Solar Cell Systems Patents (Class 323/906)
  • Patent number: 10256732
    Abstract: A medium voltage direct current (MVDC) collector system for renewable power generation facilities includes at least one renewable energy generation device. The MVDC collector system also includes at least one direct current (DC)-to-DC (DC/DC) power converter coupled to the at least one renewable energy generation device. The at least one DC/DC power converter is configured to shift a switching operation of the DC/DC power converter between full-wave conversion and half-wave conversion. The MVDC collector system further includes at least one controller coupled to the at least one DC/DC power converter. The at least one controller is configured to regulate shifting the switching operation of the at least one DC/DC power converter between full-wave conversion and half-wave conversion.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Rui Zhou, Luis Jose Garces, Ravisekhar Nadimpalli Raju, Ashraf Said Atalla
  • Patent number: 10230249
    Abstract: Provided is a method for charging/discharging a battery pack having an auxiliary charging/discharging device and a battery assembly in which a plurality of secondary battery cell parallel modules, each of which includes a plurality of fasecondary battery cells connected in parallel, are connected in series, the method including, when there is no abnormality in the secondary battery cells during charging/discharging, connecting the auxiliary charging/discharging device in parallel to any of the secondary battery cell parallel modules, and when there is an abnormality in any of the secondary battery cells during charging/discharging, releasing connection to the secondary battery cell at which the abnormality has arisen in the secondary battery cell parallel module including the secondary battery cell at which the abnormality has arisen, and connecting the auxiliary charging/discharging device in parallel to the secondary battery cell parallel module including the secondary battery cell at which the abnormality
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: March 12, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Atsushi Ozawa, Kazuo Nakamura, Shin Hotta, Kentaro Marutani, Shinichi Uesaka
  • Patent number: 10044185
    Abstract: The invention relates to a method for operating a converter in an energy distribution system, wherein, by means of the converter, an electrical energy provided by a source is fed into an AC electricity network at a coupling point (E) or electrical energy is drawn from the AC electricity network at the coupling point (E), wherein the AC electricity network is coupled to further converters for feeding in or drawing electrical energy, wherein the converter has an inverter provided with power switches in order to provide an electrical variable, comprising providing one or a plurality of system state variables indicating a system state of the electricity network, selecting one of a plurality of commutation patterns depending on the one or the plurality of system state variables, and driving the inverter according to the selected commutation pattern.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 7, 2018
    Assignee: ABB Schweiz AG
    Inventors: Christoph Haederli, Marco Thoma, Tobias Thurnherr
  • Patent number: 9970988
    Abstract: A relay abnormality detection device to detect an abnormality of a grid interconnection relay upon switching to grid independent operation and includes an abnormality detector to execute commercial power system voltage for determining whether or not there is a commercial power system voltage, if there is commercial power system voltage through the commercial power system voltage determination, first current determination of abnormality determination as to the specific relay according to whether or not there is an input current to the power conditioner in a state where a contact of the specific relay is controlled to open, and if there is no commercial power system voltage through commercial power system voltage determination, second current determination of abnormality determination as to the specific relay according to whether or not there is an output current from the power conditioner in the state where the contact of the specific relay is controlled to open.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 15, 2018
    Assignee: TABUCHI ELECTRIC CO., LTD.
    Inventors: Chienru Lung, Hideki Hidaka
  • Patent number: 9923481
    Abstract: Provided are a photovoltaic system and a method for controlling a photovoltaic system. The photovoltaic system includes a photovoltaic output device, an inverter device, an AC interface device, a control device and an AC load, where a supply terminal of the AC load is connected to an AC output side of the inverter device, and a control terminal of the AC load is connected to the control device, and the method for controlling the photovoltaic system is applied to the control device. The method for controlling the photovoltaic system includes: controlling the AC interface device to maintain the inverter device being disconnected from an electrical grid; starting the inverter device and then starting the AC load; and controlling the AC interface device to connect the inverter device to the electrical grid, in a case that it is determined that a grid connection condition is met for the photovoltaic system.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 20, 2018
    Assignee: SUNGROW POWER SUPPLY CO., LTD.
    Inventors: Hua Ni, Yanfei Yu, Shangfang Dai, Zongjun Yang, Wei Zhao
  • Patent number: 9876353
    Abstract: The present invention relates to a method (40) for transmitting electrical power between an energy supply grid (16) and an energy consumer (12) or energy producer (12) which is coupled to the energy supply grid (16), wherein at least one electrical variable of the energy supply grid (16) is detected, wherein a discrepancy between the electrical variable and a rated variable of the energy supply grid (16) which is associated with the electrical variable is determined, wherein the power transmission is controlled on the basis of the discrepancy, and wherein the electrical variable is a mains frequency and/or a mains voltage of the energy supply grid (16) and the rated variable is a rated frequency and/or rated voltage of the energy supply grid (16).
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: January 23, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Eckert, Gisbert Krauter, Ian Faye
  • Patent number: 9859782
    Abstract: There is provided a power supply apparatus for power converters which convert power generated by power generators into power to be supplied to a power system. The power supply apparatus includes a photovoltaic power cell for the power converters, the photovoltaic power cells generating power for supplying power of the power converters.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 2, 2018
    Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventor: Eiichi Ikawa
  • Patent number: 9793823
    Abstract: The present invention relates to a controller for a grid tied inverter system with an improved control configuration for increasing response speed of an output current according to specific electric power required. The controller comprises a first control circuit section to output a direct current (DC)-DC converter control signal, and a second control circuit section to output an inverter control signal, wherein the first control circuit section and the second control circuit section are independent of each other without a link for signal input and output therebetween.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: October 17, 2017
    Assignee: LSIS CO., LTD
    Inventor: Ki Su Lee
  • Patent number: 9742263
    Abstract: An automatic equalization method and apparatus for bus bar voltages of a Power Factor Correction (PFC) circuit. The method includes calculating a difference in voltages of a positive bus bar and a negative bus bar, and increasing the rotation speed of a fan in the PFC circuit according to the difference in voltages of the positive bus bar and the negative bus bar until the voltages of the positive and negative bus bars are equalized. The apparatus includes a voltage difference module configured to calculate a difference in voltages of a positive bus bar and a negative bus bar, and a rotation speed control module configured to increase a rotation speed of a fan in the PFC circuit according to the difference in voltages of the positive bus bar and the negative bus bar, until the voltages of the positive and negative bus bars are equalized.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 22, 2017
    Assignee: VERTIV ENERGY SYSTEMS, INC.
    Inventors: Jing Sun, Huajun Lv, Jing Sun
  • Patent number: 9681004
    Abstract: A power injection system (5) for delivering electrical power to one or more communications connections in a network, is responsive to a monitor (54) which measures the amplitude of signals present on the line to control an injector (55) such that it delivers a line voltage which, combined with the measured signal amplitude complies with a predetermined limit for the line.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 13, 2017
    Assignee: BRITISH TELECOMMUNICATIONS public limited company
    Inventors: Nicholas Hector Edwards, Ian Robert Cooper
  • Patent number: 9614430
    Abstract: An inverting apparatus and an AC power system are provided. The inverting apparatus includes an inverting circuit, a detection circuit, and a control circuit. The inverting circuit receives a DC input voltage and converts the DC input voltage into an AC output voltage. The detection circuit samples the AC output voltage and compares the sampled AC output voltage respectively with a first reference voltage and a second reference voltage so as to generate a first indication signal and a second indication signal. The control circuit controls the operation of the inverting circuit. The control circuit determines whether the amplitude of the AC output voltage is located within an operating voltage range during each driving cycles according to the first and the second indication signals, and decides whether to enable an overvoltage protection or an undervoltage protection to control the power conversion of the inverting circuit according to the determination results.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: April 4, 2017
    Assignee: FSP TECHNOLOGY INC.
    Inventors: Han-Wei Chen, Chun-Hao Yu, Chia-Hua Liu
  • Patent number: 9564830
    Abstract: An inverting apparatus and a control method thereof are provided. The inverting apparatus includes an inverting circuit, a detection circuit, and a control circuit. The control circuit is coupled to the inverting circuit and the detection circuit and configured to provide a control signal to control the inverting circuit so as to adjust a voltage value of an input voltage into a command voltage represented by the control signal. The control circuit calculates a voltage difference between the detected input voltage and the command voltage so as to determine whether the voltage difference is greater than a preset value. When determining that the voltage difference is greater than the preset value, the control circuit sets the voltage value of the command voltage as the voltage value of the current input voltage.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: February 7, 2017
    Assignee: FSP TECHNOLOGY INC.
    Inventors: Han-Wei Chen, Chun-Hao Yu, Chia-Hua Liu
  • Patent number: 9515517
    Abstract: The invention relates to a system for the electronic management of a photovoltaic generator, said system comprising a plurality of n static converters (11, 12, 13) connected in parallel, each converter (11, 12, 13) being electrically connected to at least one photovoltaic cell (10) of the generator. The number of converters connected is determined by comparing the generated power to thresholds P1, P2, . . . , Pn-1 which are defined as the power values substantially at the point of intersection of the performance curves for an increasing number of converters. The invention also relates to a generator comprising said system and to the associated control method.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 6, 2016
    Assignees: Total Marketing Services, Centre National De La Recherche Scientifique
    Inventors: Corinne Alonso, Alona Berasategi, Cédric Cabal, Bruno Estibals, Stéphane Petibon, Marc Vermeersch
  • Patent number: 9461551
    Abstract: Systems, methods, and devices for use with photovoltaic micro-inverters. A control system for controlling power switches in a full bridge inverter in a DC/DC converter uses an estimate of the output current of a photovoltaic (PV) panel. The estimate is provided by a current estimator that takes as input the output voltage of the PV panel as well as the bus voltage of the DC/DC converter. Also used as input to the current estimator are two of the control signals for specific power switches in the full bridge inverter in the DC/DC converter.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: October 4, 2016
    Inventors: Majid Pahlevaninezhad, Praveen Jain, Shangzhi Pan
  • Patent number: 9369074
    Abstract: An electric power supply system includes: an AC generator having a drooping characteristic; a rectification section for converting AC output of the AC generator to DC; a load having an electric storage device supplied with power from the AC generator; and a control section provided between the rectification section and the load. The control section controls the AC generator so that the AC generator operates at predetermined voltage lower than output voltage corresponding to the maximum power operation point of the AC generator.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: June 14, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuuya Tanaka, Masaki Yamada, Shigeki Harada, Hiroshi Okuda, Nobuhiro Kihara
  • Patent number: 8995155
    Abstract: A photovoltaic power conditioning system and method is provided. The system includes an isolated DC/DC converter (41), a DC/AC inverter (42), and a sine filter (43). The isolated DC/DC converter (41) receives a DC voltage from a solar cell through a parallel connection structure and converts the DC voltage into another DC voltage and then outputs the converted DC voltage through a series connection structure. The DC/AC inverter (42) converts the DC voltage output from the isolated DC/DC converter into an AC voltage. The sine filter (43) performs sine filtering on the AC voltage output from the DC/AC inverter and outputs the filtered AC voltage. The system employs a topology allowing it to be responsible for part of the output capacity, thereby significantly reducing the required capacity and increasing the system efficiency, so that the system can be applied to small and large-capacity photovoltaic power generation.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 31, 2015
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Byung Duk Min, Dong Wook Yoo, Ju Won Bak, Tae Jin Kim, Jong Hyun Kim, Myung Hyo Ryu, Jong Pil Lee
  • Patent number: 8981738
    Abstract: A solar array system includes at least one solar array and at least one solar array regulator. The solar array regulator has an input port to be connected to the solar array, and an output port to be connected to a power bus. The solar array comprises a switching voltage converter comprising a step-down (PC1) and a step-up (PC2) power cell connected in cascade; and a control circuit for driving said voltage converter in a step-up, a step-down or a direct energy transfer mode, depending on an input control signal and on at least one feedback signal (SILF) indicative of an operating condition of said switching voltage converter; characterized in that said at least one feedback signal (SILF) is indicative of an intensity of an electrical current (IL) flowing between said step-down and said step-up power cells, whereby the control circuit implements an internal current feedback control.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 17, 2015
    Assignee: Agence Spatiale Europeenne
    Inventors: Ferdinando Tonicello, Olivier Mourra
  • Patent number: 8982590
    Abstract: The invention describes a solar generation method by means of a system (1) comprising a set of solar cells (2) connected to an inverter (4) that transmits the energy generated to an electrical network (6), which comprises controlling the active and reactive power that the system (1) transmits to the electrical network (6) by controlling the voltage (Vcell) of the cells (2) and the output current (Iinv) of the inverter (4), such that: in a first mode of operation, the voltage (Vcell) of the cells (2) provides the maximum active power in accordance with the operating conditions; and, in a second mode of operation, the voltage (Vcell) in the cells (2) is different from the voltage that provides the maximum active power, generating an active power that is lower than the maximum, in order to optimise the integration of the solar generation system (1) into the electrical network (6).
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: March 17, 2015
    Assignee: Acciona Energia, S.A.
    Inventors: Elizabeth Giraut Ruso, María A. Padrós Razquin, Carlos Itoiz Beunza
  • Patent number: 8970068
    Abstract: A converter unit configured to couple to a photovoltaic panel (PV) may include a controller to sense an input voltage and input current obtained from the photovoltaic panel, and manage the output voltage of a corresponding power converter coupled to a DC bus to regulate the resultant bus voltage to a point that reduces overall system losses, and removes non-idealities when the panels are series connected. The controller may also perform input voltage management and regulation, including maximum power point tracking (MPPT) for the PV. The controller may probe the bus voltage using a probe waveform generated according to a pseudo-random bit sequence (PRBS), to provide a probe signal that is distinct from the control steps performed by the controller. A PV array may feature a respective converter unit coupled to each PV, with each respective controller using a different and unique seed for generating its PRBS.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Draker, Inc.
    Inventors: Shawn R. McCaslin, Bertrand J. Williams
  • Patent number: 8963531
    Abstract: An output control apparatus of a solar cell is provided with: a first controlling device for sequentially increasing a load for extracting the output from a load in an increase area in which the output increases with respect to an increase in the load; a detecting device for detecting a decrease in the output with respect to the increase in the load in a process of sequentially increasing the load; and a second controlling device for rapidly reducing the load to an initial load which belongs to the increase area in comparison with the process of sequentially increasing the load in cases where a change in the output is detected, the first controlling device sequentially increasing the load again after the load is reduced to the initial load.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: February 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiki Fukada
  • Patent number: 8963518
    Abstract: A system for providing power from solar cells whereby each cell or cell array is allowed to produce its maximum available power and converted by an operatively connected DC/DC converter. Each cell or cell array has its own DC/DC converter. In one form the system includes one or more solar generators wherein each solar generator has one to nine solar cells; a maximum power tracker operatively associated with each solar generator, each maximum power tracker including a buck type DC/DC converter without an output inductor, each maximum power tracker being operatively connected in series with each other; an inductor operatively connected to the series connected maximum power trackers; and means for providing electrical power from the inductor to load means, wherein each maximum power tracker is controlled so that the operatively associated solar generator operates at its maximum power point to extract maximum available power.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 24, 2015
    Assignee: Tigo Energy, Inc.
    Inventor: Peter Wolfs
  • Patent number: 8937827
    Abstract: The plant comprises: a DC-voltage electric power source (3), whose operating conditions vary as a function of at least one uncontrollable quantity, for each value of the uncontrollable quantity the source presenting a characteristic curve of the supplied power as a function of a controlled quantity, wherein each characteristic curve presents a maximum for an optimal value of said controlled quantity; a power conditioning circuit (5); a regulation loop (9) to adjust the controlled quantity maximizing the power supplied by the source when said uncontrollable quantity varies. The regulation loop is de-signed in such a way as to determine whether, for the actual value of said uncontrollable quantity, the actual value of the controlled quantity (V.in) is greater or lower than the optimal value and to generate a regulation signal (V.in-REF) to modify the actual value of the controlled quantity towards the optimal value.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: January 20, 2015
    Assignee: Power-One Italy S.p.A.
    Inventors: Sauro Macerini, David Martini, Silvio Scaletti
  • Patent number: 8928304
    Abstract: Disclosed herein is a solar cell system including: a solar cell; a load controller connected to the solar cell, the load controller being capable of controlling a load applied to the solar cell; an output measuring unit for measuring a power generation output of the solar cell; and an output predicting unit for predicting a value to be reached by the output on a basis of transient response of the output measured by the output measuring unit, wherein the solar cell system has a function of controlling the load controller so as to maximize the value to be reached.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventor: Jusuke Shimura
  • Patent number: 8908404
    Abstract: In a light power generation system, a control device, a control method, and a program, efficient power can be supplied. The maximum power detection unit operates a MOSFET in a power converter circuit and open-circuits both ends of a solar cell panel in the maximum power detection mode. After that, the maximum power detection unit short-circuits both ends of the solar cell panel, detects a maximum power by monitoring the output power of the solar cell panel during a period from the open state to the short-circuited state, and defines the voltage of the solar cell panel as an optimal voltage when detecting the maximum power. In a tracking operation mode, the control unit performs PWM control with respect to the MOSFET by defining the optimal voltage to be a reference signal. Operations are repeated between the maximum power detection mode and the tracking operation mode.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: December 9, 2014
    Assignee: School Judicial Person Ikutokugakuen
    Inventor: Kazutaka Itako
  • Patent number: 8901411
    Abstract: A photovoltaic (PV) control system generates a power output rate control signal based on a monitored rate of change of collective power output generated via a plurality of PV subsystems and a desired collective output power change rate for the plurality of PV subsystems and communicates the power output rate control signal to the plurality of PV subsystems to control a rate of change of one or more operating parameters of individual PV subsystems in order to control a rate of change of collective output power of the plurality of solar PV subsystems.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Yan Liu, Luis Jose Garces, Sumit Bose
  • Patent number: 8880229
    Abstract: Disclosed here is a grid-interactive photovoltaic generation system having power quality improvement and power saving functions. The grid-interactive photovoltaic generation system includes a solar cell array, a first inverter, and a second inverter. The solar cell array receives solar light and generates predetermined power. The first inverter converts the power, generated by the solar cell array, into power required by a grid line. The second inverter is connected to the first inverter, and steps down power, which will be supplied to a load, to an appropriate voltage.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: November 4, 2014
    Assignee: Kunsan National University Industry-Academy Cooperation Foundation
    Inventor: Seong Ryong Lee
  • Patent number: 8872083
    Abstract: A back sheet comprises an interconnect circuit coupling a plurality of solar cell tiles. A tiled solar cell, comprising a solar cell and encapsulating and glass layers, is inserted into the solar cell tiles. Each solar cell is individually addressable through the use of the interconnect circuit, The interconnect circuit is programmable and allows for dynamic interconnect routing between solar cells. As such, the dynamic interconnect routing may be configured so as to create strings of solar cells such that solar cells with an output specification are matched to solar cells with similar output specifications.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 28, 2014
    Assignee: Saful Consulting
    Inventor: Nagendra Srinivas Cherukupalli
  • Patent number: 8866465
    Abstract: A solar cell regulator in a nanosatellite includes a pulse width modulated DC-DC boost converter and a peak power tracking controller for converting solar cell power to bus power for charging of system batteries and powering loads while the controller controls the pulse width modulation operation of the converter for sensing solar cell currents and voltages along a power characteristic curve of the solar cell for peak power tracking, for determining any power data point, including a peak power point, an open circuit voltage point, and a short circuit current point along the power characteristic curve of the solar cell, and for communicating the power data to a satellite processor for monitoring the performance of the solar cell during operational use of the satellite.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: October 21, 2014
    Assignee: The Aerospace Corporation
    Inventors: Edward J. Simburger, Daniel L. Rumsey, Peter J. Carian, James S. Swenson, Jr.
  • Patent number: 8856576
    Abstract: A method and system for managing computational workload in a computerized system powered by an energy source. This invention relies first and foremost on adapting computational workload at the computerized system according to a time-varying property of the power supplied by the energy source, such that power generated at the source is optimized. A feedback mechanism is accordingly implemented which changes power available for computation, e.g., to track a more efficient energy generation efficiency point at the source.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventor: Phillip Stanley-Marbell
  • Patent number: 8854027
    Abstract: A control circuit controls a power output module and drives a load device. The control circuit includes a conversion unit, a feed-forward unit, a feedback unit and a control unit. The conversion unit generates a driving signal according to an output signal of the power output module for driving the load device. The feed-forward unit generates a duty cycle reference signal according to the output signal. The feedback unit generates a feedback signal according to the driving signal. The control unit outputs a control signal to control the conversion unit according to the duty cycle reference signal and feedback signal, thereby limiting the output power of the power output module within the maximum power region. A tracking method of the maximum power is also disclosed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 7, 2014
    Assignee: National Cheng Kung University
    Inventors: Ray-Lee Lin, Ming-Ching Chou
  • Patent number: 8842456
    Abstract: An analog controller is disclosed. The controller has a maximum power point tracking unit and a power factor adjusting unit. The maximum power point tracking unit generates a maximum power tracking voltage which is used to control the magnitude of the output current of the inverter so as to extract the most available power from the power generating device. The power factor adjusting unit, which generates a ramp control voltage that will further determine the duty ratio and switching frequency of PWM signal, gracefully tunes the magnitude and reduces the total harmonic distortion of the current injected from inverter into utility grid.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: September 23, 2014
    Assignee: National Cheng Kung University
    Inventors: Yeong-chau Kuo, Wen-chuen Liu, Tai-haur Kuo
  • Patent number: 8837177
    Abstract: An electric generating system using a solar cell improves the quality of output power by including a converter for converting an output voltage generated from the solar cell into DC voltage in a pulse shape. An inverter converts the DC voltage in the pulse shape into an AC voltage and applies the AC voltage to a power system and a control device for determining whether an erroneous operation of the electric generating system using the solar cell is generated or not based on an output voltage of the solar cell, an output current of the solar cell and a voltage of the power system. At least one inverter switching device among a plurality of inverter switching devices performs a switching at a frequency higher than a frequency during a normal operation at an interval where the erroneous operation is generated.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: September 16, 2014
    Assignees: Samsung Electro-Mechanics Co., Ltd., Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Tae Won Lee, Yong Hyok Ji, Young Ho Kim, Doo Young Song, Min Ho Heo, Tae Hoon Kim, Se Ho Lee, Chung Yuen Won
  • Patent number: 8837182
    Abstract: An apparatus for tracking a maximum power point includes a converter unit for converting a first power, outputted from a solar cell module, into a second power and a maximum power point control unit for searching for a maximum power point voltage and an open-circuit voltage corresponding to a temperature and solar radiation of the solar cell module, decreasing voltage of the first power from the open-circuit voltage to the maximum power point voltage in a soft-start manner, and then performing Maximum Power Point Tracking (MPPT) control according to a Perturbation and Observation (P&O) algorithm.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: September 16, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Byeong-Seon Min
  • Patent number: 8823315
    Abstract: A portable self-contained photovoltaic device is provided with a hollow cylindrical support in two substantially coaxial portions assembled to one another. The device further includes a rolled flexible photovoltaic collector and a battery mounted in the first portion of the coaxial portions and designed to store electric energy produced by the photovoltaic collector. An electronic control circuit is mounted in the first portion for managing the charging of the battery. Several LED lamps are stored inside the photovoltaic collector and placed inside the second portion of the coaxial portions.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 2, 2014
    Inventor: Daniele Oppizzi
  • Patent number: 8817492
    Abstract: A DC/DC converter includes two input terminals for a DC input voltage, two output terminals for a DC output voltage, an inverter converting a DC voltage into an AC voltage, and a rectifier converting an AC voltage from the inverter into a DC voltage between a first one of the input terminals and a first one of the output terminals. At least one galvanically isolating element is arranged between the output of the inverter and the input of the rectifier, and a capacitance is coupled between the output terminals. The inverter converts a partial DC voltage, being smaller than the full DC input voltage, across a capacitance between the second one of the input terminals and the second one of the output terminals.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: August 26, 2014
    Assignee: SMA Solar Technology AG
    Inventors: Klaus Rigbers, Carsten Althof, Frank Papenfuss
  • Patent number: 8816667
    Abstract: A maximum power point tracking method is provided. The method includes temporarily determining a next voltage command using voltage and power measured at current and previous time points. When an increase or decrease in voltage command is continued predetermined times or more, it is decided that the next voltage command temporarily determined to be increased is decreased or that the next voltage command temporarily determined to be decreased is increased. The output voltage of a solar cell is regulated based on the decided next voltage command.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 26, 2014
    Assignee: LS Industrial Systems Co., Ltd.
    Inventor: Ki su Lee
  • Patent number: 8810213
    Abstract: A power control method for tracking a Maximum Power Point (MPP) in a photovoltaic system including a solar cell and a boost converter. The power control method includes finding the MPP by applying a continuous ON/OFF signal to the boost converter as a first control signal for controlling a duty ratio of the boost converter, and maintaining an operating point of the photovoltaic system at the MPP by applying a second control signal for controlling the duty ratio to the boost converter depending on a constant-voltage command. In tracking an MPP in a photovoltaic system, an MPPT algorithm may remain at the MPP, without self oscillation, improving fast dynamic characteristics upon a change in solar radiation.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Yong-Woo Kim, Sang-Keun Ji, Sung-Soo Hong, Chung-Wook Roh, Sang-Kyoo Han
  • Patent number: 8805629
    Abstract: A maximum-power-point tracking device is provided for a solar electric-generation system that includes a solar battery and a DC/DC converter connected to the solar battery. The device includes a sampling module configured to detect output current and voltage values of the solar battery. A controlling module is configured to calculate a target current value according to the output current and voltage values and a preset current value, and output a controlling signal for controlling the value of a current according to the output current of the solar battery and the target current value. The device also includes a driving module configured to receive the controlling signal from the controlling module and output a driving signal to adjust a output current value of the DC/DC converter to close to the target current value and adjust an output power of the DC/DC converter.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: August 12, 2014
    Assignee: BYD Company Limited
    Inventors: Shaowen Yin, Xiang Zhang, Rongchun Yang
  • Patent number: 8804390
    Abstract: The invention relates to a process of connecting an AC output of a transformerless inverter of a solar power plant to an internal AC power grid at an input side of a galvanic isolation, while an offset voltage for shifting a potential center point of a photovoltaic generator connected to the inverter is applied. The process includes: (i) synchronizing the inverter with the power grid; (ii) essentially matching a potential center point of the current-carrying lines of the AC output and a potential center point of the power grid, while only one of the potential center points of the current-carrying lines and the power grid is yet shifted by the offset voltage; and (iii) galvanically connecting all current-carrying lines of the AC output with the power grid only after the steps of synchronizing and essentially matching.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: August 12, 2014
    Assignee: SMA Solar Technology AG
    Inventors: Stephanie Coors, Tobias Mueller, Oliver Prior
  • Patent number: 8787052
    Abstract: A power conversion system configured to provide alternating current (AC) power to a transformer is described. The power conversion system includes a power conversion device that includes a device input and a device output. The power conversion device is configured to receive power from a power source at the device input and the device output is configured for coupling to a transformer input. The power conversion system also includes a sensor coupled at a first point of interconnection between the device output and the transformer input and is configured to measure a voltage level at the first point of interconnection. The power conversion system also includes a system controller communicatively coupled to the power conversion device and the sensor. The system controller is configured to determine an impedance of the power grid based at least partially on the voltage level at the first point of interconnection.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 22, 2014
    Assignee: General Electric Company
    Inventors: Kathleen Ann O'Brien, Owen Jannis Schelenz
  • Patent number: 8780592
    Abstract: Various enhancements to grid-interactive inverters in accordance with embodiments of the invention are disclosed. One embodiment includes input terminals configured to receive a direct current, output terminals configured to provide an alternating output current to the utility grid, a controller, an output current sensor, and a DC-AC inverter stage comprising a plurality of switches controlled by control signals generated by the controller. In addition, the controller is configured to: generate control signals that cause the switches in the DC-AC inverter stage to switch a direct current in a bidirectional manner; measure the alternating output current; perform frequency decomposition of the output current; and generate control signals that cause the switches in the DC-AC inverter stage to switch current in a way that the magnitude of a plurality of unwanted current components is subtracted from the resulting output current.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 15, 2014
    Assignee: Chilicon Power, LLC
    Inventors: Christopher Richard Jones, Alexandre Rudolf Kral
  • Patent number: 8773156
    Abstract: Methods for measuring insulation resistance in a photovoltaic (PV) array may include partitioning the PV array into groups of PV panels, isolating a group of PV panels selected for an insulation resistance measurement from other groups of panels by setting bypass selectors on each PV panel in the PV array, and making an insulation resistance measurement for the selected group. If a measured value of insulation resistance for a selected group corresponds to an insulation problem in a PV array component, a separate measurement of insulation resistance may be made for each PV panel in the selected group. Insulation resistance measurements may be made accurately and rapidly for large PV arrays without disconnecting and reconnecting cables between panels. Measurements may be made at frequent, regular intervals to permit changes in insulation resistance to be detected before damage from dielectric breakdown occurs.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: July 8, 2014
    Assignee: Applied Core Technologies, Inc.
    Inventors: Shinichi Takada, Toru Takehara
  • Patent number: 8754627
    Abstract: A method for tracking a power point for a power source includes calculating voltage and current errors for the power source, selecting either the voltage error or the current error, and controlling the power converter with a first control loop in response to the selected error. The voltage and current errors may be calculated in response to voltage and current targets, respectively, which may be calculated by a second control loop that implements an MPPT algorithm. The second control loop may calculate the voltage and current targets in response to which error the first control loop selects. A method for tracking a power point for a power source having multiple local power maxima includes measuring the individual voltage across one or more series-connected power elements in the power source, and controlling the power in response to the overall voltage and current as well as the individual voltage.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 17, 2014
    Assignee: SolarBridge Technologies, Inc.
    Inventor: Triet Tu Le
  • Patent number: 8749218
    Abstract: A control circuit according to an embodiment of the present invention for a DC-DC converter which has an input, an output and a series connection of a differentiator, a comparator unit, and an integrator. The series connection is coupled in between the input and the output. The comparator unit has an inverting amplifier.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Loreto Mateu, Markus Pollak, Peter Spies
  • Patent number: 8749395
    Abstract: A method and apparatus for indicating a disconnection within a Distributed Generator (DG). In one embodiment, the apparatus comprises an alarm module electrically coupled to a conductive portion of a component within the DG, wherein the conductive portion is grounded via a ground rod system, and wherein the alarm module (i) is further coupled to a ground line, (ii) couples a monitoring current to the conductive portion, (iii) monitors flow of the monitoring current to determine a change in the flow, and (iv) generates, as a result of the change in the flow, a notification of the disconnection.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: June 10, 2014
    Assignee: Enphase Energy, Inc.
    Inventors: Martin Fornage, Raghuveer R. Belur
  • Patent number: 8750003
    Abstract: The present invention provides a DC to AC converter including a device enabling separation of electric current into a positive portion of the circuit and a negative portion of the circuit, each portion of the circuit including an electronic switch, wherein one portion of the circuit is adapted to produce a wave form in a positive half cycle, the second portion of the circuit is adapted to produce a wave form in a negative half cycle, the voltage of the output current is fed to a polarity switch as feedback to change the polarity, and wherein the carrier duty cycle is adapted to change from 0 to 100 percent in each polarity.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 10, 2014
    Inventor: Shlomo Ran Bet Esh
  • Patent number: 8716891
    Abstract: A grid-connected energy storage system capable of increasing the efficiency of a converter and a method of controlling the system are disclosed. In one aspect, the system includes a plurality of converters for converting power generated by each of the plurality of power generation modules into DC power at a voltage level, a plurality of series switches connected to the plurality of power generation modules, and a plurality of parallel switches configured to selectively connect each of the power generation modules to each and every other of the power generation modules. The system also includes a controller configured to control the switches in order to selectively connect each of the power generation modules to at least one selected converter.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 6, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Loo-Ney Choi
  • Patent number: 8704499
    Abstract: A method and apparatus of tracking the maximum power point of a photovoltaic module. The method includes measuring an output voltage of the photovoltaic module, determining an output voltage of the inverter connected to the photovoltaic module, and measuring output current of the inverter connected to the photovoltaic module. A variable relating to energy of the capacitor is defined using the measured PV module output voltage, and a second harmonic component is extracted from the defined variable. A second harmonic component of the module output power is estimated using the defined variable, measured output current of the inverter, and the determined output voltage of the inverter. The estimated and extracted second harmonic components are multiplied, and a DC component is extracted from the product. A control signal for controlling the inverter connected to the photovoltaic module is formed by using the extracted DC component in a PI algorithm.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: ABB Research Ltd.
    Inventors: Gerardo Escobar, Tuomas Pulli, Matti Karppanen
  • Patent number: 8693228
    Abstract: A power transfer system provides power factor conditioning of the generated power. Power is received from a local power source, converted to usable AC power, and the power factor is conditioned to a desired value. The desired value may be a power factor at or near unity, or the desired power factor may be in response to conditions of the power grid, a tariff established, and/or determinations made remotely to the local power source. Many sources and power transfer systems can be put together and controlled as a power source farm to deliver power to the grid having a specific power factor characteristic. The farm may be a grouping of multiple local customer premises. AC power can also be conditioned prior to use by an AC to DC power supply for more efficient DC power conversion.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 8, 2014
    Inventors: Stefan Matan, William B. Westbrock, Jr., Fred C. Horton, Joseph M. Klemm, Frank P. Marrone, Arnold F. McKinley, Kurt W. Wiseman
  • Patent number: 8680838
    Abstract: A method of controlling a photovoltaic system includes providing a photovoltaic device having a variable DC voltage output and a variable DC current output. The photovoltaic device has a combination of a voltage output level and a current output level corresponding to a maximum power point. A DC power supply is connected in a parallel and/or series combination with the photovoltaic device. A DC load is connected in series to the combination of the DC power supply and the photovoltaic device such that the load is powered by the combination. A characteristic of the DC power supply is adjusted such that the voltage output and the current output of the photovoltaic device substantially match the voltage output level and the current output level corresponding to the maximum power point or other desired power point.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: March 25, 2014
    Assignee: Robert Bosch GmbH
    Inventor: John Charles Saussele