Plural Electrical Conditions Patents (Class 322/24)
  • Patent number: 8513924
    Abstract: The vehicle generator includes an armature winding including a plurality of phase windings, a switching section formed as a bridge circuit constituted of a plurality of pairs of an upper arm and a lower arm connected in series to rectify voltages induced in the phase windings, each of the upper and lower arms being constituted of a switching element parallel-connected with a diode, a control section for controlling on/off timings of the switching elements, and a voltage zero-cross detecting section for performing voltage zero-cross detection to detect, as voltage zero-cross points, time points at which at least one of line-to-line voltages among the phase windings of the armature winding changes in polarity. The control section is configured to start on-off control of the switching elements based on the voltage zero-cross points detected by the voltage zero-cross detecting section.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 20, 2013
    Assignee: Denso Corporation
    Inventor: Harumi Horihata
  • Patent number: 8497664
    Abstract: A generator system that includes a six-phase AC machine and an active rectifier bridge employing low on-resistance switches, such as MOSFET switches, for converting the AC current from the machine to a DC current. The system also includes a switch control circuit to switch the MOSFET switches in synchronization with the six-phase current flow. The system determines the phase-to-ground voltages of the machine for inputs to the switch control circuit. The control circuit calculates the phase-to-phase voltages from the phase-to-ground voltages. The control circuit uses a specific control scheme to determine if each of the phase-to-phase voltages is above or below first and second predetermined threshold voltages, where if the phase-to-phase voltage is above the first threshold voltage, the control circuit closes the switch, and if the phase-to-phase voltage is below the second threshold voltage, the control circuit opens the switch.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Chandra S. Namuduri
  • Patent number: 8476871
    Abstract: The present invention relates to a method and system for controlling a doubly-fed induction machine. In operation a rotor current vector is processed with a rotor position estimate vector. A scalar error quantity is the determined in dependence upon a stator current vector and the processed rotor current vector. The scalar error quantity is integrated and an estimate of the rotor angular frequency is determined in dependence upon the integrated scalar error quantity. To obtain a rotor position estimate, the estimate of the rotor angular frequency is integrated and a rotor position estimate vector is determined in dependence upon the rotor position estimate. The rotor position estimate vector is then provided for processing the rotor current vector. As output signals a signal indicative of the rotor position estimate vector and a signal indicative of the estimate of the rotor angular frequency are provided for controlling the doubly-fed induction machine.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 2, 2013
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Boon T. Ooi, Baike Shen, Victor Low
  • Patent number: 8456138
    Abstract: A programmable system includes a first level protection circuit comprised of discharge tube CR1/ CR2 and piezoresistor MOV1/MOV2 in series; a second-level protection circuit comprised of the series arm of capacitor C1 and resistor R1 in parallel with a transient voltage suppression diode TVS1, and inductors L1/L2 connected to the ends of first level and second-level protection circuits respectively. A control circuit includes a PWM driver module and a SCM. The PWM driver module is connected to the PWM control port of the SCM and its output is connected to an IGBT module. The control circuit is also connected to a series communication module and to a user interface. The features of the invention are: strong-shock resistance; a wide range of load adaptability; and ability of accurately and steplessly regulating and adjusting with high frequency and high power load.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 4, 2013
    Assignees: MacMic Science & Technology Co., Ltd., Luxtech 360 LLC.
    Inventors: Xishe Lei, Xiao Bao Wang
  • Publication number: 20130119948
    Abstract: A vehicle electrical system comprises a generator, voltage regulator, switch module, and control device. The generator includes a field coil and one or more stator windings coupled together via the switch module. The generator provides electrical current to one or more electrical loads. The voltage regulator maintains the generator output voltage at a constant voltage by varying the field current. The switch module may include low-power transistors. The control device monitors the field current, output voltage and stator current and applies control signals to the switch module to improve transient recovery due to sudden variations in the electrical load and increase system efficiency during normal operation.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Inventor: Stoyan Borissov Bekiarov
  • Patent number: 8432137
    Abstract: A method for generating and controlling power by means of at least one controlled permanent magnet machine (PMM) with a permanent magnet (PM) rotor and a stator with a magnetic flux diverter circuit for controlling the output of the PMM, comprises the steps of: rotating the PM rotor at a velocity sufficient to develop a high frequency alternating current (HFAC) power output from the stator; transforming the HFAC output to produce a desired non-HFAC power output; sensing desired power output parameters; generating a control signal responsive to the sensed parameters; and applying the control signal to the magnetic flux diverter circuit to control the desired power output.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 30, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Vietson M. Nguyen, Jacek F. Gieras, Sastry V. Vedula
  • Patent number: 8415930
    Abstract: Provided is a power supply device including: a magneto generator (1), which includes: a rotor including a magnet forming a magnetic field; and a stator which generates an alternating current in stator windings by rotation of the rotor; a rectifying unit (3) which rectifies the alternating current generated by the magneto generator to a direct current; a variable transformation-ratio direct current voltage transformer (40) which transforms an output voltage of the direct current of the rectifying unit to a voltage between input terminals of an electrical load (2) to which electric power is supplied; and a voltage control unit (5) which controls a transformation ratio of the variable transformation-ratio direct current voltage transformer in accordance with at least one of an operating state signal regarding the rotation of the rotor of the magneto generator and an electrical load state signal of the electrical load.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: April 9, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Nobuhiro Kihara, Masayoshi Maeda, Shinji Kawaguchi, Hiroshi Okuda, Fumito Uemura, Takahiro Urakabe, Masaya Inoue, Naoki Itoi, Kenji Ishi
  • Patent number: 8410761
    Abstract: A control circuit for use with an AC alternator has a plurality of outlet lines leading from the alternator, each receiving a phase of current generated by the alternator. Tap lines are associated with each of the power lines and are associated with a switch. The switches drain power to a drain when in a first state, and allow the power to pass downstream to a system load when in a second state. A switch control changes the switches between the first and second state. A detector detects when the current signal is approaching a zero crossing between a cycle positive portion and a negative portion. The switch control takes in the information with regard to the approaching zero crossing, and change the switches between the first and second states based upon the detected zero crossing point. An alternator is also disclosed.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 2, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Thomas Bekasi
  • Patent number: 8405365
    Abstract: When a distortion of an output waveform of an alternating-current generator is improved, an output voltage control apparatus of a generator, which has versatility, is obtained. An output voltage control apparatus of a generator (1), including a generator winding (2) and an excitation winding (3) wound around a stator side, a field winding (5) wound around a rotor (4), and a rectifier (12) for rectifying a current generated by the excitation winding (3) and supplying the rectified current to the field winding (5), the output voltage control apparatus includes a field current drive means (20) for comparing an output voltage generated to the generator winding (2) with a reference wave whose distortion ratio is 0% and flowing a field current to the field winding (5) by adjusting a drive timing of a PWM signal output by a drive unit (24) based on a result of the comparison.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yasuhiro Nakada, Minoru Maedako
  • Patent number: 8400118
    Abstract: An excitation winding (104) and a field winding (102) are provided. A smoothing capacitor (113) smoothes a current of the excitation winding (104) and inputs it to the field winding (102). A transistor (110) is driven to control an output of the generator winding (103). A diode (112) prevents a field current from flowing in a reverse direction. A transistor (10) connected to the diode (112) is driven in a phase reverse to a phase of a drive signal of the transistor (110). A duty monitor 1 determines whether a duty ratio of the drive signal of the transistor (110) is larger than a reference duty ratio, and when the duty monitor 1 determines that the duty ratio of the drive signal is larger than the reference duty ratio, an unit (2) extends an output cycle of the drive signal by thinning out the drive signal.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kenji Kamimura
  • Patent number: 8384318
    Abstract: A system and method are provided for controlling the speed of a motor driving a load that is electrically connected to a generator driven by an engine, through use of a first control feedback loop configured to control the rotor flux of the motor by controlling the field excitation of the generator, and a second control feedback loop configured to control the speed of the motor by controlling the throttle position of the engine.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: February 26, 2013
    Assignee: Unico, Inc.
    Inventors: Thomas L. Beck, Michael D. Dry, Mark E. Garlow, Michael O. Lucas, Michael A. MacDonald, Ronald G. Peterson
  • Patent number: 8378644
    Abstract: An active rectifier controller decouples measurements of the phase and speed of a variable frequency synchronous generator from measurements of the AC output voltage. The active rectifier controller receives position information representative of the rotor position of the VFSG independent of a load connected to the VFSG that is used to determine the phase position and speed of the VFSG. Based on measurements of the generator speed and phase, the active rectifier controller controls the active rectifier to draw AC currents in-phase with the back-electromotive force (BEMF) voltage of the VFSG.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: February 19, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Waleed M. Said, Si Jian Fang
  • Patent number: 8378641
    Abstract: A method of startup of an electric start electrical power generating system (EPGS) is provided. The EPGS includes a generator configured to power a direct current (DC) load via a DC bus. The method includes: disconnecting the DC load from the DC bus; connecting a battery to a boost converter, the boost converter being connected to the generator; powering the generator using the battery via the boost converter; when the generator reaches a minimum speed: disconnecting the battery from the boost converter; deactivating the boost converter; and activating a synchronous active filter, the synchronous active filter being connected to the DC bus; bringing up a voltage on the DC bus by the generator; and when the voltage on the DC bus reaches a predetermined level, connecting the DC load to the DC bus.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: February 19, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Steven J. Moss
  • Patent number: 8368239
    Abstract: A converter for a wind energy installation and a method. The converter includes an inverter which drives a generator via a plurality of phases and an intermediate circuit having an intermediate-circuit voltage between an upper and a lower intermediate-circuit potential. The generator is driven with phase potentials at a variable frequency. A shift value is calculated between an extreme phase potential and one of the intermediate-circuit potentials, a separation value is determined between a middle phase potential and the closest intermediate-circuit potential, and an additional voltage is generated using the separation value as amplitude. The phase potentials are shifted through the shift value and the additional voltage is added to the middle phase potential. Accordingly, the switching elements in the converter do not need to be clocked in every second half-cycle resulting in reduced switching losses and increased current load capacity of the converter.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 5, 2013
    Assignee: REpower Systems AG
    Inventor: Heinz-Hermann Letas
  • Publication number: 20130027000
    Abstract: A method of controlling an electromechanical transducer includes (a) observing the strength of a physical quantity being characteristic for the harmonic operational behavior, (b) providing an observation signal being indicative for the observed strength of the physical quantity, (c) comparing the provided observation signal with a reference signal for the strength of the harmonic operational behavior, (d) determining a harmonic control signal in response to the observation signal and in further response to the reference signal, (e) generating a modified drive signal based on the determined harmonic control signal, and (f) supplying the generated modified drive signal to electromagnetic coils of a stator of the electromechanical transducer. Further, a control system and a computer program which are adapted for carrying out and/or for controlling the method are provided.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 31, 2013
    Inventor: HENG DENG
  • Patent number: 8330430
    Abstract: An alternator comprises a regulator configured to control the electric current to a field coil. The regulator includes a field driver circuit, the field driver circuit configured to deliver the electric current to the field coil at a switching frequency. The regulator further includes a controller configured to vary the switching frequency of the field driver circuit between a plurality of different switching frequencies. The alternator further comprises a sensor configured to detect a predetermined alternator condition, and the controller is configured to adjust the switching frequency of the field driver circuit in response to the sensed predetermined condition such as, for example, a rotor speed, a pulse width from the field driver circuit, an efficiency of the alternator, a temperature within the alternator, a temperature outside of the alternator, or magnetic noise of the alternator.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: December 11, 2012
    Assignee: Remy Technologies, LLC
    Inventors: Robert R. Steele, Jr., Jack D. Harmon, Mingshe Zhou
  • Publication number: 20120286744
    Abstract: A synchronous rectification alternator for a motor vehicle is disclosed. The alternator includes a stator, a rotor, and a synchronous rectification system for rectifying into a DC voltage the alternating voltages supplied by the stator, and a voltage regulator for regulating the DC voltage. The alternator also includes fault detection for detecting faults in the synchronous rectification and supplying fault detection information to the voltage regulator. In one version, the fault information is supplied to the voltage regulator at fault inputs also receiving phase signals representing the alternating voltages supplied by the stator. At least one of the items of fault information is used to cause, in the voltage regulator, opening of an excitation circuit supplying current to an excitation coil of the rotor so as to produce, in the voltage regulator, a fault indication.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 15, 2012
    Inventors: Marc Tunzini, Olivier Grammont, Guillaume Duthhilleul, Victor Dos Santos
  • Patent number: 8310211
    Abstract: An auto-regulated motion power system apparatus that may be used to generate usable electricity from disparate energy sources includes a combination of a variable frequency alternator driven by a primary mover and coupled to a load. An energy control module includes a closed-loop feedback system coupled to a pulse width modulation controller and a switch mode rectifier. The alternator has a modulated control signal input having the ability to vary in frequency and voltage with an output having a controlled voltage and varying frequency. The switch mode rectifier accepts variable AC voltages from the alternator and outputs a constant predetermined DC voltage both to one side of the windings of the alternator and to a first side of a high frequency switch. An output on the pulse width modulation generator is connected to a switch control so that when the switch is closed, current flows through the windings of the alternator and when the switch is open, no current flows through the windings.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 13, 2012
    Assignee: Advanced Power Systems, LLC
    Inventors: Robert Mount, David Spencer
  • Patent number: 8294429
    Abstract: A system and method are disclosed for regulating a generator controlled power signal. An exemplary embodiment of the system may include both a digital voltage regulator and an analog voltage regulator and a selector switch configured to switch modulation control between the digital and analog voltage regulators. A watchdog detection circuit may be included for detecting an upsetting event in the digital voltage regulator and may trigger switching of the generator excitation input voltage modulation from the digital voltage regulator to the analog voltage regulator. An exemplary embodiment of the method may include modulating the generator excitation input voltage using the digital voltage regulator, detecting an occurrence of an upsetting event in the digital voltage regulator, disabling the digital voltage regulator, and switching modulation of the generator excitation input voltage to the analog voltage regulator.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 23, 2012
    Assignee: Honeywell International Inc.
    Inventors: Randy Fuller, Yuan Yao
  • Patent number: 8264209
    Abstract: The invention relates to a method and a device for operating an asynchronous motor (1) with double feeds, having a stator (1a) connected to a grid and a rotor (1b) connected to an inverter (6), said inverter (6) being designed such that it impresses a target value for an electrical variable in the rotor (1b). In a method according to the invention, after detecting a transient grid voltage change, a target value for the electrical variable determined from at least the rotor flux and the stator flux is impressed in the rotor (1b) such that an active reduction in the torque occurring during the transient grid voltage change is achieved. The target value of the electrical variable is preferably determined from a suitable weighting of the stator flux, rotor flux, stator voltage, stator current, rotor current, and, if available as a measured variable, stator voltage.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: September 11, 2012
    Assignee: Woodward Kempen GmbH
    Inventor: Jörg Kretschmann
  • Patent number: 8246008
    Abstract: System for lifting and lowering a load, such as a vehicle, with at least one lifting mechanism such as a lifting column, a boom lift, a scissor lift and a loading platform. The lifting mechanism includes a carrier which can be moved up and downward for bearing the load and a drive which acts on the carrier. The drive herein includes at least one electrical power source and an electric motor to be energized at least during ascending of the carrier, and the electric motor forms a generator to be connected to the power source at least during even an unloaded descending movement of the carrier for the purpose of gene rating electrical energy to the power source.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: August 21, 2012
    Assignee: Stertil B.V.
    Inventors: Jurjen Jan De Jong, Wybe Jan Thymen Laverman
  • Publication number: 20120176100
    Abstract: The invention relates to a method for controlling an alternator or alternator-starter of a motor vehicle, the electric machine being capable of providing an electric current, the strength of which varies on the basis of the excitation signal (EXC), a duty cycle being associated with each excitation signal, the method comprising the following steps:—comparing the difference between the duty cycle values of two consecutive excitation signals at a predetermined threshold;—if said difference is greater than the predetermined threshold, releasing a gradual response phase, during which the duty cycle of the excitation signals is gradually increased, particularly in a substantially linear manner;—at the start of said gradual response phase, increasing the duty cycle of the consecutive excitation signals by a predetermined jump (D_B), then gradually increasing the duty cycle, the duty cycle jump at the start of the gradual response phase being less than or equal to the release threshold of the gradual response phase.
    Type: Application
    Filed: May 27, 2009
    Publication date: July 12, 2012
    Inventors: Pierre Tisserand, Pierre Chassard
  • Patent number: 8193782
    Abstract: The abnormality detection apparatus includes a first function of measuring a first temperature of a first portion of the abnormality detection apparatus, the first temperature having a correlation with a second temperature of a second portion of a vehicle alternator, a second function of integrating a stress depending on a temperature variation of the first portion on the basis of the first temperature measured by the first function, a third function of predicting occurrence of abnormality in the second portion depending on the stress integrated by the second function, and a fourth function of issuing an alarm when the third function predicts occurrence of abnormality.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 5, 2012
    Assignee: Denso Corporation
    Inventors: Hitoshi Mori, Toshinori Maruyama
  • Patent number: 8169197
    Abstract: A device for damping control of mechanical torsional oscillations of an electrical alternating current generator connected to a multi-phase power supply system, includes a controllable converter of an HVDC installation connected to the power supply system, a measurement and filter device for detection of a frequency-dependent signal in a frequency range of the torsional oscillations of the alternating current generator and a correction apparatus for correction of a control signal for the converter for the HVDC installation. The correction apparatus includes a single phase correction filter for correction of a phase frequency response of the frequency-dependent signal. The control signal is formed by a current nominal value of a current regulator of the converter or a triggering angle of the nominal valve and with the phase correction filter is configured to take a transfer function of the current regulator into account.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 1, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jürgen Rittiger
  • Patent number: 8164313
    Abstract: A power generation controlling device for vehicle includes a communication controlling circuit, a power generation voltage and excitation current controlling circuit, and a communication frame processing circuit. The communication controlling circuit communicates with an ECU using a communication frame. The power generation voltage and excitation current controlling circuit controls power generation based on power generation control information in the received communication frame. The communication frame processing circuit decodes contents of power generation control information (i.e., signal switching data) included in the communication frame based on a signal switching bit in the same communication frame. Two types of contents or more that are switched based on the signal switching bit are assigned to the power generation control information in the communication frame.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: April 24, 2012
    Assignee: Denso Corporation
    Inventor: Fuyuki Maehara
  • Patent number: 8164312
    Abstract: An approach for reduction in generator-sourced fault current contribution is disclosed. In one aspect, automatic excitation control of a generator is coordinated with a generator step-up transformer operating on maximized tap selection to reduce generator fault current contribution to an electrical power distribution network.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 24, 2012
    Assignee: General Electric Company
    Inventor: Murray Alan Eitzmann
  • Patent number: 8138729
    Abstract: The present invention provides, as one aspect, a generation control apparatus for vehicles which controls current supply to a field winding of a generator to control output voltage of the generator. The apparatus includes a switching element connected to the field winding, and a duty determining unit that increases a drive duty for interrupting the switching element when output voltage of the generator becomes lower than a predetermined regulated voltage. The apparatus also includes a load response control unit that performs load response control for limiting an increase rate of the drive duty determined by the duty determining unit, after expiration of a predetermined time from application of an electrical load.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: March 20, 2012
    Assignee: Denso Corporation
    Inventor: Toshiya Konishi
  • Patent number: 8125195
    Abstract: Power-generation control operation for an in-vehicle electric generator is further stabilized in such a way that, in the case where a signal at an external-control-signal input terminal changes, a function of on/off-controlling a magnetic-field current in a constant cycle is interrupted. In a control apparatus, for an in-vehicle electric generator, that has a function of adjusting a generation voltage to a predetermined voltage, by on/off-controlling a magnetic-field current in a constant cycle, and variably controlling an adjustment voltage, based on an input signal from an external control unit, in the case where a signal at an external-control-signal input terminal is fixed for a long time, the function of on/off-controlling the magnetic-field current in the constant cycle is activated, and in the case where the signal at the external-control-signal input terminal changes, the function of on/off-controlling the magnetic-field current in the constant cycle is interrupted.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 28, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tatsuki Kouwa
  • Patent number: 8125178
    Abstract: A drive and a method, including an electric motor, which is supplied by a rectifier, the rectifier including a time-discrete closed-loop control structure, which regulates the stator current of the electric motor by setting the voltage applied at the motor, the current of the motor being acquired in time-discrete fashion, the closed-loop control structure including a closed-loop controller whose actual value is a first current component of the current, the setpoint input of the closed-loop controller being coupled with at least one upstream setpoint limiter.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 28, 2012
    Assignee: Sew-Eurodrive GmbH & Co. KG
    Inventors: Wolfgang Hammel, Thomas Schuster
  • Patent number: 8118627
    Abstract: A propulsion arrangement for a marine vessel is disclosed. The propulsion arrangement comprises an engine (12, 14) for propelling the vessel and an electrical machine (26, 28) coupled to the engine. The electrical machine is arranged to supply onboard electrical power for the vessel. A control unit (44) controls the electrical machine such that the electrical machine is selectively operable as a generator or a motor. The control unit and the electrical machine are arranged such that the electrical machine when operating as a motor can supplement the power of the engine while the engine is in operation. In one embodiment, the control unit and the electrical machine are arranged to provide active damping of the engine torque.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: February 21, 2012
    Assignee: Cummins Generator Technologies Limited
    Inventors: Krzysztof Wejrzanowski, Douglas Hay Cartwright, Cleveland Mills, Nazar Al-Khayat
  • Patent number: 8098054
    Abstract: A method and device for optimizing power output of a power generation system having a load engaging system, a load optimizing system, a load selection system, a motive driver and one or more loads or power transfer parameters. The power generation system is illustrated using an electrical generator to consume system power out, however the load(s) may be other than an electrical generator. The load engaging system decides when and how the load or power transfer parameters are applied to and removed from the system. The load selection system enables multiple power transfer parameters to be optimized by selecting and isolating one power transfer parameter at a time to be optimized. The load optimizing system optimizes system power output by manipulating the selected power transfer parameter, dynamically in response to change in power output.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: January 17, 2012
    Inventor: John Alexander Verschuur
  • Publication number: 20120007569
    Abstract: A control device for a vehicle AC generator, in which a part can be shared even when electrical configuration positions of field coils of rotors of generators are different, is obtained. Switching elements connected in series to the field coil in order to control a field current; and a control signal processing unit, in which information as to whether the field coil is connected to the high potential side or connected to the low potential side is inputted, one of the high potential side terminal and the low potential side terminal is selected on the basis of the inputted information, a control signal is outputted, and ON/OFF control of the switching element is performed to control the field current of the field coil, are provided.
    Type: Application
    Filed: December 16, 2010
    Publication date: January 12, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Katsuyuki SUMIMOTO, Noriyuki Wada
  • Patent number: 8093870
    Abstract: A generator apparatus includes a generator, a generator controller, and a rectifier bridge. A detector unit for recognizing a load shutoff is also provided. When a load shutoff is recognized, a switch is controlled to be transmissive so that energy produced by the load shutoff is stored in an energy reservoir. From there it can be fed back into the vehicle electrical system.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 10, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Markus Mueller
  • Patent number: 8080980
    Abstract: An alternator configured for use in a vehicle comprises a stator having a plurality of stator windings. A rotatable field coil is positioned adjacent to the stator within the alternator. A field driver circuit is configured to deliver an electric current to the field coil. A voltage sensor is configured to detect a battery voltage. A controller in the alternator is configured to execute either a first field current control program or a second field current control program depending at least in part upon the detected battery voltage. The first field current control program is configured to control the electric current delivered to the field coil in a 12 volt vehicle power system. The second field current control program is configured to control the electric current delivered to the field coil in a 24 volt vehicle power system.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 20, 2011
    Assignee: Remy Technologies, L.L.C.
    Inventors: Jack D. Harmon, Mingshe Zhou
  • Patent number: 8072190
    Abstract: A method of and a system for controlling a permanent magnet AC generator (10), wherein the generator is provided with stator windings and permanent magnets in the rotor and wherein the generator is connected to a drive unit (50), wherein the generator is further provided with a semiconductor converter provided with AC output connected to the generator output and a DC link for controlling the output voltage of the generator, and the converter is further provided with filter means for filtering the output of the converter so that a filtered output of the converter is fed to the generator output.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: December 6, 2011
    Assignee: The Switch High Power Converters Oy
    Inventors: Pasi Törmänen, Dejan Schreiber
  • Patent number: 8063500
    Abstract: The present invention provides a maintenance operation method for a wind turbine generator and a wind turbine generator, which can effectively utilize a phase advance capacitor equipped in the wind turbine generator and contribute to the phase factor improvement of the system side.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: November 22, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tohru Minami, Mitsuyoshi Fukuda, Eiji Irie
  • Patent number: 8054051
    Abstract: The present invention provides, as one aspect, an apparatus for detecting an abnormality of a generator for vehicles. The generator includes a multi-phase armature winding that has phase windings and a rectifier that rectifies multi-phase output of the armature winding. The apparatus includes a first period detection unit that detects a first period of an output voltage of the generator, a second period detection unit that detects a second period of an voltage of one of the phase windings, and an abnormality determination unit that determines presence or absence of an abnormality of the generator by comparing the first period with the second period.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: November 8, 2011
    Assignee: Denso Corporation
    Inventors: Tadakazu Nagata, Toshinori Maruyama
  • Publication number: 20110215578
    Abstract: To shorten a startup interval to reach a synchronizing condition, a phase difference and an amplitude difference between the grid voltage and the stator voltage of one phase of a winding are obtained. The difference in amplitude is decreased prior to or in parallel to synchronizing the stator voltage with the grid voltage. The calculated compensation phase compensation value is used as an initial value for synchronizing at the next synchronizing operation.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: HITACHI, LTD.
    Inventors: Masaya ICHINOSE, Motoo FUTAMI, HIromitsu SAKAI
  • Patent number: 7999518
    Abstract: A method for managing a power supply system with a variable voltage comprising the following steps: according to an instantaneous rotational speed of a rotating electrical machine, a power supply system output voltage with a variable voltage is set to an optimum output voltage between first and second service voltages in such a way as to maximize the electric power delivered by the electrical machine to an energy storage system; when the instantaneous rotational speed is slower than the nominal rotational speed, the output voltage is set to a first value which is substantially equal to the first service voltage in such a way as to maximize the yield of the transfer of energy from the electrical machine to a load; and when the instantaneous rotational speed is faster than the nominal rotational speed, the output voltage (U) is set to a second value substantially equal to the second service voltage in such a way as to maximize the yield of the transfer of energy from the electrical machine towards the load.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 16, 2011
    Assignee: Valeo Equipements Electriques Moteur
    Inventors: Hugues Doffin, Farouk Boudjemai, Julien Masfaraud
  • Patent number: 7973517
    Abstract: The control device detects the B-terminal voltage by a B-terminal voltage detection section. When an abnormal voltage detection section detects that a voltage value of the detected B-terminal voltage is equal to or higher than a predetermined voltage value, all switching elements of the negative pole-side arm in a power conversion section are brought into conduction by a negative pole-side arm short-circuiting section, whereas all switching elements of a positive pole-side arm are interrupted. In addition, a field current is limited to zero or to a limit value by a field current control section.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 5, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Nakajima, Masato Mori
  • Publication number: 20110156664
    Abstract: In a power generator, three-phase armature windings and a switching unit are provided for each phase armature winding. The switching unit includes a pair of a high-side switching element with a first diode and a second low-side switching element with a second diode. The switching unit rectifies, through at least one of the high-side switching element, the first diode, the second low-side switching element, and the second diode, a voltage induced in each phase armature winding. A zero-cross detector detects a point of time when a phase current based on the voltage induced in each phase armature winding is reversed in direction as a zero-cross point of the phase current. A deter miner determines an off timing of the high-side switching element or the low-side switching element for each phase armature winding relative to the zero-cross point detected by the zero-cross detector.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Applicant: DENSO CORPORATION
    Inventor: Harumi HORIHATA
  • Patent number: 7952214
    Abstract: A wind power generation system temporarily stops a power converter when a system disturbance occurs, and reactivates the power converter after detecting a solution of the problem of an influence (overcurrent of a stator, direct current component of a stator, overcurrent of a rotor, etc.) of a fault occurring in a doubly-fed generator during a system fault. During a system fault, a reactive current can be safely output from a doubly-fed generator to an electric power system without destroying equipment of the wind power generation system.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: May 31, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masaya Ichinose, Shinya Oohara, Motoo Futami, Mitsugu Matsutake, Hiromitsu Sakai
  • Patent number: 7948216
    Abstract: A control apparatus controls power generation of an electric generator and communicates with an external control apparatus. The control apparatus includes: a control circuit that controls the power generation of the electric generator according to a command signal transmitted from the external control apparatus; means for reseting the control circuit; and means for informing the external control apparatus of a power generation condition of the electric generator by transmitting a condition signal, the condition signal indicating both the power generation condition of the electric generator and information on whether a reset of the control circuit is made by the reseting means. With such a configuration, when the control circuit is reset due to, for example, noises, the control apparatus can reliably inform the external control apparatus of the reset of the control circuit.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: May 24, 2011
    Assignee: Denso Corporation
    Inventors: Tadatoshi Asada, Fuyuki Maehara
  • Patent number: 7948218
    Abstract: The voltage regulator receives power in A.C. from a permanent magnet voltage generator, having phase windings with a configurable connection, to supply power in D.C. to a battery. The voltage regulator comprises a plurality of semi-bridge rectifiers connected between the terminals of the phase windings of the voltage generator, and a battery power supply terminal; it also comprises a control circuit designed to change over the connection of the phase windings between two different configurations, for example star and delta, in relation to the charging voltage of the battery upon exceeding a threshold value of the phase frequency of the voltage generator.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 24, 2011
    Assignee: Ducati Energia S.p.A.
    Inventors: Gianni Regazzi, Pierluigi Calabri, Alessandro De Angelis
  • Patent number: 7948217
    Abstract: A distributed generation system that can suppress a voltage fluctuation caused by a distributed generation by an apparatus of a small power capacity in the distributed generation itself and stabilize the power system voltage without inserting interharmonic voltage or current into the power system and without interference among a plurality of distributed generations. Parameter ?(t) varying with time is estimated based on fluctuating component ?P of the active power P generated by the distributed generation and the voltage fluctuating component ?V attributable to the distributed generation developed at the point of connection between the distributed generation and power system. The distributed generation produces reactive power Q=??P or Q=???P, to thereby suppresses only the voltage fluctuation of the power system attributable to the distributed generation.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 24, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Oohara, Masaya Ichinose, Motoo Futami, Mitsugu Matsutake, Shoji Fukuda
  • Publication number: 20110115445
    Abstract: A power system is provided for delivering a custom level of electrical power to an industrial or commercial facility, comprising a local generator connected to a turbine operating in accordance with an organic Rankine cycle, the local generator having a capacity at least greater than a maximum anticipated power level needed for the electrical needs of a local industrial or commercial facility, one or more control devices operatively connected to the local generator for regulating active and reactive power generated by the generator, a detector for sensing active voltage induced by said generator, a detector for sensing reactive voltage produced by the generator, and a controller in electrical communication with said one or more control devices and with the active and reactive voltage detectors, wherein the controller directs the one or more control devices to regulate the generator such that the active power and reactive power generated by the generator are sufficient to satisfy active and reactive load condi
    Type: Application
    Filed: November 23, 2009
    Publication date: May 19, 2011
    Applicant: Ormat Technologies, Inc.
    Inventors: LUCIEN Y. BRONICKI, Shlomo Shitrit
  • Publication number: 20110101928
    Abstract: An excitation winding (104) and a field winding (102) are provided. A smoothing capacitor (113) smoothes a current of the excitation winding (104) and inputs it to the field winding (102). A transistor (110) is driven to control an output of the generator winding (103). A diode (112) prevents a field current from flowing in a reverse direction. A transistor (10) connected to the diode (112) is driven in a phase reverse to a phase of a drive signal of the transistor (110). A duty monitor 1 determines whether a duty ratio of the drive signal of the transistor (110) is larger than a reference duty ratio, and when the duty monitor 1 determines that the duty ratio of the drive signal is larger than the reference duty ratio, an unit (2) extends an output cycle of the drive signal by thinning out the drive signal.
    Type: Application
    Filed: August 31, 2010
    Publication date: May 5, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Kenji KAMIMURA
  • Publication number: 20110101929
    Abstract: In a self-excited generator 1 including an automatic voltage regulator (AVR) 10, a condensive load protection device includes: a field current control driver 21 which is connected to the field winding 6 in series and controlled to be ON/OFF by a drive circuit 23 of the AVR 10 to supply a field current to the field winding 6; and a condensive load protecting rotor short-circuit driver 22 which is connected in parallel to the field winding 6, and supplies a short-circuit current to the field winding 6 by being turned ON, and a bootstrap circuit 30 is connected as a drive power supply of the field current control driver and the condensive load protecting rotor short-circuit driver, and the bootstrap circuit 30 includes a capacitance portion 32 in which charges are accumulated when the field current control driver 21 is ON.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Minoru MAEDAKO, Yasuhiro NAKADA
  • Patent number: 7919949
    Abstract: A generator system that includes a three-phase AC machine and an active rectifier bridge employing low on-resistance MOSFET switches for converting the AC current from the machine to a DC current. The system also includes a switch control circuit to switch the MOSFET switches in synchronization with the three-phase current flow. The system determines the phase-to-ground voltages of the machine as inputs to the switch control circuit. The control circuit calculates the phase-to-phase voltages from the phase-to-ground voltages. The control circuit then determines if each of the phase-to-phase voltages is above or below first and second predetermined threshold voltages, where if the phase-to-phase voltage is above the first threshold voltage, the control circuit closes the switch, and if the phase-to-phase voltage is below the second threshold voltage, the control circuit opens the switch.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 5, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Lei Hao
  • Patent number: 7902798
    Abstract: An electric power generation control apparatus for a vehicle alternator mounted on a motor vehicle performs one of a constant output voltage control a constant torque control and a constant exciting current control in order to suppress a hunting phenomenon of the vehicle alternator. First of all, the electric power generation control apparatus performs the constant output voltage control when a rotation speed is within an idling rotation speed range or a periodic change of the rotation speed is not less than a predetermined value. After completion of the constant output voltage control, when judging that the idle hunting phenomenon is not adequately suppressed, the electric power generation control apparatus performs one of the constant torque control and the constant exciting current control.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: March 8, 2011
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Norihito Kimura, Naoki Yamamoto