Control By Circuit Impedance Patents (Class 322/75)
  • Patent number: 11656286
    Abstract: A health monitor circuit for an electric machine includes a plurality of sensors, a rectifier, a memory device, and a microprocessor. The plurality of sensors includes a current transformer configured to be electromagnetically coupled to an electrical conductor that feeds a stator winding of the electric machine. The rectifier is coupled to the current transformer and is configured to convert an AC signal generated by the current transformer to a DC signal to supply power for the health monitor circuit. The microprocessor is coupled to the memory device and the plurality of sensors. The microprocessor is configured to periodically collect a stator current measurement from the current transformer and write the stator current measurement to the memory device.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 23, 2023
    Assignee: Regal Beloit America, Inc.
    Inventors: Christopher Edwin Eugene Propp, Paul Steven Mullin, Norman Carl Golm, Jr., Daniel Edward Phillips
  • Patent number: 8396164
    Abstract: A receiving device includes a receiving circuit and an impedance control circuit. The receiving circuit receives a signal transmitted through a communication line. The impedance control circuit is coupled with the receiving circuit and has a detecting part. The detecting part detects a physical value of the signal and the physical value includes at least one of a voltage, an electric current, and an electric power. The impedance control circuit changes an input impedance based on the detected value so that a ringing of the signal is reduced.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: March 12, 2013
    Assignees: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Youichirou Suzuki, Noboru Maeda, Takashi Nakano, Kazuyoshi Nagase, Koji Kondo, Shigeki Takahashi, Yoshihiko Ozeki
  • Patent number: 8008896
    Abstract: Output waveform of the generator is improved through stabilization of field current by removing flywheel diode used to be required for automatic voltage regulator. Output electric current of excitation winding 3 is rectified by rectifier 8 and is supplied to field winding 5 of rotor 4. Impedance adjustment circuit 12 is provided to circuit where field current flows. Target electric current determination unit 10 determines target electric current (target field current) used to control output voltage of power generation winding 2 to the reference voltage. Impedance adjustment circuit 12 increases or decreases the impedance of field current circuit so that the field current detected by electric current detector 11 converges with target electric current.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: August 30, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yasuhiro Nakada, Toshio Inoue
  • Publication number: 20090108816
    Abstract: Output waveform of the generator is improved through stabilization of field current by removing flywheel diode used to be required for automatic voltage regulator. Output electric current of excitation winding 3 is rectified by rectifier 8 and is supplied to field winding 5 of rotor 4. Impedance adjustment circuit 12 is provided to circuit where field current flows. Target electric current determination unit 10 determines target electric current (target field current) used to control output voltage of power generation winding 2 to the reference voltage. Impedance adjustment circuit 12 increases or decreases the impedance of field current circuit so that the field current detected by electric current detector 11 converges with target electric current.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yasuhiro NAKADA, Toshio INOUE
  • Patent number: 7268522
    Abstract: A wound field synchronous (WFS) dynamoelectric machine comprises: a rotor assembly; an exciter generator section comprising a stationary multiphase exciter stator winding for receiving excitation power from a multiphase alternating current (AC) source to generate an exciter stator magnetic field, a multiphase exciter rotor winding in the rotor assembly for generating multiphase AC excitation power as it cuts through the exciter stator magnetic field and a rotating rectifier assembly in the rotor assembly for converting the multiphase AC excitation power to direct current (DC) excitation power; a synchronous machine section comprising a DC main rotor winding in the rotor assembly for generating a main rotor magnetic field and a stationary multiphase main stator winding for receiving a multiphase AC control signal to generate a rotating main stator magnetic field that interacts with the main rotor magnetic field to rotate the rotor assembly; and an impedance that selectively connects one phase of the exciter st
    Type: Grant
    Filed: May 20, 2006
    Date of Patent: September 11, 2007
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Donal E. Baker
  • Patent number: 7245112
    Abstract: There is provided an energy discharge apparatus for dissipating a quantity of stored magnetic energy in a generator field coil of a brushless generator. The apparatus includes an exciter regulator responsive to an output signal of the generator and which provides an exciter field signal, and an exciter field coil responsive to the exciter field signal and which provides an exciter magnetic field, and an exciter armature coil responsive to the exciter magnetic field and which provides an exciter armature signal. The apparatus further includes a control circuit responsive to the exciter armature signal, and a variable impedance in series with the generator field coil and responsive to the control circuit. The variable impedance serves to dissipate the quantity of stored magnetic energy. In another embodiment the apparatus includes a positive feedback circuit responsive to the exciter armature signal and operable to dissipate the quantity of stored magnetic energy.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 17, 2007
    Assignee: Teleflex Canada Incorporated
    Inventors: Aleks Velhner, Neil Garfield Allyn, Terry Moreau
  • Patent number: 7161330
    Abstract: There is provided an energy discharge apparatus for dissipating a quantity of stored magnetic energy in a generator field coil of a brushless generator. The apparatus includes an exciter regulator responsive to an output signal of the generator and which provides an exciter field signal, and an exciter field coil responsive to the exciter field signal and which provides an exciter magnetic field, and an exciter armature coil responsive to the exciter magnetic field and which provides an exciter armature signal. The apparatus further includes a control circuit responsive to the exciter armature signal, and a variable impedance in series with the generator field coil and responsive to the control circuit. The variable impedance serves to dissipate the quantity of stored magnetic energy. In another embodiment the apparatus includes a positive feedback circuit responsive to the exciter armature signal and operable to dissipate the quantity of stored magnetic energy.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 9, 2007
    Assignee: Teleflex Canada Incorporated
    Inventors: Aleks Velhner, Neil Garfield Allyn, Terry Moreau
  • Patent number: 7154249
    Abstract: There is provided an energy discharge apparatus for dissipating a quantity of stored magnetic energy in a generator field coil of a brushless generator. The apparatus includes an exciter regulator responsive to an output signal of the generator and which provides an exciter field signal, and an exciter field coil responsive to the exciter field signal and which provides an exciter magnetic field, and an exciter armature coil responsive to the exciter magnetic field and which provides an exciter armature signal. The apparatus further includes a control circuit responsive to the exciter armature signal, and a variable impedance in series with the generator field coil and responsive to the control circuit. The variable impedance serves to dissipate the quantity of stored magnetic energy. In another embodiment the apparatus includes a positive feedback circuit responsive to the exciter armature signal and operable to dissipate the quantity of stored magnetic energy.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: December 26, 2006
    Assignee: Teleflex Canada Incorporated
    Inventors: Aleks Velhner, Neil Garfield Allyn, Terry Moreau
  • Patent number: 6717387
    Abstract: A generator apparatus such as in a cogeneration system has a controlling power supply energized with its generator output with giving no adverse effect on the waveform of its output. An inverter 13 is provided for converting an alternating current output of the engine generator 10 into a direct current and returning back by the action of its inverter circuit 133 to an alternating current of a predetermined frequency which is then connected to a power supply system 14. While the engine 11 remains not actuated, a power received from a joint between the inverter 13 and the power supply system 14 is rectified by a rectifier 141 and transferred to the controlling power supply 140. When the engine 11 is started, the power at the input of the inverter circuit 133 is transmitted to the controlling power supply 140.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: April 6, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoshiaki Kotani, Tomoki Fukushima, Tsutomu Wakitani
  • Patent number: 6031352
    Abstract: A control apparatus controlling the operation of pulse width modulator for an electric clutch or electric motor in portable spray painting equipment having a pressure transducer for sensing the pressure, a manually adjustable pressure reference, a comparator type error detector, and a pressure deadband control for inserting a deadband in a pressure control loop with the deadband varying as the pressure reference varies. A fixed deadband is provided below a predetermined low pressure setting to avoid excessive cycling of the control apparatus during low pressure operation. The pulse width modulator control circuit includes compensation for improving input power factor. The clutch control includes an active alternative load circuit switched in when the alternator output voltage is above a predetermined value.
    Type: Grant
    Filed: May 10, 1996
    Date of Patent: February 29, 2000
    Assignee: Wagner Spray Tech Corporation
    Inventor: Dennis A. Carlson
  • Patent number: 4786853
    Abstract: A brushless capacitor excited alternator includes a rotor assembly having a coil and a diode connected in series with the coil. A stator contains the output coil of the alternator. Also wound on the stator are primary and auxiliary excitation coils. An excitation capacitor is provided with means for connecting it between various terminals on the primary and auxiliary excitation coils, and for connecting the two coils together. The magnetic field and thus the output voltage of the alternator may be varied by connecting the capacitor to different coil terminals.
    Type: Grant
    Filed: March 23, 1987
    Date of Patent: November 22, 1988
    Assignee: Kohler Co.
    Inventor: Richard D. VanMaaren
  • Patent number: 4642548
    Abstract: A control apparatus incorporated in a charging generator for controlling interruption of an exciting current supplied to a field winding of the charging generator comprises a power transistor for intermittently interrupting the exciting current, a voltage detecting circuit for controlling on-off of the power transistor depending on the voltage generated by the charging generator, a current detecting circuit for detecting an initial exciting current supplied to the field winding until the charging generator generates an output voltage high enough for starting its charging operation, and a circuit for turning off the power transistor as soon as the value of the current detected by the current detecting circuit exceeds a predetermined setting.
    Type: Grant
    Filed: July 22, 1985
    Date of Patent: February 10, 1987
    Assignee: Hitachi, Ltd.
    Inventor: Keiichi Mashino
  • Patent number: 4639657
    Abstract: Apparatus for use in an electrical power generating system including a generator for supplying an A.C. output voltage to a load on a set of lines and a circuit responsive to the A.C. output voltage for producing a regulating voltage, the generator having a winding the D.C. energization of which controls the A.C. output voltage. The apparatus controls the energization of the winding and includes a switching circuit adapted to be connected across a resistance and which when rendered conductive bypasses the resistance to couple the voltage regulating circuit to the winding with negligible loss of energy. The switching circuit is combined with a circuit that produces a signal when an increase in the A.C. output voltage exceeding a preselected parameter occurs, and with another circuit that renders the switching circuit nonconductive in response to the signal thereby causing the resistance to consume energy from the winding. Methods of operation of the apparatus are also described.
    Type: Grant
    Filed: August 30, 1984
    Date of Patent: January 27, 1987
    Assignee: Basler Electric Company
    Inventor: Waldo J. Frierdich
  • Patent number: 4296368
    Abstract: In an internal combustion engine driven generator in which a capacitor excitation type synchronous generator is driven by an internal combustion engine, the internal combustion engine has a characteristic that the revolution per minute thereof is increased with a decreasing load applied thereto, and the generator has a characteristic that the output voltage thereof is decreased with a decreasing load current with the revolution per minute maintained unchanged.
    Type: Grant
    Filed: October 22, 1979
    Date of Patent: October 20, 1981
    Assignee: Kokusan Denki Co., Ltd.
    Inventor: Masaaki Kubo
  • Patent number: 4117388
    Abstract: A dynamo electric machine including an alternating current generator and a brushless exciter for the generator field, wherein control and compounding field windings of the exciter are energized from the generator stator winding through stationary rectifier circuits, the rectifier circuit for the compounding field making connection with the generator stator winding in the vicinity of its neutral point to avoid impressing high voltage to ground on rectifiers of the circuit.
    Type: Grant
    Filed: January 7, 1977
    Date of Patent: September 26, 1978
    Assignee: Dyna Technology, Inc.
    Inventor: Lawrence R. Roche