when the motor is operated at a synchronous speed after the starting, so that a satisfactory starting characteristic can be obtained by increasing output under a low voltage state in starting, and effective operation can be performed by decreasing output under a normal operation state after the starting is completed.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: August 16, 2005
    Assignee: LG Electronics Inc.
    Inventors: Seong-Do Han, Jun-Ho Ahn, Hyoun-Jeong Shin
  • Patent number: 6891294
    Abstract: An electric motor for a motor vehicle or other machine. The motor includes a support member with electromagnets (coils) and a moving member with permanent magnets. The coils are divided into groups, each group having several sets of coils, each set having several coil units. Each coil has its own battery or other energy source. A drive circuit controls activation of the coils. At maximum power, all coils sets are energized together. At each lower power level, different groups of coil sets are operated, and a cycling circuit varies which of the groups are energized. In this way, energy drain on the batteries is evenly distributed, maximizing the operating time of the motor before recharging of the batteries is required. In one embodiment, the coils are turned on by SCRs, and transistors turn off the SCRs, providing a novel SCR turnoff circuit ideal for high voltage, low current applications.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: May 10, 2005
    Inventor: Clarence D. Deal
  • Patent number: 6815926
    Abstract: A single phase, three-speed induction motor having 4, 6, and 8-pole speed configurations. In one embodiment, the motor is constructed and arranged to be used in connection with a washing machine. The 8-pole speed winding shares a portion of the 4-pole speed winding, but not all of the 4-pole speed winding is used in the 8-pole configuration. In one embodiment, the 4-pole speed winding includes four winding portions and the 8-pole speed configuration uses two of the four winding portions without the need for additional switch contacts to reconfigure the motor for operating in the 4-pole mode or the 6-pole mode. In one embodiment, shared winding portions are wound on the stator core in a generally non-sinusoidal distribution and non-shared winding portions are wound on the stator core in a generally sinusoidal distribution.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: November 9, 2004
    Assignee: Emerson Electric Co.
    Inventors: Renyan William Fei, Mark C. Dierkes
  • Patent number: 6175209
    Abstract: A motor comprising a 2/4-pole permanent-split capacitor motor having a shared main winding and a shared auxiliary winding. The shared auxiliary winding comprises a 4-pole auxiliary winding phase shifted one slot less than a phase shift of 90 degrees with respect to the 4-pole main winding. A switching circuit selectively simultaneously energizes the shared main winding and the shared auxiliary winding in the 2-pole and 4-pole configurations.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: January 16, 2001
    Assignee: Emerson Electric Co.
    Inventor: Renyan William Fei
  • Patent number: 6175208
    Abstract: A permanent split capacitor motor operable in a full mode and in a modulated mode for improving efficiency. The motor includes a stator and a rotor in rotational relationship with the stator. The motor also includes a single set of windings wound on the stator. The windings are in a magnetically coupled relationship with each other such that one of the windings is a main motor winding while the other is an auxiliary motor winding. The windings define a plurality of A-ratios as a function of turns in the main motor winding compared to turns in the auxiliary motor winding. A switching circuit selectively energizes the first and second windings in a full mode configuration and in a modulated mode configuration based on motor load conditions. In the full mode configuration, the A-ratio of the windings is greater than in the modulated mode configuration.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: January 16, 2001
    Assignee: Emerson Electric Co.
    Inventor: J. Scott Rose
  • Patent number: 6121746
    Abstract: A speed reduction switch for a multiple speed induction motor includes a speed selector switch and a delay element. As the motor is switched from a high speed to a lower speed, the delay element temporarily prevents electrical connection of a motor auxiliary winding for low speed operation. The motor is therefore de-energized and slows down. After a preselected delay, the delay element connects the motor auxiliary winding when the motor is at a lower speed so that little magnetic braking of the motor occurs, and the motor smoothly transitions from a higher speed to a lower speed.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: September 19, 2000
    Assignee: General Electric Company
    Inventors: Lynn Edwin Fisher, Eric A. Depner
  • Patent number: 6008616
    Abstract: An apparatus for a pole change induction motor and control method for the same which are applicable to, for example, a driving source of an electric vehicle without power transmission are disclosed. In the control apparatus and method for the pole change motor is electrically changed between an n number of poles and a 2n number of the poles (n=2, 4, - - - ) so as to secure an output torque of the pole change induction motor in a constant driving mode with a high rotation speed of the induction motor without increase in a dimension of either of the induction motor or an inverter associated with the pole change induction motor and without occurrence in a torque variation. In a preferred embodiment, two channels of exciting and torque instructions and slip frequency generators (current instruction calculating blocks and current control systems) are provided for the n number of pole driving and 2n number of pole driving.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: December 28, 1999
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Kazutoshi Nagayama, Tadashi Ashikaga, Takayuki Mizuno, Kenji Yamada, Masato Mori, Katsuyuki Watanabe, Isao Matsuda
  • Patent number: 5990653
    Abstract: Method for controlling the speed of a single-phase asynchronous induction motor, the stator of which is equipped with a main winding (BP) and an auxiliary winding which consist of half-windings (B1, B2) which are magnetically coupled and wound in opposite directions, in which method the main winding is powered directly using an AC source and the auxiliary winding is powered using a current delivered by a full-wave rectifier and using two switching devices (T1, T2), so as to generate in the auxiliary winding a current which is phase-shifted by 90.degree.. The method consists in varying the motor torque by altering the time that at least one of the switches spends closed/open.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: November 23, 1999
    Assignee: Somfy
    Inventors: Jean-Michel Orsat, Serge Bruno
  • Patent number: 5896021
    Abstract: A method for removing moisture from an induction motor having at least two phase windings with each phase winding coupled by a first respective parallel combination of a first switch and a first diode to a positive voltage line and a second respective parallel combination of a second switch and a second diode to a negative voltage line includes supplying voltage to the positive and negative voltage lines and switching ON and OFF selected ones of the first and second switches to provide a current to preheat the induction motor. The provided current can be a substantially DC current or a substantially sinusoidal current.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: April 20, 1999
    Assignee: General Electric Company
    Inventor: Ajith Kuttannair Kumar
  • Patent number: 5541483
    Abstract: A control system for controlling the excitation of a DC motor or generator activates an auxiliary power source to increase the magnetic field intensity in one or more field windings of the motor or generator when the intensity falls below a desired level, especially during a low voltage mode of operation. The system includes an excitation control system which generates a feedback signal for controlling a subexciter circuit included in the auxiliary power source in response to signals generated from detection elements that monitor various operational conditions of the motor or generator.
    Type: Grant
    Filed: July 8, 1993
    Date of Patent: July 30, 1996
    Inventor: Tai-Her Yang
  • Patent number: 5170110
    Abstract: An improved regulator mechanism for a single-phase or three-phase, two-speed motor is disclosed. The regulator mechanism includes a first energizable contactor (having at least one contact) and a second energizable contactor (having five contacts) which cooperate to cycle the motor between inoperative and operative states and to configure the motor windings and power lines so as to provide first and second speed operation.
    Type: Grant
    Filed: April 12, 1990
    Date of Patent: December 8, 1992
    Assignee: Lennox Industries Inc.
    Inventor: Robert C. Vlasak
  • Patent number: 5159255
    Abstract: An alternating current induction motor having a tapped RUN winding for developing different levels of stator field excitation which induces rotational torque into a rotor having an output member that drives various levels of mechanical load. Instant motor loading is sensed as a change in power factor or subsynchronous slip speed and the level of RUN winding excitation, together with the resulting magnetic field strength, is immediately changed to compensate for the sensed load changes. The change in RUN winding excitation is brought about by having a RUN winding the full extent of which may be coupled with a.c. power to produce magnetic field strength and resulting output member torque at least sufficient to operate the motor under minimum load conditions, and at least one tapped portion of the RUN winding which may be alternatively coupled with the a.c.
    Type: Grant
    Filed: November 7, 1990
    Date of Patent: October 27, 1992
    Assignee: Savvy Frontiers Patent Trust
    Inventor: Harold J. Weber
  • Patent number: 5103153
    Abstract: Control equipment for motors having two windings and wherein both windings are temporarily connected in parallel to start the motor.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: April 7, 1992
    Assignee: North American Philips Corporation
    Inventor: Joseph S. Droho
  • Patent number: 5077512
    Abstract: An energy efficient electric motor is provided with a supplementary run winding arrangement which operates in conjunction with the motor's main run winding to produce a combined magnetic field with sufficient strength to operate the motor under full load. Less than full load operation obtains increased efficiency through a reduction of power flow to the supplementary run winding arrangement, which brings about a significant reduction in stator core structure (eddy current) losses and winding (resistance) losses. A controller may predetermine the normal amount of magnetic field strength necessary during each portion of the motor's usual operating cycle and variously modulate the instant level of power coupled with the supplementary run winding arrangment.
    Type: Grant
    Filed: August 29, 1988
    Date of Patent: December 31, 1991
    Assignee: Savvy Frontiers Patent Trust
    Inventor: Harold J. Weber
  • Patent number: 5075611
    Abstract: A control device is provided for an alternating current motor operating in single phase and having first and second windings coupled so that they are shifted in phase with respect to each other. A control unit includes first and second switching elements located between a line connection and respective first and second windings of the motor. One of the switching elements is open and the other closed in a switching state of the control unit, depending on the running direction of the motor. At least one of the switching elements is open when the control unit is in a state of rest. A power supply unit is provided for providing electric energy to the control unit. When the control unit is in a state of rest, the power supply operates by drawing on a first potential difference between a line connection and winding connection associated with the switching element that is open in the state of rest.
    Type: Grant
    Filed: May 22, 1990
    Date of Patent: December 24, 1991
    Assignee: Torotron Elektronik GmbH
    Inventor: Thomas M. Ankele
  • Patent number: 5041775
    Abstract: A control circuit for controlling the speed of a tapped winding motor that includes a set of motor speed selection relays, and a normally open relay connected in series with the set of motor speed selection relays. The motor speed selection relays are connected to the tapped windings of the motor for varying speed of the motor. A microprocessor controls energization of the relay windings upon request for a change in motor speed so that the normally open relay is open before and during any change of state of the motor speed selection relays corresponding to the requested change in motor speed.
    Type: Grant
    Filed: April 3, 1990
    Date of Patent: August 20, 1991
    Assignee: Honeywell Inc.
    Inventor: John L. Erdman
  • Patent number: 4947098
    Abstract: An improved regulator mechanism for a single-phase or three-phase, two-speed motor is disclosed. The regulator mechanism includes a first energizable contactor (having at least one contact) and a second energizable contactor (having five contacts) which cooperate to cycle the motor between inoperative and operative states and to configure the motor windings and power lines so as to provide first and second speed operation.
    Type: Grant
    Filed: May 26, 1988
    Date of Patent: August 7, 1990
    Assignee: Lennox Industries, Inc.
    Inventor: Robert C. Vlasak
  • Patent number: 4823067
    Abstract: Power consumed by an ordinary a.c. induction motor is reduced by having two parallel sets of separately excited RUN windings. When the motor is lightly loaded, a.c. power feeds only one of the two RUN windings, thereby reducing the flux density in the motor stator and as a result reducing eddy current losses and copper losses. Whe the load increases, a.c. power is immediately fed to the other RUN winding thereby increasing the magnetic flux density and the motor power. The a.c. power fed to the second winding is variably controlled by a thyristor, and the amount of thyristor coupled power may be determined from sensing changes in the speed slip of the induction motor wrought by load changes. Through having the one RUN winding permanently connected with the power source, while the other RUN winding power is modulated by the phawe controlled gating action of the thyristor, less a.c.
    Type: Grant
    Filed: February 16, 1988
    Date of Patent: April 18, 1989
    Inventor: Harold J. Weber
  • Patent number: 4806838
    Abstract: Electric power consumed by an a.c. induction motor is measured and sensed changes in power factor are used to modulate the combined magnetic flux produced in the motor field by two sets of RUN windings. A main RUN winding set, which normally couples fully with the a.c. power, is engineered to have sufficient ampere-turns to produce just enough magnetic flux to operate the motor with a light load and maintain a moderately high power factor. Motor driven load increases are determined by sensing a corresponding increase in the power factor of the main RUN winding set, whereupon power flow to a secondary RUN winding is proportionately increased. Considerable energy savings occurs when the motor drives a fluctuating load due to reduced magnetic field excitation under all but full load conditions, with the result that energy ordinarily wasted by eddy currents, copper losses, and poor power factor operation is considerably lessened. Other possible losses due to harmonic distortion of the a.c.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: February 21, 1989
    Inventor: Harold J. Weber
  • Patent number: 4472670
    Abstract: The present invention discloses AC electrodynamic machines, such as electric motors, which are able to be operated in either a high speed mode or a low speed mode by not energizing one of the windings of the machine or by energizing the one winding so as to induce a magnetic pole of reverse polarity to that conventionally induced, respectively. Methods of operating AC electrodynamic machines are also disclosed.
    Type: Grant
    Filed: December 3, 1981
    Date of Patent: September 18, 1984
    Assignee: Card-O-Matic Pty. Limited
    Inventor: Louis Stanley
  • Patent number: 4384312
    Abstract: Overload protection for a multispeed motor is provided in the form of a plurality of line break motor protectors positioned in good heat transfer relation with the motor windings and having heating elements in circuit with the motor windings to be responsive to excessive winding current and/or excessive winding temperature to disable the windings. Certain of the line break motor protectors are operational in more than one motor speed configuration. The line break motor protectors may be of the self-resetting temperature sensing variety and circuitry is included to insure that the motor does not restart until all protectors are reset subsequent to an overload condition.
    Type: Grant
    Filed: July 29, 1981
    Date of Patent: May 17, 1983
    Assignee: Tecumseh Products Company
    Inventor: Emanuel D. Fry
  • Patent number: 4348626
    Abstract: A two-speed single phase motor of the capacitor-start type is disclosed wherein the motor is switched from the start condition to the run condition by means of a single contact centrifugally actuated switch. The motor comprises high speed and low speed main windings and high speed and low speed start windings wound on the stator core and a double throw selector switch for connecting the high speed main and start windings to the terminal or the low speed main and start windings to the terminals when the motor is operated in the high speed and low speed configurations, respectively. A single pole single throw centrifugally actuated switch connected to the rotor has a single contact pair connected in series with the start capacitor and one of the terminals, and the switch contacts open when the rotor exceeds a predetermined rotational speed to disconnect the start capacitor from the circuit. The same centrifugal switch contact pair is used in both the high speed and low speed configurations.
    Type: Grant
    Filed: September 16, 1980
    Date of Patent: September 7, 1982
    Assignee: General Electric Company
    Inventor: Solomon London
  • Patent number: 4322665
    Abstract: A two speed, single phase electric motor having a stator assembly including a main winding and a supplemental winding. Each of these windings includes a pair of coil sets. The main winding coil sets and the supplemental winding coil sets are so connected to a source of electrical power such that during high speed operation of the motor the number of effective turns is the sum of the turns in one main winding coil set and its supplemental winding coil set, and during low speed operation, only the turns in the main winding coil set are energized so that there are fewer effective turns. Thus, by varying the number of turns included in the supplemental winding coil sets while keeping the total number of effective turns in the main winding and supplemental winding constant, the low speed breakdown torque of the motor may be preselected during the design of the motor to be less than, equal to, or greater than a desired high speed breakdown torque.
    Type: Grant
    Filed: July 9, 1979
    Date of Patent: March 30, 1982
    Assignee: Emerson Electric Co.
    Inventor: Robert A. Landgraf
  • Patent number: 4263540
    Abstract: A refrigerant compressor of the type driven by a single phase motor capable of operating at a low speed and a high speed. The motor, including four separate windings, a first set of high-speed two-pole auxiliary and main windings, and a second set of low-speed four-pole auxiliary and main windings all wound on the same stator core. Each set of windings is provided with independent line break protectors that enable each set of windings and protector to be optimized without affecting the other. A mandatory low-speed start system is incorporated that insures initial low-speed start even when conditions require high speed operation. Speed switching from one speed to the other is accomplished in the present system while the motor is running without causing interruption of compressor operation.
    Type: Grant
    Filed: July 5, 1979
    Date of Patent: April 21, 1981
    Assignee: General Electric Company
    Inventors: George W. Brandt, Charles A. Dubberley