Including Inverter Patents (Class 318/801)
  • Patent number: 7755319
    Abstract: Apparatus, systems, and methods are provided for reducing voltage source inverter losses. One apparatus includes a sensor couplable to the motor and configured to sense an operating frequency of the motor and an amount of torque produced by the motor. The apparatus also includes a controller coupled to the sensor, the controller configured to determine a zero vector modulation (ZVM) based on the sensed frequency and torque. A system includes means for sensing a threshold output frequency of the motor and means for sensing a threshold torque of the motor. The system also includes means for determining a ZVM for the inverter based on the sensed threshold frequency and threshold torque. One method includes sensing that a motor is operating below a threshold frequency and is producing torque above a threshold torque amount. The method also includes determining a ZVM for the inverter based on the sensed frequency and torque.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: July 13, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Silva Hiti, Steven E. Schulz, Brian A Welchko
  • Patent number: 7750596
    Abstract: The semiconductor device according to the present invention generates pulse width modulation signals for controlling inverter circuits that drive a motor. The semiconductor device includes: a first register which holds values for determining a period in which each pulse width modulation signal becomes active; a correction buffer which holds a correction value; a first counter; a second counter which counts a value obtained by temporally advancing or delaying a count value of the first counter; a selector which selects the count value of the first counter or the count value of the second counter; and a pulse width modulation control unit which generates each pulse width modulation signal, logical values of which are switched in a timing when the selected count value matches the value held by the first register.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventors: Shigehiro Masamoto, Masaru Kohara
  • Patent number: 7750595
    Abstract: A rotating machinery includes a first control member for performing rectangular wave control by operating the switching devices of an inverter such that an on-state and an off-state occur once for one cycle period in electrical angle of a motor, a second control member for operating the switching devices on the basis of a magnitude relation between upper and lower limits of a predetermined hysteresis region and an actual current flowing through the motor, and a switching member for, when the actual current deviates from the hysteresis region while the rectangular wave control is undertaken, switching the control to an instantaneous current value control performed by the second control member.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: July 6, 2010
    Assignee: Denso Corporation
    Inventors: Takahiro Yamada, Hiroya Tsuji
  • Patent number: 7728544
    Abstract: A motor drive system is disclosed that includes a power input configured to receive alternating current (AC) power and a rectifier having a switching frequency selected to convert the AC power to direct current (DC) power. The motor drive unit also includes an input filter circuit connected between the power input and the rectifier and configured to suppress frequency harmonics across a range of harmonics. Additionally, the motor drive unit includes a block filter circuit connected between the power input and the rectifier and configured to substantially block frequency harmonics associated with the switching frequency of the rectifier. Furthermore, the motor drive unit includes an inverter configured to receive the DC power from the rectifier and convert the DC power to a series of pulses configured to drive a motor.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: June 1, 2010
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Wei Qian, Qiang Yin, Lixiang Wei, Richard A. Lukaszewski
  • Patent number: 7729146
    Abstract: A power converter and power conversion method wherein operation of a switching element is controlled by the frequency of a carrier wave where the frequency is varied such that the same frequency of the carrier wave is not repeated during a single modulation period.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 1, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasuaki Hayami, Kraison Throngnumchai, Kentaro Shin
  • Patent number: 7728538
    Abstract: There is a method of estimating values of winding currents, at an instant of a period, in a winding of a load, controlled in space vector modulation mode through symmetrical control phases. The winding is cyclically coupled between two supply lines through respective switches. A measuring device is alternately coupled to the supply lines. A current of one supply line, with anticipation smaller than or equal to half of the period with respect to the instant and chosen so the current is equal in amplitude to the winding current, and a current of the supply line with delay equal to the anticipation with respect to the instant, is measured. The winding current is estimated at the instant based upon the supply line currents. A threshold interval is fixed between consecutive switching edges of control phases of the winding and another control phase of the switching period wherein current is measured.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: June 1, 2010
    Assignee: STMicroelectronics S.R.L.
    Inventors: Giuseppe D'Angelo, Giovanni Moselli
  • Patent number: 7723945
    Abstract: A square wave voltage having an amplitude equal to an output voltage of a converter is applied to an AC motor by a square wave control block. Torque control of the AC motor is performed basically by changing the voltage phase of the square wave voltage according to the torque deviation. When the motor revolution is suddenly changed, a instruction value correction unit sets a voltage instruction value of the output voltage of the converter according to a change ratio of the motor revolutions. This improves control of the motor current by changing the voltage applied to the motor in accordance with the sudden change of the motor revolutions without waiting for torque feedback control having a low control response.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: May 25, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaki Okamura
  • Patent number: 7719226
    Abstract: Current command values are used instead of detected current values to estimate axis error by calculation. An axis error command value is generated according to a speed command value, and a difference between the generated axis error command value and the estimated axis error value is used to control an estimated frequency value.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 18, 2010
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Kazuaki Tobari, Yoshitaka Iwaji, Daigo Kaneko, Hajime Uematsu, Masakazu Hase
  • Publication number: 20100117586
    Abstract: A phase current estimation apparatus for a motor capable of suitably improving estimation accuracy of phase currents is provided. The phase current estimation apparatus 10 of the motor includes a control unit 24 that decomposes a command voltage vector Vdq into two vector components V?dq in the case where a magnitude of the command voltage vector Vdq is less than a predetermined lower limit voltage Vlow, so that the command voltage vector Vdq is allowed to have the magnitude equal to or more than the predetermined lower limit voltage Vlow for every two adjacent periods in units of a period of a carrier signal and to have the phase outside a predetermined phase range including phases of reference voltage vectors. Accordingly, the control unit 24 can quantitatively analyze harmonic components, which are generated by decomposing the command voltage vector Vdq into the two vector components V?dq, by using mathematical equations.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Masahiko Akiyama
  • Publication number: 20100117587
    Abstract: In a method for field-oriented operation to zero speed of an encoder-less asynchronous machine, wherein the associated field-oriented regulation device has a monitor with a machine model and rotation-speed adaptation, a model flux and a model current are calculated from a calculated actuating voltage and an adapted rotation speed, from which, in conjunction with a determined machine current, a complex difference is calculated. Also calculated is a model slip rotation speed as a function of the model flux and the model current, which is then scaled. The adapted rotation speed is then superimposed, and the sum is used as the rotation speed actual value which supplied to a rotation-speed regulator. An asynchronous machine without an encoder can therefore be operated to zero speed on a field-oriented basis.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 13, 2010
    Applicant: Siemens Aktiengesellschaft
    Inventor: Thilo WEIGEL
  • Patent number: 7710064
    Abstract: A motor driving semiconductor device has: six switching elements for driving a three-phase motor; three output terminals for applying output voltages to three terminals of coils of the three-phase motor; drive circuits for driving the six switching elements; and six control signal input terminals for receiving six control signals for on/off control of the six switching elements, wherein the motor driving semiconductor device is formed by sealing at least one semiconductor chip in one package with resin, and further includes a dead time generation function of generating a dead time relative to the six control signals.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 4, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenji Sakurai, Hiroyuki Hasegawa
  • Patent number: 7710066
    Abstract: A motor control device that controls a permanent-magnet synchronous motor has: a magnetic flux controller that derives, as a specified excitation current value, a specified current value corresponding to a d-axis component of a current passing through an armature winding; and a current controller that controls, based on the specified excitation current value, the current passing through the armature winding. The magnetic flux controller makes the specified excitation current value vary periodically, based on an estimated or detected rotor position, in a current range in which the magnetic flux produced by the permanent magnet is weakened, and changes the specified excitation current value according to a rotation speed of the rotor.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: May 4, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Eiichiro Hashimoto, Yoshio Tomigashi
  • Patent number: 7710067
    Abstract: A power accumulating unit of a power supply system includes a first switch section configured to achieve a first voltage output state in which an output voltage is substantially equal to a first motor driving voltage and a second switch section configured to achieve a second voltage output state in which the output voltage is substantially equal to a second motor driving voltage that is higher than the first motor driving voltage. A voltage switching control part is configured to perform a voltage switching control to switch between the first motor driving voltage and the second motor driving voltage by alternately operating the first and second switch sections to repeatedly switch between the first voltage output state and the second voltage output state.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: May 4, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuki Kosaka, Hiroshi Iwano, Susumu Komiyama, Tomoyuki Hanyu, Kazuhiro Takeda
  • Patent number: 7710065
    Abstract: A power conversion system includes first and second voltage sources for driving a multiple-phase AC motor and a control unit. The control unit is configured to compute first and second output voltage command values used to drive the multiple-phase AC motor based on a first output voltage command vector corresponding to the voltage source that is charged and a second output voltage command vector corresponding to the voltage source that is discharged. The first and second output voltage command vectors are determined so that a resultant vector of the first and second output voltage command vectors is coincident with a motor voltage command vector corresponding to a motor voltage command value, and a motor current command vector corresponding to the motor current command value is positioned within an included angle formed between the second output voltage command vector and a negative vector of the first output voltage command vector.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 4, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Sho Sato, Kantaro Yoshimoto, Kengo Maikawa, Yuki Nakajima
  • Patent number: 7710058
    Abstract: A motor drive for an electric motor receives high frequency AC current, and delivers this current through a converter which is operable to change the current delivered downstream to an inverter and an electric motor.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: May 4, 2010
    Assignees: Hamilton Sundstrand Corporation, Pratt & Whitney Canada Corp.
    Inventors: Gregory I. Rozman, Kevin Dooley
  • Patent number: 7701165
    Abstract: An induction motor controller that may include three phase paths leading from a power input to a power output, a solid-state switching device interposed between the power input and the power output on each of the three phase paths, a voltage sensor coupled to two of the phase paths between the solid-state switching device and the power output, a current sensor on one of the phase paths, a processor communicatively coupled to the voltage sensor, the current sensor, and the solid state switching device; and a memory coupled to the processor. The processor may be configured to calculate a motor parameter based on a signal from the voltage sensor and a signal from the current sensor and store the calculated motor parameter in memory.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 20, 2010
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Wei Quian, Haihui Lu, Thomas A. Nondahl
  • Patent number: 7696714
    Abstract: The present invention provides a method and apparatus for providing power to a fan motor. One embodiment of the apparatus includes a boost regulator configured to provide an output current to a fan motor using an input current provided at an input voltage by a power supply. The fan motor is configured to draw the output current at a first frequency and the input current is constant within a first selected tolerance over a time scale longer than indicated by the first frequency.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: April 13, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Tom P. Sterk
  • Patent number: 7696715
    Abstract: An autonomous controller allows an AC induction motor to operate over a broad range of AC power supply frequencies by reducing the amount of current supplied to the motor at lower frequencies. The controller detects the frequency of the power supply and switches the supply current on and off during each AC cycle to limit the RMS current to a value that is related to the detected frequency. Alternatively, the controller switches capacitive reactance into the power supply circuit which reduces the current supplied to the motor at lower AC frequencies.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: April 13, 2010
    Assignee: The Boeing Company
    Inventors: Robert E. Fisher, John T. Paterson
  • Publication number: 20100079103
    Abstract: An alternating-current motor control apparatus includes a stator frequency computing unit configured to compute a stator frequency of a motor magnetic flux; a torque error computing unit configured to compute a torque error by using the motor magnetic flux, an estimated current, and a motor current; and a speed estimator configured to estimate a speed of the alternating-current motor by using the stator frequency and the torque error. The speed estimator includes a proportional controller configured to reduce the torque error to zero, and an adaptive filter configured to eliminate a high-frequency component of the torque error.
    Type: Application
    Filed: September 9, 2009
    Publication date: April 1, 2010
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Kozo IDE, Sadayuki Sato, Hideaki Iura, Shinya Morimoto
  • Patent number: 7683568
    Abstract: The switching rectifier and switching inverter on a motor drive unit are modulated to indirectly change the magnitude of current and voltage stored in DC link by controlling the magnetic field of the motor to correct for both power factor lead and power factor lag over a wide range of motor speeds and conditions while maintaining a predetermined motor operating point.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 23, 2010
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Manish Pande, Yunwei Li
  • Patent number: 7679310
    Abstract: Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. The various embodiments control the power inverter by, responsive to either a commanded torque of the electric motor being above a first torque level, or a commanded speed of the electric motor being above a first speed level, controlling the power inverter with a discontinuous pulse width modulated (DPWM) signal to generate a modulated voltage waveform for driving the electric motor. Additionally, the embodiments control the power inverter by, responsive to both a commanded torque of the electric motor being below the first torque level, and a commanded speed of the electric motor being below the first speed level, controlling the power inverter with a continuous pulse width modulated (CPWM) signal to generate the modulated voltage waveform for driving the electric motor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 16, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Steven E. Schulz, Brian A. Welchko, Silva Hiti
  • Patent number: 7679308
    Abstract: Let the rotating axis whose direction coincides with the direction of the current vector that achieves maximum torque control be called the qm-axis, and the rotating axis perpendicular to the qm-axis be called the dm-axis. A motor control device switches its operation between low-speed sensorless control and high-speed sensorless control according to the rotation speed of the rotor. In low-speed sensorless control, the magnetic salient pole of the motor is exploited, and the d-q axes are estimated by, for example, injection of a high-frequency rotating voltage. In high-speed sensorless control, the dm-qm axes are estimated based on, for example, the induction voltage produced by the rotation of the rotor. During high-speed sensorless control, the ?(dm)-axis current is kept at zero irrespective of the ?(qm)-axis current.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: March 16, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Yoshio Tomigashi
  • Patent number: 7671555
    Abstract: An air movement system including a blower and an external controller operable to receive signals from a sensing device and generate a command based on the received signals. The command includes an address. The system also includes a communication channel coupled to the external controller and configured to communicate the command, and a motor assembly operable to drive the blower. The motor assembly includes a stator and rotor assembly coupled to the blower, and a drive circuit coupled to the stator and rotor assembly. The motor assembly includes a second controller and a memory. The memory includes a set of data having a plurality of addresses and an instruction associated with each address, respectively.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: March 2, 2010
    Assignee: A. O. Smith Corporation
    Inventor: Paul Steven Mullin
  • Patent number: 7671557
    Abstract: Apparatus and methods for phase current detection used for driving a motor by supplying outputs from a pulse width modulation (PWM) converter to the motor. One method presented provides detecting a DC link current and a vector pattern, determining whether a voltage vector lengths exceeds a predetermined value, and adjusting the voltage vector by adding a positive or reversed voltage based upon the above determination and an integrated error value.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: March 2, 2010
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshiyuki Maeda, Tomoisa Taniguchi
  • Patent number: 7663336
    Abstract: In a control apparatus for a vehicle having an electric motor for driving the wheels of the vehicle, an electric power source for energizing the electric motor, a motor torque target value calculation unit for controlling the electric power source, and a field current target value calculation unit, the motor field current is momentarily decreased when the difference between the actual motor armature current and the motor armature current target value exceeds a predetermined value or when the wheels are deemed to slip, and the motor field current is increased as the actual armature current of the motor substantially follows the motor armature current target value.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: February 16, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Hidekazu Moriki, Shinya Imura, Norikazu Matsuzaki, Kohei Itoh, Masaru Ito
  • Patent number: 7656116
    Abstract: There are provided upper and lower switching elements 1U to 1W and 2U to 2W for energizing motor drive windings 4U to 4W, a control circuit 20 that starts outputting a control signal for energization based on an energization instruction, pre-drive circuits 8U to 8W and 9U to 9W for controlling ON/OFF of the upper and lower switching elements based on the control signal, and short circuit detection circuits 10U to 10W for detecting short circuits in a node 14 between the upper and lower switching elements to higher-potential and lower-potential power sources based on the control signal and a voltage of the node.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 2, 2010
    Assignee: Panasonic Corporation
    Inventors: Takehiro Yano, Tetsu Nagano, Daisuke Fukuda
  • Patent number: 7646160
    Abstract: In a multi-phase motor drive that includes a bus capacitor, a multi-phase motor, a multi-phase inverter, multiple switches each having an on-state and an off-state, and multiple current sensors each being in series with respective phase winding, a method for checking the accuracy of circuit parameters of the motor drive, including using the switches to produce a first loop that includes the capacitor bank, a first phase winding, a first current sensor, a second phase winding, and a second current sensor, using the current sensors to determine a magnitude of current in the first and second phase windings, comparing a magnitude of current indicated by the first current sensor and the second current sensor, and determining a magnitude of a difference between the current in the first and second phase windings.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: January 12, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Chingchi Chen, Jin Wang, Michael W. Degner
  • Patent number: 7646165
    Abstract: A converter circuit for converting an output voltage from an AC power supply includes a rectifier circuit for rectifying the output voltage of the AC power supply; first and second capacitors connected in series, for smoothing the output of the rectifier circuit; and a switch circuit for switching the connections between the respective capacitors and the AC power supply so that the output voltage of the AC power supply is applied to each of the respective capacitors at a cycle that is shorter than the cycle of the AC power supply.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 12, 2010
    Assignee: Panasonic Corporation
    Inventors: Mitsuo Ueda, Hideki Nakata, Masanori Ogawa
  • Patent number: 7642737
    Abstract: A control architecture for an electrical inverter includes a command limiter that is realized as a circular voltage limiter. The command limiter includes a Cartesian-to-polar converter coupled to a command source such as a synchronous frame current regulator. The Cartesian-to-polar converter provides magnitude and phase components for d-q command voltages. The command limiter further includes a magnitude limiter that limits the magnitude component to the maximum fundamental voltage component of the inverter, and a polar-to-Cartesian converter that converts the limited magnitude component and the phase component into modified d-q command voltages.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 5, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Bonho Bae, Steven E. Schulz, Silva Hiti, Nitinkumar R. Patel
  • Patent number: 7635962
    Abstract: The motor driving inverter circuit module includes first-phase, second-phase, and third-phase high voltage drivers generating first-phase, second-phase, and third-phase upper arm and lower arm driving signals in response to input signals for driving the first-phase, second-phase, and third-phase upper and lower arms and a first-phase, second-phase, and third-phase upper arm and lower arm transistors, generating first-phase, second-phase, and third-phase motor driving output signals in response to the first-phase, second-phase, and third-phase upper arm and lower arm driving signals of the first-phase, second-phase, and third-phase high voltage drivers. The first-phase, second-phase, and third-phase high voltage drivers and the first-phase, second-phase, and third-phase upper arm and lower arm transistors are respectively integrated into separate chips.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: December 22, 2009
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventor: Bum-seok Suh
  • Patent number: 7626836
    Abstract: An apparatus and method for controlling an inverter, the apparatus including an adjustable frequency controller receiving a reference frequency value and generating a command frequency value as a function thereof, an adjustable voltage controller receiving a reference voltage value and generating a command voltage value as a function thereof and independent of the command frequency and a modulator receiving the command frequency value and the command voltage value and generating pulse width modulated (PWM) inverter control signals as a function thereof.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: December 1, 2009
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: David Leggate, Gary Leonard Skibinski, Gary R. Woltersdorf
  • Patent number: 7622884
    Abstract: Certain exemplary embodiments comprise a system comprising a plurality of Active Front End units adapted to be electrically coupled to a direct current (DC) bus. Each of the plurality of Active Front End units can be adapted to be electrically coupled to a separate winding of a transformer of a plurality of transformers. Each of the plurality of Active Front End units can be adapted to convert alternating current (AC) voltage to a DC voltage. Each of the plurality of Active Front End units can be adapted to supply the DC voltage to the DC bus. The DC bus can be adapted to be electrically coupled to a plurality of inverters.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 24, 2009
    Assignee: Siemens Industry, Inc.
    Inventor: Ken Furem
  • Patent number: 7622877
    Abstract: Methods and systems are provided for controlling permanent magnet machines under varying loads. The method comprises generating a d-axis voltage command and a q-axis voltage command, producing a modified d-axis current command based on the q-axis voltage command and a d-axis current command, converting the modified d-axis current command to a modified d-axis voltage command, and transmitting the modified d-axis voltage command and the q-axis voltage command to the PM machine. The d-axis voltage command is based on a d-axis current command.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 24, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Steven E. Schulz, Silva Hiti, Khwaja M. Rahman
  • Publication number: 20090284213
    Abstract: An automotive power converter is provided. The automotive power converter includes a substrate, first and second electronic devices on the substrate, at least one conductive member coupled to the substrate and having a first device portion electrically coupled to the first electronic device and a second device portion electrically coupled to the second electronic device, and first and second terminals electrically coupled to the at least one conductive member. When a power supply is coupled to the first and second terminals, current flows from the first terminal to the first device portion substantially in a first direction and from the second terminal to the second device portion substantially in a second direction. The first direction has a first component and the second direction has a second component opposing the first component.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Terence G. WARD, Edward P. YANKOSKI
  • Patent number: 7615943
    Abstract: In electric vehicle control, system voltage stabilization control is executed to reduce the difference between a target value and detected value of a system voltage generated by a voltage boosting converter for an AC motor. Further, conversion power control is executed to reduce the difference between a command value and detected value of the conversion power, which is defined as the output power of the voltage boosting converter. Thus, variations in a system voltage caused by an error or the conversion power control can be reduced.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 10, 2009
    Assignee: DENSO Corporation
    Inventors: Tsuneyuki Egami, Keiichi Kawakami
  • Patent number: 7616466
    Abstract: An inverter circuit couples a DC voltage source having a primary side and a reference side to an electric motor or other AC machine having multiple electrical phases. An inverter circuit includes switches, diodes and a controller. For each of the electrical phases, a first switch couples the electrical phase to the primary side of the DC voltage source and a second switch couples the electrical phase with the reference side of the DC voltage source. For each of the first and second switches, an associated anti-parallel diode is configured to provide an electrical path when the switch associated with the diode is inactive.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: November 10, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Sibaprasad Chakrabarti, Silva Hiti, George John, Gregory S. Smith, Milun Perisic, Gholamreza Esmaili
  • Patent number: 7612518
    Abstract: There is provided an inverter capable of reducing a speed in a short period of time without generating an overcurrent even in a case of an alternating current motor which is easy to be saturated magnetically. A frequency of driving a motor is calculated by using a detecting value constituted by passing a direct current bus line voltage through a first filter portion, a voltage command is corrected by using a detecting value passing through a second filter portion, by making a time constant of the second filter portion larger than a time constant of the first filter portion in reducing a speed, the motor is brought into an overexcited state and loss is brought about in the motor.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: November 3, 2009
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hideaki Iura, Kazuhiko Hiramatsu
  • Patent number: 7609022
    Abstract: A matrix converter (38) converts three-phase AC power input from a first motor-generator (MG1) directly to three-phase AC power for driving a second motor-generator (MG2) and outputs the resultant three-phase AC power, without rectifying the three-phase AC power generated by the first motor-generator (MG1) once to DC power as in an example using a conventional three-phase full-wave rectification inverter. In a power supply system for a vehicle (14), the three-phase AC power is transmitted and received between two motor-generators (MG1, MG2) more directly, by means of the matrix converter (38). Therefore, power loss can be reduced, as compared with a conventional example in which the three-phase AC power is once converted to DC power. Thus, a power supply system for a vehicle with improved energy efficiency and a vehicle including the same can be provided.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: October 27, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hichirosai Oyobe, Tetsuhiro Ishikawa
  • Patent number: 7609023
    Abstract: In electric vehicle control, system voltage stabilization control is executed to reduce the difference between a target value and detected value of a system voltage generated by a voltage boosting converter for an AC motor. Further, conversion power control is executed to reduce the difference between a command value and detected value of the conversion power, which is defined as the output power of the voltage boosting converter. A conversion power correction quantity is computed from an input power operation quantity of the system voltage stabilization control and reflected in the conversion power control to correct the conversion power. Thus, variations in a system voltage caused by an error or the conversion power control can be reduced.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 27, 2009
    Assignee: DENSO Corporation
    Inventors: Tsuneyuki Egami, Keiichi Kawakami
  • Publication number: 20090251096
    Abstract: Methods and apparatus are provided for reducing torque ripple in a permanent magnet motor system comprising a permanent magnet motor coupled to an inverter. The method comprises the steps of receiving a torque command, generating a torque ripple reduction signal in response to the torque command, modifying operational control signals in response to the torque ripple reduction signal to generate reduced ripple operational control signals, and providing the reduced ripple operational control signals to the inverter for control of the permanent magnet motor.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: STEVEN E. SCHULZ, JOHN P. MILLER, KHWAJA M. RAHMAN, SOO-YEOL LEE
  • Patent number: 7598698
    Abstract: A motor control device includes a current detecting portion that detects phase current of one phase among three phase currents supplied from an inverter to a motor, and a current estimator that estimates phase current of phases other than the detected phase current by using a specified current value indicating current to be supplied to the motor, and derives control current corresponding to the specified current value from the estimated phase current and the phase current of one phase. The motor control device controls the motor via the inverter so that the control current follows the specified current value.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 6, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Eiichiro Hashimoto, Hajime Hida
  • Publication number: 20090242292
    Abstract: In a method for operating an electric machine which is coupled to a drive shaft, the electric machine is connected to a high voltage direct-current power supply line (HDVC) by a switch and the rotational speed of the connected electric machine or of the drive shaft coupled with the electric machine is determined and the electric machine is disconnected from the high-voltage direct-current power supply line (HVDC) when the rotational speed of the electric machine or, respectively, the driveshaft is above a predetermined threshold.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Inventors: Marcus Heller, Robert Inderka, Franz Nietfeld, Lars Weinschenker
  • Patent number: 7595604
    Abstract: Let the rotating axis whose direction coincides with the direction of the current vector that achieves maximum torque control be called the qm-axis, and the rotating axis perpendicular to the qm-axis be called the dm-axis. A motor control device switches its operation between low-speed sensorless control and high-speed sensorless control according to the rotation speed of the rotor. In low-speed sensorless control, the magnetic salient pole of the motor is exploited, and the d-q axes are estimated by, for example, injection of a high-frequency rotating voltage. In high-speed sensorless control, the dm-qm axes are estimated based on, for example, the induction voltage produced by the rotation of the rotor. During high-speed sensorless control, the ?(dm)-axis current is kept at zero irrespective of the ?(qm)-axis current.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 29, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Yoshio Tomigashi
  • Patent number: 7589481
    Abstract: In order to improve reliability, cost performance, and cooling property, a control device integrated dynamo-electric machine mounted to a dynamo-electric machine includes an inverter bridge configured with a plurality of semiconductor switching elements, and a plurality of heat sinks provided for respective arms of the inverter bridge and having the semiconductor switching elements of the corresponding arms mounted thereon for cooling the mounted semiconductor switching elements, wherein the semiconductor switching element includes a plurality of semiconductor switching devices arranged in parallel, and the plurality of semiconductor switching devices arranged in parallel are mounted on the common heat sinks.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: September 15, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventors: Isao Sonoda, Yoshihito Asao
  • Publication number: 20090224721
    Abstract: A motor in an electric vehicle can be controlled by receiving a torque command value, calculating a first flux value corresponding to a determinable efficiency of the electric vehicle at the torque command value, calculating a first torque-producing current value as a function of the torque command value and of the first flux value, and using the first flux value and the first torque-producing current value to control the motor to propel the electric vehicle.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 10, 2009
    Inventors: Andrew David Baglino, Heath Fred Hofmann, Greg Grant Solberg
  • Publication number: 20090224720
    Abstract: A first inverter control unit includes a harmonic generation unit. The harmonic generation unit generates a harmonic voltage instruction having a phase opposite to a harmonic generated at a neutral point of a motor-generator when the motor-generator revolves, based on motor revolution number of the motor-generator. A PWM signal generation unit generates a signal based on a voltage instruction obtained by superimposing an AC voltage instruction from an AC output control unit and the harmonic voltage instruction from the harmonic generation unit onto each voltage instruction of U-phase, V-phase and W-phase from a conversion unit.
    Type: Application
    Filed: June 22, 2006
    Publication date: September 10, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai Oyobe, Tetsuhiro Ishikawa, Yukihiro Minezawa, Shigenori Togashi
  • Patent number: 7583047
    Abstract: There is described a method for controlling a quenching device for a converter bridge with line regeneration, whereby the converter bridge controlled by a network-timed control circuit by ignition pulses is connected with its three inputs to the phases of a three-phase network and the two outputs of the bridge are connected to a direct-current motor which feeds, when operated as a generator, current back to the three-phase network via the bridge. The quenching device is controlled by a trigger unit which emits trigger pulses depending on the monitoring of electrical and temporary variables. The quenching device comprises, for each bridge half, a quenching condenser that can be charged by a charging circuit quenching voltage. The quenching condensers, in the event of quenching, can be connected to the bridge halves by means of switches that are controlled by the trigger unit.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: September 1, 2009
    Assignee: Siemens AG Osterreich
    Inventors: Thomas Biribauer, Franz Hackl, Wilfried Hofmüller, Heinz Pichorner, Wilhelm Ritschel, Franz Wöhrer
  • Publication number: 20090212734
    Abstract: The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: Semyon Royak, Mark M. Harbaugh
  • Patent number: 7579795
    Abstract: A drive control device for a brushless motor having a rotor and a plurality of coils with different phases can be included in an image reading apparatus or an image forming apparatus. The drive control device may include a detection target configured to rotate in synchronization with rotation of the rotor and having formed thereon a pattern representing modulation information, a detector configured to read the pattern and to output modulated output signals, a demodulator configured to demodulate the modulated output signals and to obtain demodulated information, and a controller configured to control rotation of the rotor on the basis of at least the demodulated information obtained by the demodulator.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 25, 2009
    Assignee: Ricoh Company Limited
    Inventors: Makoto Komatsu, Hiroshi Koide
  • Patent number: 7579792
    Abstract: An electrical system for a vehicle includes a power source providing electrical power to a first and a second electrical motor. Each motor has two or more windings, and each winding has a first end and a second end. A boost link such as a battery or capacitor is configured to store electrical energy for subsequent retrieval and use by either electrical motor. A first inverter circuit includes a first grouping of switches, wherein each of the first group of switches couples one of the first ends of the windings to the power source. A second inverter circuit includes a second group of switches, each coupling one of the second ends of the windings to the boost link. A controller is coupled to activate each of the first and second groups of switches to thereby allow the electrical energy to be placed on and retrieved from the boost link.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: August 25, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: James M. Nagashima, Brian A Welchko, Peter J. Savagian