Using Converter Patents (Class 323/207)
  • Patent number: 8929110
    Abstract: Systems, apparatuses, and techniques for pulse width modulation (PWM) are described. A described system includes a circuit that contains an inductor and a transistor that controls current through the inductor based on a PWM signal to produce an output; and a controller to provide the PWM signal, which includes PWM cycles that include on-durations and off-durations. The controller can receive a first signal indicating an input voltage that is applied to the inductor, receive a second signal indicating a current through the inductor, use an on-duration parameter value to control the on-duration, determine a maximum off-duration of the off-durations corresponding to the PWM cycles occurring within a first voltage cycle, the first voltage cycle being defined between two consecutive zero-crossing events as indicated by the first signal, and adjust the on-duration parameter value for a second, subsequent voltage cycle based on the maximum off-duration to regulate the output voltage.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: January 6, 2015
    Assignee: Atmel Corporation
    Inventor: Karl Jean-Paul Courtel
  • Patent number: 8928173
    Abstract: A dynamic high-energy switch used for correcting load imbalance through connecting and disconnecting capacitance in a power feed circuit.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: January 6, 2015
    Assignee: PowerMetrics International, Inc
    Inventor: Hamid Pishdadian
  • Patent number: 8922174
    Abstract: The present invention relates to a power factor correction circuit, that can include: an inductor current detector that generates a sampling voltage signal, and sinusoidal half-wave current and voltage signals based on the sampling voltage signal; a mediate signal generator generating slope voltage and clock signals in response to the sinusoidal half-wave voltage signal, where a frequency of each varies with the sinusoidal half-wave voltage signal; a current modulation circuit receiving the sinusoidal half-wave current signal and a voltage feedback signal representative of a power stage output voltage to generate a regulation signal that is compared against the slope voltage signal to generate a modulation signal; and a logic/driving circuit receiving the modulation and clock signals, and generating a controlling signal that controls a power switch with variable frequency to maintain the inductor current in phase with the sinusoidal half-wave voltage signal and the power stage output voltage constant.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 30, 2014
    Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd
    Inventor: Xiaoru Xu
  • Patent number: 8912767
    Abstract: A reactive energy compensator that can be electrically connected to an AC electrical network, including at least one input direct voltage bus, at least one voltage inverter including switches and first and second capacitors having first and second voltages at their terminals, control means for the switches, including computation means capable of generating a target control current, means for combining the target control current and the output current from the inverter, means for transmitting a control signal capable of driving the switches, and correction means for the control signals of the switches, the correction means being capable of adding a balancing current to the target control current, the balancing current being able to correct the target control current so as to reduce the difference between the values of the first and second voltages, the target control current being increased for an even harmonic of the network frequency.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: December 16, 2014
    Assignee: GE Energy Power Conversion Technology Limited
    Inventors: Mathieu Morati, Matthieu Urbain, Daniel Girod
  • Patent number: 8912775
    Abstract: A power factor correction circuit is provided which may include a first switched-mode converter circuit comprising a first inductor, at least one second switched-mode converter circuit having a second inductor, a control circuit coupled to the first and second switched-mode converter circuits, wherein the control circuit is configured to start a switching pulse for the second switched-mode converter circuit when the following conditions are fulfilled: the second inductor of the second switched-mode converter circuit has a predefined magnetization state and a predefined time period has elapsed since the start of a switching pulse for the first switched-mode converter circuit, wherein the predefined time period is a predefined fraction of the time period from the start of a previous switching pulse for the second switched-mode converter circuit to a time when the second inductor of the second switched-mode converter circuit has the predefined magnetization state.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 16, 2014
    Assignee: Infineon Technologies AG
    Inventors: Martin Feldtkeller, Martin Krueger
  • Publication number: 20140354246
    Abstract: A bridgeless PFC boost converter has two auxiliary transistor switches coupled to an input AC voltage source and two boost inductors coupled to opposing ends of the input AC voltage source. A first boost inductor is coupled to a junction node of a first rectifying diode and a first transistor switch coupled in series. A second boost inductors is coupled to a junction node of a second rectifying diode and a second transistor switch coupled in series. The rectifying diodes are commonly coupled to an output capacitor, and the transistor switches are commonly coupled to a second node of the output capacitor. A first auxiliary transistor switch is commonly coupled with the first boost inductor and to a first node of the input AC voltage source. A second auxiliary transistor switch is commonly coupled with the second boost inductor and to a second node of the input AC voltage source.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 4, 2014
    Applicant: Flextronics AP, LLC
    Inventors: Hua Min Xu, Wei Li, Hui Zhang, Xing Hao Zhang, Yi Zhang
  • Publication number: 20140354247
    Abstract: A bridgeless PFC boost converter has either a single switching cell or two identical switching cells configured to operate 180 degrees out of phase. A switching cell includes first and second transistor switches coupled to opposing ends of an input AC voltage source, and first and second rectifying diodes, one rectifying diode coupled in series to each of the two transistor switches. A boost inductor is coupled to a junction node between each transistor switch and rectifying diode series. Either a third rectifying diode or a third transistor switch is coupled to a junction node between the input AC voltage source and the first transistor switch. Either a fourth rectifying diode or a fourth transistor switch is coupled to a junction node between the input AC voltage source and the second transistor switch. The rectifying diodes are coupled an output capacitor. Two switching cells can be interleaved.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 4, 2014
    Applicant: Flextronics AP, LLC
    Inventors: Hua Min Xu, Wei Li, Hui Zhang, Xing Hao Zhang, Yi Zhang
  • Patent number: 8884591
    Abstract: A control circuit for a discontinuous conduction mode power factor correction converter using harmonic modulation includes: a first difference circuit configured to calculate and output a difference between an output voltage of a discontinuous conduction mode power factor correction converter and a reference voltage; a PI converter configured to perform a proportional integral control on an output signal of the first difference circuit, and output a signal having an arbitrary duty ratio; a second difference circuit configured to output a difference between a rectified input voltage, which is input to the discontinuous conduction mode power factor correction converter, and a harmonic modulation factor DC voltage; and a multiplication circuit configured to multiply an output of the PI controller and an output of the second difference circuit, and output a PFC control signal to a switch of the discontinuous conduction mode power factor correction converter.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 11, 2014
    Assignee: Mando Corporation
    Inventors: Hyung Jun Chae, Jun Young Lee, Kyung Dong Kim, Hyung Tae Moon
  • Patent number: 8878499
    Abstract: The instant disclosure provides a Power Factor Correction (PFC) boost converter including a PFC converter unit and a control unit and a frequency switching modulation method thereof. The control unit outputs a pulse width modulation (PWM) signal to the PFC converter unit for adjusting an electronic power output to a voltage converter. As the output load of the PFC converter unit increases, the control unit increases the frequency of the PWM signal. Conversely, as the output load of the PFC converter unit decreases, the control unit reduces the frequency of the PWM signal. Consequently, the switching loss of the PFC converter unit is reduced.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 4, 2014
    Assignees: Lite-On Electronics (Guangzhou) Limited, Lite-On Technology Corporation
    Inventors: Chih-Tai Chen, Yu-Ho Lin
  • Patent number: 8872484
    Abstract: Aspects relate to utilizing power factor correction to compensate for a leading power factor produced mainly due to electromagnetic interference (EMI) capacitors in front of a power factor correction stage. Provided is a power supply that includes a power factor correction circuit that includes a second harmonic generator component. The harmonic generator component includes a filter component and an integrator component. The filter component is configured to receive a rectified voltage and a power factor correction current and block a direct current component. The integrator component is configured to receive an alternating current component from the filter component and produce a harmonic that causes an angle of the power factor correction current to change from a leading power factor to a unity power factor or to a lagging power factor.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: October 28, 2014
    Assignee: Google Inc.
    Inventor: Sangsun Kim
  • Patent number: 8861236
    Abstract: A switching power supply is provided that includes: input terminals for the uptake of an input power, output terminals for providing an output power, a circuit disposed between the input and output terminals for transforming the input power and having at least one controllable switch, a control unit for controlling the at least one controllable switch by means of at least one pulse-width modulation signal having variable frequency and variable duty cycle, and having measuring instruments connected to control unit, designed for at least measuring the input current intensity, the input voltage, the output current intensity, and the output voltage, wherein control unit is designed for the purpose of monitoring the efficiency of switching power supply by means of measurement values of the connected measuring instruments, and of optimizing the efficiency by controlling the at least one controllable switch by means of a first digital control loop. Also provided is a method for operating a switching power supply.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: October 14, 2014
    Assignee: Phoenix Contact GmbH & Co., KG
    Inventor: Guido Remmert
  • Patent number: 8861231
    Abstract: A voltage source converter comprising three phase elements defining a star connection in which a first end of each phase element is connected to a common junction; at least two converter limbs, each converter limb including first and second DC terminals for connection in use to a DC network and an AC terminal connected in series with a second end of a phase element, each converter limb defining first and second limb portions, including a chain-link converter, each chain-link converter including chain-link modules; and a third DC terminal connected to the common junction of the star connection to define an auxiliary connection, wherein in use a current is injected into the auxiliary connection to modify a voltage of each chain-link module in each limb portion.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: October 14, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Andrew Cross, David Trainer, William Crookes
  • Patent number: 8854839
    Abstract: An AC-to-DC power converting device includes: a filter for filtering an external AC input voltage; a rectifier for rectifying the AC input voltage filtered by the filter to output a rectified voltage; a power factor corrector for receiving the rectified voltage from the rectifier to generate a boosted voltage; and a step-down converter for receiving the boosted voltage from the power factor corrector to output a DC output voltage. The power factor corrector includes first and second capacitors connected in series across an output side of the rectifier, a series connection of a first diode, a first inductor, a third capacitor, a second inductor and a second diode coupled to the output side of the rectifier, and first and second switches connected in series across the third capacitor. A common node between the first and second capacitors is coupled to a common node between the first and second switches.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 7, 2014
    Assignee: I Shou University
    Inventors: Chun-An Cheng, Chun-Hsien Yen, Kun-Jheng Lin
  • Patent number: 8854018
    Abstract: A control circuit for reducing touch current of a power converter includes an auxiliary pin, a zero-crossing signal generator, a feedback pin, a frequency limiting signal generator, and a gate signal generator. The auxiliary pin receives a voltage corresponding to an auxiliary winding of the power converter. The zero-crossing signal generator generates a zero-crossing signal according to the voltage and a first reference voltage. The feedback pin receives a feedback voltage corresponding to an output voltage of the power converter. The frequency limiting signal generator generates a frequency limiting signal according to the feedback voltage and a second reference voltage. The frequency limiting signal limits the gate control signal to a predetermined frequency. The gate signal generator generates a gate control signal to a power switch of the power converter according to the frequency limiting signal and the zero-crossing signal.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: October 7, 2014
    Assignee: Leadtrend Technology Corp.
    Inventors: Kuo-Chien Huang, Chen-Lun Yang, Hsin-Hung Lu
  • Patent number: 8848407
    Abstract: A method in a voltage source chain-link converter. The method includes: detecting a failure of a device of one converter cell module; blocking a phase-leg including the failed position; discharging to zero a capacitor unit of the converter cell module including the failed position; and providing a current path for the phase current through the converter cell module with the failed position, the current path including a first branch, in turn including corresponding positions of the first phase-leg and the second phase-leg in the full H-bridge arrangement, the first branch being connected in parallel to a second branch including the failed position, the second branch including the remaining two positions of the full H-bridge arrangement. The invention also encompasses corresponding computer program and computer program products.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 30, 2014
    Assignee: ABB Technology AG
    Inventor: Anders Blomberg
  • Patent number: 8848400
    Abstract: A system and method are provided for performing reactive power control. The system includes a power converter and a controller coupled to the power converter. The power converter is configured to convert a first form of electric power generated from the power source to a second form of electric power suitable to be distributed by the electrical grid. The controller is configured to monitor the electric power transmitted between the power converter and the electrical grid. The controller is further configured to decouple a positive sequence component and a negative sequence component from the monitored electric power. The controller is further configured to perform a positive reactive power control and a negative reactive power control with respect to the decoupled positive and negative sequence components. The controller is further configured to transmit a control signal to the power converter based on the positive and negative reactive power control.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Xiaoming Yuan, Zhuohui Tan, Anthony Michael Klodowski
  • Patent number: 8842456
    Abstract: An analog controller is disclosed. The controller has a maximum power point tracking unit and a power factor adjusting unit. The maximum power point tracking unit generates a maximum power tracking voltage which is used to control the magnitude of the output current of the inverter so as to extract the most available power from the power generating device. The power factor adjusting unit, which generates a ramp control voltage that will further determine the duty ratio and switching frequency of PWM signal, gracefully tunes the magnitude and reduces the total harmonic distortion of the current injected from inverter into utility grid.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: September 23, 2014
    Assignee: National Cheng Kung University
    Inventors: Yeong-chau Kuo, Wen-chuen Liu, Tai-haur Kuo
  • Patent number: 8829864
    Abstract: A current driver circuit includes a converter part having a switching element and converting an input voltage into an output voltage; a current detector which generates a detection signal indicative of the current of the switching element; an input voltage compensating circuit which generates a compensation signal corresponding to the input voltage; a comparator which compares the detection signal and the compensation signal against each other; and a switch driver circuit which generates a drive signal. The drive signal turns the switching element off in accordance with an output of the comparator, and turns the switching element on again after a lapse of a prescribed time from the switching element being turned off.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 9, 2014
    Assignee: Collabo Innovations, Inc.
    Inventor: Takuya Ishii
  • Patent number: 8823339
    Abstract: The present invention relates to a switch control circuit, a switch control method, and a converter using the same. An input voltage rectified from an AC input in a converter is transmitted to an inductor, and output power is generated from an inductor current by the input voltage. The converter includes a power switch connected to the inductor to control the inductor current and a sense resistor having a first end connected to a ground and a second end connected to the AC input. At a time point that a sense voltage generated in the sense voltage reaches the peak point and then decreased to an on-reference voltage, the power switch is turned on. The on-reference voltage is a sense voltage at a resonance start time point between a parasite capacitor of the power switch and the inductor.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 2, 2014
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Jae-Yong Lee, Byung Kwon Choi, Young-Je Lee, Ilyong Jung
  • Patent number: 8823335
    Abstract: A switching power supply is provided to supply an AC input voltage. The supply includes a control circuit configured to detect a voltage of the AC power source in a voltage waveform, and switch elements in a synchronous rectification switching mode in synchronization with polarities of the voltage waveform when the AC input voltage is equal to or greater than a predetermined voltage value. The control unit also operates the switching without synchronization with the polarities when the AC input voltage is smaller than the predetermined voltage value.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: September 2, 2014
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Takeki Sugahara, Masao Ueno
  • Patent number: 8810211
    Abstract: A converter device for power conversion in a power plant, such as a wind turbine, is provided. The converter device is configured for converting an electrical input power to an electrical output power. The converter device may be configured for receiving mechanical input power or, according to another embodiment, may be configured for receiving electrical input power. The converter device includes a voltage input for receiving a voltage signal, which is indicative of a voltage in a electricity network to which the converter device is coupled during operation in order to provide the electrical output power to the electricity network The converter device includes a controller being configured for setting a reactive component of the electrical output power depending on the voltage signal according to a out-of-band reactive current gradient if the voltage indicated by the voltage signal is outside a predetermined voltage band.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: August 19, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Björn Andresen, Steffen Wulff
  • Patent number: 8803570
    Abstract: In a multiphase electrical power assignment, a processor: receives instructions to connect a bi-directional power device to a multiphase premise power source; determines that the power device is to be coupled to a target phase's phase connection; confirms that the power device is not coupled to any phase connections; and couples the power device to the phase connection, where the power device's power signal is synchronized with the phase connection's power signal. When the power device is in a connected state, the processor: issues a command to place each phase connection switch in an open state; in response to confirming that the phase connection switches are in the open state, issues commands to the power device so that a power signal of the power device will be synchronized with the target phase; and closes the phase connection switch corresponding to the target phase.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: August 12, 2014
    Assignee: STEM, Inc
    Inventors: Lynn Smith, Stacey Reineccius
  • Patent number: 8804381
    Abstract: A method of balancing reactive power at a power delivery system is disclosed. The method may include operating a power delivery system that may have a plurality of power cells that are electrically connected to a first transformer comprising one or more primary windings and a plurality of secondary windings such that each cell is electrically connected to one of the secondary windings and a plurality of the secondary windings are phase-shifted with respect to the primary windings. The method may further include controlling the reactive current flow at each power cell by calculating, at a first controller, a reactive current flow adjustment for at least one power cell so that reactive current flow is balanced among each of the plurality of power cells. Each cell may include a plurality of switching devices.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 12, 2014
    Assignee: Siemens Industry, Inc.
    Inventor: John Channing Bousfield, III
  • Patent number: 8803489
    Abstract: Light load efficiency of a power factor correction circuit is improved by adaptive on-time control and providing for selection between a continuous conduction mode and a discontinuous conduction mode wherein the discontinuous conduction mode increases time between switching pulses controlling connection of a cyclically varying voltage to a filter/inductor that delivers a desired DC voltage and thus can greatly reduce the switching frequency at light loads where switching frequency related losses dominate efficiency. The mode for controlling switching is preferably selected for each switching pulse within a half cycle of the cyclically varying input voltage. A multi-phase embodiment allows cancellation of EMI noise at harmonics of the switching frequency and adaptive change of phase angle allows for cancellation of dominant higher order harmonics as switching frequency is reduced.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 12, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Qian Li, Fred C. Lee, Ming Xu, Chuanyun Wang
  • Patent number: 8797004
    Abstract: Disclosed is a PFC (power factor correction) device for shaping an input current of a power converter. The device includes means for receiving a rectified input voltage derived from an AC input voltage; load determining means for determining a load value L which represents the power drawn by a load supplied by the power converter; current shaping means for shaping the input current of the power converter to follow a reference waveform; and control means for controlling the current shaping means to operate over a conduction interval ? during each positive and negative half cycle of the AC input voltage. The duration of the conduction interval is controlled in accordance with the load value L. The current shaping means may shape the input current to follow the reference waveform which crosses zero at phase angles which substantially correspond to the start and end of the conduction interval.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 5, 2014
    Assignee: TDK-Lambda UK Limited
    Inventor: Andrew John Skinner
  • Patent number: 8797003
    Abstract: In power conversion according to the three-phase converter, symmetrical component voltage values of a balanced system are calculated from wye-phase voltages on the three-phase AC input side of the three-phase converter. On the DC output side thereof, the power factor is set, an average active power value is calculated from an output voltage value and an output current value, and an average reactive power is calculated from the set power factor. On the basis of the symmetrical component voltage values, the average active power, and the active reactive power, a compensation signal for compensating for unbalanced voltages of the three-phase AC voltages and a control signal for controlling the power factor are generated, and according to the compensation signal and the control signal, a control signal for outputting DC is generated.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 5, 2014
    Assignee: Kyosan Electric MFG. Co., Ltd.
    Inventors: Itsuo Yuzurihara, Atsushi Takayanagi, Yoshihisa Hata, Tsuyoshi Okano
  • Publication number: 20140211529
    Abstract: A micro inverter includes a synchronous bi-directional power converter and a controller communicatively coupled to the synchronous bi-directional power converter. The controller is configured to operate the micro inverter in a forward conduction mode when photovoltaic (PV) power is available and operate the micro inverter in at least one of a reverse conduction mode and a reactive power compensation mode when PV power is unavailable.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: General Electric Company
    Inventors: Jeyaprakash Kandasamy, Remesh Kumar Keeramthode, NVS Kumar Srighakollapu
  • Patent number: 8791677
    Abstract: There is provided a power factor correction circuit capable of correcting a power factor of a power converting module through increasing an input current by switching a main switching element of a power converting module on the basis of a first reference wave having a slope based on a first signal and an error voltage, in particular, by limiting a switching frequency on the basis of a first reference wave having a slope based on a second signal lower than a first signal and an error voltage when the switching frequency of the main switching element increases because an input voltage of the power converting module is low.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 29, 2014
    Assignees: Samsung Electro-Mechanics Co., Ltd., University of Seoul Industry Cooperation Foundation
    Inventors: Jeong Mo Yang, Chang Sik Yoo, Yung Jin Moon, Yong Seong Roh, Joong Ho Choi, Jae Shin Lee, Jung Chul Gong, Yu Jin Jang
  • Patent number: 8787052
    Abstract: A power conversion system configured to provide alternating current (AC) power to a transformer is described. The power conversion system includes a power conversion device that includes a device input and a device output. The power conversion device is configured to receive power from a power source at the device input and the device output is configured for coupling to a transformer input. The power conversion system also includes a sensor coupled at a first point of interconnection between the device output and the transformer input and is configured to measure a voltage level at the first point of interconnection. The power conversion system also includes a system controller communicatively coupled to the power conversion device and the sensor. The system controller is configured to determine an impedance of the power grid based at least partially on the voltage level at the first point of interconnection.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 22, 2014
    Assignee: General Electric Company
    Inventors: Kathleen Ann O'Brien, Owen Jannis Schelenz
  • Patent number: 8780593
    Abstract: A power compensation apparatus for a renewable energy system includes a plurality of converter modules positioned between any two phases of a three-phase AC electrical grid, each converter module including a plurality of inverter circuits connected in series. Each inverter circuit includes an energy storage unit for providing a direct current (DC) voltage; a capacitor connected to the energy storage unit; and an H-bridge circuit converting the DC voltage into an alternating current (AC) voltage. The converter modules perform reactive power compensation and active power regulation on the electrical grid in a delta connection. A plurality of converter modules are respectively positioned between any two phases of the electrical grid in a delta connection, so as to keep the voltage of the electrical grid continuously stable when the voltage of the electrical grid fluctuates, and also compensate load current when system load is not balanced.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 15, 2014
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Chang-Yong Wang, Qing Chen
  • Patent number: 8773879
    Abstract: The configurations of a bridgeless PFC circuit system and a controlling method thereof are provided. The proposed system includes a bridgeless PFC circuit including a first bridge arm having a first and a second terminals and a first middle point, a second bridge arm having a first and a second terminals and a second middle point, and a bidirectional switch coupled between the first middle point and the second middle point, and an inductor coupled between the first middle point and an AC power source coupled to the second middle point, and a current sensing circuit including a first current transformer sensing a first current flowing through the bidirectional switch, which having a primary side winding coupled to the bidirectional switch and a first and a second secondary side windings, and a switching device coupled to the two secondary side windings.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: July 8, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Hongjian Gan, Hongyuan Jin, Jianhong Zeng
  • Patent number: 8773873
    Abstract: A power conversion system for providing power to an electrical grid is described. The power conversion system includes a power converter coupled to a power source and the electrical grid. The power conversion system also includes a converter controller coupled to the power converter and configured to control operation of the power converter to actively cancel harmonic current received at the power converter from the electrical grid.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: July 8, 2014
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, David Smith
  • Patent number: 8766604
    Abstract: A switching power supply is provided to supply an AC input voltage. The supply includes a control circuit configured to detect a voltage of the AC power source in a voltage waveform, and switch elements in a synchronous rectification switching mode in synchronization with polarities of the voltage waveform when the AC input voltage is equal to or greater than a predetermined voltage value. The control unit also operates the switching without synchronization with the polarities when the AC input voltage is smaller than the predetermined voltage value.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: July 1, 2014
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Takeki Sugahara, Masao Ueno
  • Patent number: 8766605
    Abstract: A bridgeless PFC (power factor correction) converter with improved efficiency is disclosed. The bridgeless PFC converter comprises: a first input terminal and a second input terminal configured to receive an input AC signal; an output terminal; an inductor set comprising N inductors, wherein a first terminal of each inductor is coupled to the first input terminal; and an output stage comprising (N+1) switching circuits coupled between the output terminal and a ground node.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 1, 2014
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Yuancheng Ren, Bo Zhang, Miao Lei, Junming Zhang, James C Moyer, Eric Yang
  • Publication number: 20140176089
    Abstract: There are provided a phase shift circuit and a power factor correction circuit including the same. The phase shift circuit includes a ramp generation unit charging or discharging a capacitor connected to a switch device to generate a ramp signal, a reference signal generation unit generating a predetermined reference signal from the ramp signal, and a comparison unit comparing the ramp signal with the reference signal to generate a clock signal, wherein at least one of the reference signal generation unit and the comparison unit changes a negative or positive value of offset components included in the reference signal or the ramp signal within every operating period of the switch device.
    Type: Application
    Filed: April 11, 2013
    Publication date: June 26, 2014
    Applicants: University of Seoul Industry Cooperation Foundation, SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Samsung Electro-Mechanics Co., Ltd., University of Seoul Industry Cooperation Foundation
  • Publication number: 20140176088
    Abstract: A distribution transformer power flow controller apparatus includes at least one external source terminal configured to be coupled to a distribution transformer, at least one external load terminal configured to be coupled to a load, and a converter circuit configured to be coupled between the at least one external source terminal and the at least one external load terminal to provide series connection of the converter circuit with the load and to control a power transfer of the distribution transformer. The converter circuit may be configured to control a reactive power transfer of the distribution transformer. The converter circuit may also be configured to control a reactive power transfer and a real power transfer. In some embodiments, the converter circuit may be configured to be coupled to at least one energy storage capacitor, at least one battery and/or at least one power generation device.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GridBridge
    Inventors: Chad Eckhardt, Qin Huang
  • Patent number: 8760128
    Abstract: A three-phase boost-buck PFC converter including three independent single-phase boost-buck PFC circuits respectively is provided, which are capable of performing PFC on each phase of the three-phase power. The single-phase boost-buck PFC circuit is composed of two single-phase boost-buck converters independently working in a positive and a negative half cycle of an input voltage, and the two single-phase boost-buck converters are connected in parallel at an input side, and are connected in series at an output side, and each of the single-phase boost-buck converters is composed of a front-end boost circuit and a back-end buck circuit connected in cascade. Compared to the existing technique, regardless of a boost mode or a buck mode, the conduction loss is effectively reduced, and the whole system efficiency is effectively improved.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 24, 2014
    Assignees: FSP Technology Inc., FSP-Powerland Technology Inc.
    Inventors: Ming Xu, Chuanyun Wang, Peng Mao
  • Patent number: 8755208
    Abstract: In one embodiment, an apparatus for performing power factor correction is provided. A power factor corrector includes an input configured to sense a current from an input circuit. A reference generator generates a current limit based on an input voltage. The current limit reference is dynamically changed based on the input voltage. A control signal generator controls the current in the input circuit based on a comparison of the current and the generated current limit.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: June 17, 2014
    Assignee: Marvell International Ltd.
    Inventors: Sureshkumar Ramalingam, Hong Liang Zhang
  • Patent number: 8749207
    Abstract: Methods and systems for controlling a reactive power contribution to reactive power flowing in an electricity distribution network, so as to optimize this reactive power flow are described. A reactive power characteristic of electrical power flowing in the electricity distribution network is detected at a power device. The reactive power characteristic relates to a reactive power component of electricity flowing in the network. On the basis of the detected reactive power characteristic a reactive power contribution to the electricity distribution network is controlled so as to adjust a value of the detected reactive power characteristic. This enables individual power consumption and/or provision devices to react autonomously to local variations in the electricity distribution network, and to provide a reactive power contribution, to drive the detected reactive power characteristic towards a desired value.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 10, 2014
    Assignee: Reactive Technologies Finland Oy
    Inventor: Heikki Huomo
  • Publication number: 20140152271
    Abstract: There are provided a power factor correction device and a method for controlling power factor correction using the same. The power factor correction device includes a power factor correction circuit and a control circuit. The power factor correction circuit includes first and second inductors connected to an input power source stage and first and second main switches performing a switching operation on the first and second inductors, respectively. The control circuit may provide control signals to the first and second main switches, respectively, and when phase currents flowing in the respective first and second inductors are unbalanced, the control circuit may change a phase of at least one of the first and second main switches to correct an imbalance of the phases.
    Type: Application
    Filed: April 12, 2013
    Publication date: June 5, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: In Wha JEONG, Bum Seok SUH, Kwang Soo KIM
  • Patent number: 8742734
    Abstract: The invention relates to an active filter device for a power supply comprising a source having a source of current iS and a voltage VE, a power converter presenting an input inductor L, a power switch T controlled by a chopper signal and delivering an output voltage VS, and a load, the device being characterized in that it includes an active filter converter (10) for generating at its output a compensation current minus harmonics of the source current due to the chopping, in response to an input signal representative of the chopping of the power converter.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 3, 2014
    Assignees: Centre National de la Recherche Scientifque, Institut National Polytechnique de Lorraine, Universite Henri Poincare
    Inventors: Jean-Philippe Martin, Serge Lionel Pierfederici, Bernard Davat, Farid Meibody-Tabar
  • Patent number: 8736246
    Abstract: A power factor control circuit has a power factor controller that determines if the power factor control circuit is operated at a continuous current mode (CCM) or a discrete current mode (DCM), and outputs PWM signals corresponding to the present current mode. A duty cycle of the PWM signals is equal to a sum of a feed-forward control parameter and a current compensation parameter. The current compensation parameter contains a difference value between a reference current and an inductor current in the power factor control circuit. Accordingly, a switching power supply circuit can acquire the PWM signals corresponding to the present current mode to effectively resolve the issue of harmonic distortion.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 27, 2014
    Assignee: Acbel Polytech Inc.
    Inventors: Chia-An Yeh, Hsiang-Yi Chen
  • Patent number: 8736236
    Abstract: The present invention relates to a master-slave interleaved BCM PFC controller for controlling a PFC circuit with master and slave channels. In one embodiment, the PFC controller can include: a master channel controller that generates a master channel control signal and an inverted master channel control signal; a first phase shifter that provides a first phase shift for the master channel control signal, and generates a delayed opening signal therefrom; a second phase shifter that provides a second phase shift for the inverted master channel control signal, and generates a delayed shutdown signal therefrom; a slave channel controller that receives the delayed opening signal, the delayed shutdown signal, and a slave channel inductor current zero-crossing signal, and generates a slave channel control signal therefrom.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 27, 2014
    Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd.
    Inventors: Liangwei Sun, Qiukai Huang
  • Patent number: 8736237
    Abstract: A power supply controller includes a switching signal generator, a zero crossing detection (ZCD) circuit, first and second logic gates, and an interval generator. The switching signal generator generates a switching signal and the ZCD circuit generates a ZCD signal that pulses each zero-crossing of an ac input voltage. The first logic gate generates a first output when the ZCD signal pulses while the output of the power supply is below a threshold reference. The second logic gate generates a second output when the ZCD signal pulses while the output of the power supply is above the threshold reference. The interval generator is enabled in response to the first output and disabled in response to the second output. The interval generator allows the switching signal to pass through the interval generator to the switch when enabled and does not allow the switching signal to pass when disabled.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 27, 2014
    Assignee: Power Integrations, Inc.
    Inventor: Raymond K. Orr
  • Patent number: 8731498
    Abstract: A direct current (DC)-DC converter and radio frequency (RF) power amplifier (PA) circuitry are disclosed. The DC-DC converter provides an envelope power supply signal to the RF PA circuitry based on a first power supply output control signal. As a temperature of the RF PA circuitry changes, the envelope power supply signal may need to be adjusted to meet temperature compensation requirements of the RF PA circuitry. With adequate thermal coupling between the DC-DC converter and the RF PA circuitry, adjustments to the envelope power supply signal may be based on temperature measurements of the DC-DC converter. A desired correction of the first power supply output control signal is determined based on a measured temperature of the DC-DC converter and the temperature compensation requirements of the RF PA circuitry. The first power supply output control signal is adjusted based on the desired correction.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: May 20, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: William David Southcombe, Brian Baxter, David E. Jones, Chris Levesque, Scott Yoder, Terry J. Stockert
  • Patent number: 8730698
    Abstract: A power conversion controller for controlling the operation of a switch in a power conversion circuit, wherein the power conversion controller is configured to operate the switch according to: a variable frequency mode of operation for switching frequencies greater than a minimum threshold value; and a fixed frequency mode of operation at a switching frequency equal to the minimum threshold value.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 20, 2014
    Assignee: NXP B.V.
    Inventors: Thomas Antonius Duerbaum, Johann Baptist Daniel Kuebrich, Hans Halberstadt, Frans Pansier, Markus Schmid
  • Patent number: 8729870
    Abstract: A current-driven load such as LEDs or laser diodes is driven by a current driver having a two stages (or phases), the outputs of which have ripple which is forced to be out-of-phase with one another. In analog embodiments, an output (ripple or switching) of a master stage hysteresis controller is phase-shifted and scaled, and modulates the input of a slave stage hysteresis controller so that the slave stage pulls into a ripple-canceling phase. In digital embodiments, a faster of the two phases is designated “master”, maximum and minimum thresholds are set, and the slave phase's on time is based on a previous cycle's slave phase ON time, the master stage OFF time and an offset. The slave controller may “lock” to the anti-phase of the master stage (or phase). The ripple currents at the summed output of the master and slave stages substantially cancel.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 20, 2014
    Assignee: Analog Modules, Inc.
    Inventors: Ian D. Crawford, Jeffrey T. Richter, Steven L. Pickles, John A. Harwick, Noal Chandler
  • Publication number: 20140132229
    Abstract: Static synchronous compensator (STATCOM) systems and methods are disclosed. An example STATCOM system includes a reactive component configured for electrical connection to a power network. For example, the reactive component may be a capacitor bank. The system also includes an inductor electrically connected in series with the reactive component. Further, the system includes a converter electrically connected in series with the reactive component and the inductor. A method may include using the static synchronous compensator system to provide one of reactive power and active power to the power network.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 15, 2014
    Inventor: Qin Huang
  • Publication number: 20140132228
    Abstract: A PWM controller detecting temperature and AC line via a single pin and a power converter using the PWM controller, the PWM controller comprising: an output pin for providing a PWM signal; and a dual-function pin for receiving a temperature signal when the PWM signal is at a high level, and for receiving an AC line signal when the PWM signal is at a low level.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Applicant: GRENERGY OPTO INC.
    Inventors: Huang-Chi LIN, Chun-Liang LIN
  • Patent number: 8723487
    Abstract: Circuits and methods relating to the provision of a reactive current to ensure zero voltage switching in a boost power factor correction converter. A simple passive circuit using a series connected inductor and capacitor are coupled between two phases of an interleaved boost PFC converter. The passive circuit takes advantage of the 180° phase-shift between the two phases to provide reactive current for zero voltage switching. A control system for adjusting and controlling the reactive current to ensure ZVS for different loads and line voltages is also provided.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 13, 2014
    Inventors: Majid Pahlevaninezhad, Praveen Jain