Polarizing Field Magnet Patents (Class 324/319)
  • Patent number: 11041924
    Abstract: A method for determining a spoiler gradient of a magnetic resonance (MR) system is provided. At least one shim parameter that defines a shim magnetic field for compensating for B0 magnetic field inhomogeneities in a measurement volume of the MR system is received. As a function of the at least one shim parameter, at least one spoiler parameter that defines a spoiler gradient for canceling out a transverse magnetization is determined. The spoiler gradient is applied together with the shim magnetic field in a measurement of the MR system.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 22, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Uwe Böttcher
  • Patent number: 11002811
    Abstract: Provided are a magnetic resonance imaging device and a superconducting magnet capable of preventing generation of eddy currents accompanying vibration of a radiation shield and of reducing image quality deterioration. The superconducting magnet for a magnetic resonance imaging device includes a substantially cylindrical vacuum vessel, a substantially cylindrical radiation shield that is provided inside the vacuum vessel, and a superconducting coil that is provided inside the radiation shield. The radiation shield has an inner cylinder located radially inward of the superconducting coil. The inner cylinder of the radiation shield is provided with an annular rib formed in a circumferential direction about the central axis of the inner cylinder.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 11, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Yukinobu Imamura, Akira Kurome, Shin Hoshino, Takeshi Yatsuo, Takuya Fujikawa
  • Patent number: 10962614
    Abstract: A state space controller includes an integral part configured to integrate a control deviation, wherein the control deviation indicates a difference between a digital value of a gradient coil current and a reference current; a delay compensator configured to generate a digital control amount according to the integrated control deviation by the integral part, and generated a pulse-width modulation drive signal according to the digital control amount, and includes a subtractor of which a non-inverting input terminal is connected to an output terminal of the integral part, a delayer configured to delay the digital control amount by one calculation cycle, and a first feedback loop configured to delay the digital control amount by one calculation cycle and multiply a first compensation coefficient to obtain a first compensation amount, wherein the first compensation amount is input into a first inverting input terminal of the subtractor.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: March 30, 2021
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Gong Cheng, Qin Xu
  • Patent number: 10960229
    Abstract: The present disclosure relates to a system and a method. The system may include a magnetic resonance imaging (MRI) apparatus configured to acquire MRI data with respect to a region of interest (ROI) and a therapeutic apparatus configured to apply therapeutic radiation to at least one portion of the ROI. The MRI apparatus may include a plurality of main magnetic coils arranged coaxially along an axis, a plurality of shielding magnetic coils arranged coaxially along the axis, and a cryostat in which the plurality of main magnetic coils and the plurality of shielding magnetic coils are arranged.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 30, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Cheng Ni, Xingen Yu, Yanfang Liu, Jingjie Zhou, Jianfeng Liu, Li Wang, Peng Wang, Yangyang Zhang
  • Patent number: 10890637
    Abstract: A gradient coil for magnetic resonance imaging has at least two conductors that are independent of one another, designed to jointly generate a magnetic field gradient and a magnetic field of a higher order in the examination region of a magnetic resonance scanner.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: January 12, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Sascha Fath, Andreas Krug
  • Patent number: 10877117
    Abstract: Methods, devices and systems for providing a high-precision and fast changing driving current for a gradient coil to generate a gradient magnetic field to acquire a high-quality image in an MRI device are provided. An example gradient amplifier includes a controller, a power amplifying circuit and a filtering circuit. The controller is configured to output pulse signals. The power amplifying circuit includes a first H bridge circuit and a second H bridge circuit and is configured to perform power conversion on an input power supply according to the pulse signals to output a driving current to a gradient coil. The filtering circuit is configured to filter the driving current output by the power amplifying circuit. A phase difference between the pulse signals output by the controller to drive switching tubes on a same position in the first H bridge circuit and the second H bridge circuit is a particular degree.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: December 29, 2020
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventor: Hongju Zhao
  • Patent number: 10852375
    Abstract: A magnetic resonance imaging configuration and methodology to straighten and otherwise homogenize the field lines in the imaging portion, creating improved image quality. Through use of calibrated corrective coils, magnetic field lines can be manipulated to improve uniformity and image quality. Additionally, when the apparatus is composed of non-ferromagnetic materials, field strengths can be increased to overcome limitations of Iron-based systems such as by use of superconductivity. A patient positioning apparatus and methodology allows multi-positioning of a patient within the calibrated and more uniform magnetic field lines.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 1, 2020
    Assignee: FONAR Corporation
    Inventors: Raymond V. Damadian, Gordon T. Danby, Hank Hsieh, John W. Jackson, Mark Gelbien, William H. Wahl, Charles A. Green
  • Patent number: 10830858
    Abstract: Methods, systems, and computer-readable storage mediums for correcting time in a nuclear magnetic resonance device are provided. In one aspect, a method includes obtaining respective transmission time delays of three gradient pulse signals that are generated by a three-dimensional gradient subsystem of the nuclear magnetic resonance device and include a slice-selection gradient signal, a phase-encoding gradient signal, and a frequency-encoding gradient signal, determining a time correction value according to the obtained respective transmission time delays of the three gradient pulse signals, and correcting a respective output time of each of the three gradient pulse signals, an output time of a radio-frequency (RF) pulse signal generated by a RF transmitting subsystem of the nuclear magnetic resonance device, and a reception time of a magnetic resonance signal received by a RF receiving subsystem in a scanning cycle according to the determined time correction value.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 10, 2020
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Jianhua Shi, Qin Xu, Rong Sun, Haiquan Li, Yan Wang, Lin Wu, Junwei Shang
  • Patent number: 10809334
    Abstract: A method is provided for performing NMR spectroscopy. The method comprises positioning a sample in a homogeneous stationary magnetic field directed along an axis, preparing nuclei in at least a predetermined volume of the sample for resonant emission of an NMR signal and creating this NMR signal. This comprises irradiating the sample with at least one RF excitation pulse in accordance with an MRI sequence preparation and/or evolution module. The method also comprises sensing the NMR signal in the absence of frequency encoding magnetic field gradients such that analysis of the NMR signal yields a chemical shift spectrum from the nuclei. During this sensing, a plurality of intermittently blipped phase gradient pulses are applied to incrementally shift a position in k-space such that different time segments of the NMR signal, demarcated by the blipped phase gradient pulses, correspond to different predetermined locations in k-space.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 20, 2020
    Assignee: UNIVERSITEIT GENT
    Inventors: Hacene Serrai, Eric Achten, Sourav Bhaduri
  • Patent number: 10794974
    Abstract: A method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 6, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Cedric Hugon, Michael Stephen Poole, Tyler S. Ralston
  • Patent number: 10677865
    Abstract: The present disclosure relates to a magnetic resonance imaging device and shimming methods on the magnetic resonance imaging device. The magnetic resonance imaging device includes a main magnet, gradient coils, a vacuum enclosure, and a shimming conduit. The vacuum enclosure is configured to house at least part of the shimming conduit. The vacuum enclosure and at least part of the shimming conduit defines a hermetically sealed space configured to house the gradient coils. The shimming conduit has at least one opening configured to allow for access to an interior of the shimming conduit. The interior of the shimming conduit is hermetically insulated from the hermetically sealed space.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 9, 2020
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Xingen Yu, Yong Liu, Shuguang Liu, Jiwen Yang, Tao Wang, Baogang Peng, Man Fan, Lifeng Wang
  • Patent number: 10661098
    Abstract: A magnetic resonance apparatus which includes: a body portion (102) having a cavity (106) with a first and second ends and at least one opening situated at one of the first and second ends. The cavity may define a longitudinal axis (LA) extending between the first and second ends. At least one main magnet may generate a main magnetic field having a substantially homogenous magnetic field within the cavity. A center shim (CS) which may be formed from a ring having opposed edges (131) and which may extend along a length of the longitudinal axis of the cavity. One or more discrete shims (DSs) may be situated between the CS and at least one of the first and second ends.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: May 26, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jeffrey Edward Leach, Philip Alexander Johas, Johannes Adrianus Overweg, Viktor Mokhnatyuk
  • Patent number: 10656221
    Abstract: A drive circuit of a radio-frequency (RF) transmitting coil and a magnetic resonance imaging (MRI) device are provided. According to an example, the drive circuit includes a controller, a digital-to-analogue converter (DAC) coupled with the controller, a RF amplifier coupled with the DAC, a power divider coupled with the RF amplifier, and a plurality of phase shifters respectively coupled with at least three output ports of the power divider.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 19, 2020
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventor: Qin Xu
  • Patent number: 10656223
    Abstract: A magnetic field generation apparatus includes a main coil and a variable-current correction coil. The main coil is formed by winding a ReBCO-based superconductive wire rod and generates a magnetic field in a measurement space. The variable-current correction coil is variable in a value of a current, coaxial with the main coil and disposed inside the main coil, and generates a magnetic field which corrects a uniformity of the magnetic field generated by the main coil.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: May 19, 2020
    Assignee: JAPAN SUPERCONDUCTOR TECHNOLOGY, INC.
    Inventors: Mamoru Hamada, Hideaki Maeda, Yoshinori Yanagisawa, Hideki Nakagome
  • Patent number: 10649050
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 12, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10641852
    Abstract: A low-field MRI system comprising: a magnetics system having a plurality of magnetics components configured to produce magnetic fields for MR imaging. The magnetics system comprises: a B0 magnet configured to produce a B0 field at a field strength of less than 0.2 Tesla (T); a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted MR signals; and at least one RF coil configured to, when operated, transmit RF signals to a field of view of the MIR system and to respond to MR signals emitted from the field of view. The MRI system comprises a power system comprising one or more power components configured to provide power to the magnetics system to operate the MRI system to perform image acquisition, wherein the power system operates the MRI system using an average of less than 5 kilowatts during image acquisition.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: May 5, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10613168
    Abstract: A method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. In addition, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 7, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Cedric Hugon, Michael Stephen Poole, Tyler S. Ralston
  • Patent number: 10607774
    Abstract: A cylindrical superconducting magnet coil structure has superconducting coils and spacers bonded together at joints to form a self-supporting structure. A layer of additional material is provided, overlaying a joint and extending onto an adjacent regions of a spacer and a coil.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 31, 2020
    Assignee: Siemens Healthcare Limited
    Inventor: Jonathan Noys
  • Patent number: 10564239
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: February 18, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Christopher Thomas McNulty
  • Patent number: 10520566
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: December 31, 2019
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10488478
    Abstract: A method and a magnetic resonance apparatus compensate for inhomogeneities in a magnetic field generated by the magnetic resonance apparatus with a shim coil of the magnetic resonance apparatus. The shim coil is arranged at an object under investigation. A position and an orientation of the shim coil are automatically determined. The inhomogeneities of the magnetic field are determined. The inhomogeneities are compensated for via the shim coil depending on the position and the orientation of the shim coil.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 26, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stephan Biber, Daniel Driemel, Katharina Hesels, Ralf Ladeback, Jörg Rothard
  • Patent number: 10429465
    Abstract: In a method and magnetic resonance apparatus for determining a shim setting in order to increase a homogeneity of the basic magnetic field of the scanner of the apparatus by operating a shim element, information is obtained concerning the dependence of an induced field of the shim element on a set shim setting. A first field map is recorded and a first shim setting for the shim element is determined based on the first field map. A second field map is recorded while the shim element is driven with the first shim setting. A field induced by the shim element by the first shim setting is determined based on the first field map and the second field map. A second shim setting for the shim element is determined based on the determined induced field and the acquired information.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 1, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Ralf Ladebeck, Daniel Niederloehner, Johann Sukkau
  • Patent number: 10393836
    Abstract: Active resistive shim coil assemblies may be used in magnetic resonance imaging (MRI) systems to reduce in-homogeneity of the magnetic field in the imaging volume. Disclosed embodiments may be used with continuous systems, gapped cylindrical systems, or vertically gapped systems. Disclosed embodiments may also be used with an open MRI system and can be used with an instrument placed in the gap of the MRI system. An exemplary embodiment of the active resistive shim coil assembly of the present disclosure includes active resistive shim coils each operable to be energized by separate currents through a plurality of power channels. In some embodiments, the disclosed active resistive shim coil assemblies allow for various degrees of freedom to shim out field in-homogeneity.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 27, 2019
    Assignee: ViewRay Technologies, Inc.
    Inventors: Shmaryu M. Shvartsman, James F. Dempsey
  • Patent number: 10371773
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 6, 2019
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10365049
    Abstract: A passive thermal diode (10), comprising: a heat source (12); a heat sink (14); a thermal coupling element (16) removably coupled to the heat source (12) and the heat sink (14); a lever (18), the lever (18) connected to the thermal coupling element (16) via a pivot point (19); and at least one spring (20) connected to the lever (18), the spring (20) comprised of a shape memory alloy, wherein the lever (18) transmits a force to displace the thermal coupling element (16) when the force is produced by the spring (20) on the lever (18).
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: July 30, 2019
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Chi Yan Tso, Christopher Yu Hang Chao
  • Patent number: 10353030
    Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system, the apparatus comprising: at least one permanent B0 magnet to produce a magnetic field to contribute to the B0 magnetic field for the magnetic resonance imaging system, the at least one permanent B0 magnet comprising a plurality of permanent magnet rings, each of the plurality of permanent magnet rings comprising a plurality of permanent magnet segments having a respective height in a direction normal to the respective permanent magnet ring, wherein the height of at least one first permanent magnet segment is different than the height of at least one second permanent magnet segment, and wherein the at least one first permanent magnet segment and the at least one second permanent magnet are in different ones of the plurality of permanent magnet rings.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: July 16, 2019
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon
  • Patent number: 10295645
    Abstract: A method and a system for measuring and calibrating an imaging magnetic field in a magnetic resonance apparatus are provided. The method includes: providing the imaging magnetic field, where the imaging magnetic field is adapted for scanning an object; sampling a signal corresponding to the imaging magnetic field; processing the signal to obtain an actual magnetic field intensity; and calibrating based on a difference between the actual magnetic field intensity and a target magnetic field intensity. The system includes: a magnetic component, adapted for scanning an object to be imaged; a sampling unit, adapted for sampling a signal corresponding to the imaging magnetic field; a processing unit, adapted for processing the signal to obtain an actual magnetic field intensity; a calibration unit, adapted for calibrating based on a difference between the actual magnetic field intensity and a target magnetic field intensity; and a control unit, adapted for controlling the system.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 21, 2019
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Kunyu Tsai, Weiguo Zhang, Qiang Zhang
  • Patent number: 10228431
    Abstract: A gradient coil for a magnetic resonance imaging system has a primary coil set in a cylindrical shape, a secondary coil set cylindrically sheathed on an outer periphery of the primary coil set, and one or more support structures located on the outer periphery of the primary coil set to support the secondary coil set in a radial direction of the gradient coil. This gradient coil can reduce the costs of filling material, reduce the time for assembling the gradient coil, and reduce the risk of breaking the gradient coil during demolding from a shimming mold.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 12, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Wei Ping Peng
  • Patent number: 10224135
    Abstract: A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 5, 2019
    Assignee: ASPECT IMAGING LTD.
    Inventors: Uri Rapoport, Yair Goldfarb, Yoram Cohen
  • Patent number: 10180472
    Abstract: A method of configuring a conducting grid of elements interconnected at intersecting nodes by switches is described.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: January 15, 2019
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) Inc.
    Inventors: Chad Tyler Harris, Alexander Gyles Panther, Stephen B. E. McFadyen
  • Patent number: 10175324
    Abstract: In a magnetic resonance (MR) imaging apparatus and control method therefor, multiple frequency spectra of a material of the examination object are detected using at least one radio-frequency coil of and MR scanner, the coil having a number of coil elements and at least two of the frequency spectra are detected individually detected by respective, different coil elements. A number of resonant frequencies of at least one molecule in the material are established in the number of frequency spectra. Control information is formulated based on the number of resonant frequencies. The magnetic resonance scanner is controlled using the control information.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: January 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Simon Bauer, Swen Campagna, Uvo Hoelscher, Daniel Niederloehner, Dominik Paul
  • Patent number: 10175327
    Abstract: In an image reconstruction method and device for a magnetic resonance imaging system, a magnetic resonance scan is performed at least one scan position according to at least one scan protocol, to acquire at least a set of one scan protocol simultaneously acquired data. At least one magnetic resonance image is reconstructed based on the set of scan protocol simultaneously acquired data and a shared receiving coil calibration matrix. By sharing the receiving coil calibration matrix in different parallel scan processing operations, the amount of work is significantly reduced while improving working efficiency, and imaging quality can also be significantly improved in the case of scan sequences with echo chain acquisition.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: January 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventor: Qiong Zhang
  • Patent number: 10145922
    Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: December 4, 2018
    Assignee: Hyperfine Research, Inc.
    Inventors: Jonathan M. Rothberg, Jeremy Christopher Jordan, Michael Stephen Poole, Laura Sacolick, Todd Rearick, Gregory L. Charvat
  • Patent number: 10145925
    Abstract: A method for magnetic resonance (MR) phase imaging of a subject includes: (i) for each channel of a multi-channel MRI scanner, acquiring MR measurements at a plurality of voxels of the subject using a pulse sequence that reduces MR measurement phase error; and (ii) for each voxel, determining reconstructed MR phase from the MR measurements of each channel to form an MR phase image of the subject. The step of determining reconstructed MR phase may be performed for each of the voxels independently.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: December 4, 2018
    Assignee: THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventor: Joseph Dagher
  • Patent number: 10126388
    Abstract: A gradient coil unit includes a tubular gradient coil and support structures. The tubular gradient coil is configured to apply a gradient magnetic field to an imaging region of magnetic resonance imaging. The support structures are fixed to plural positions of the gradient coil. The support structures are configured to hold the gradient coil on a tubular magnet by applying pressing forces on positions of an edge inside a wall forming the magnet. The pressing forces each has a component in a central axis direction of the magnet. Further, according to another embodiment, a magnetic resonance imaging apparatus includes the above mentioned gradient coil unit, a static field magnet and at least one radio frequency coil configured to perform magnetic resonance imaging of an object.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: November 13, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Kota Watanabe, Hiromitsu Takamori, Yu Ueda
  • Patent number: 10126316
    Abstract: Disclosed is a method of measuring tacrolimus levels in a subject. In exemplary embodiments, the method comprises the steps of: collecting oral fluid from the subject; homogenizing the oral fluid; combining the homogenized oral fluid with a precipitating solvent; separating oral fluid components on a liquid chromatography column by gradient elution with a mixture of a solvent A and a solvent B, wherein the solvent A is about 2 mM ammonium acetate/0.1% (v/v) formic acid in water and solvent B is about 2 mM ammonium acetate/0.1% (v/v) formic acid in MeOH and wherein the amount of solvent B is increased from about 50% (v/v) to about 98% (v/v); and quantifying the amount of tacrolimus in the oral fluid by mass spectrometry.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: November 13, 2018
    Assignee: Rhode Island Council on Postsecondary Education, Statutory Sucessor to the Rhode Island Board of Education, and Rhode Island Board of Governors for Higher Education
    Inventors: Fatemeh Akhlaghi, Mwlod Ghareeb
  • Patent number: 10107880
    Abstract: In a method and system for shutting down a superconducting magnet of a magnetic resonance apparatus using a monitoring processor and an energy store, the monitoring processor determines stored energy stored in the energy store at a first point-in-time, and determines a ramp energy required for shutting down, and determines a second point-in-time based on the stored energy and the ramp energy. At the second point-in-time, shutting down of the superconducting magnet is begun.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: October 23, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Nicholas Aley, Stephan Biber
  • Patent number: 10031201
    Abstract: To enable improved reconstruction of magnetic resonance (MR) image data from MR scan data acquired from an examination object using dynamic shimming in an MR scanner that has a shim unit with at least one shim channel, an examination region of the object is divided into multiple sections, a B0 field of the examination region is scanned, and a B0 field map is thereby generated, a number of shim parameter sets are determined for the shim channel using the B0 field map, with a first shim parameter set of the number of shim parameter sets being determined for a first section of the multiple sections, and a second shim parameter set of the multiple shim parameter sets is determined for a second section of the multiple sections.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 24, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Alto Stemmer
  • Patent number: 10024944
    Abstract: A shimming method for correcting inhomogeneity of a static magnetic field generated by a magnet of a nuclear magnetic resonance imaging machine includes: measuring the magnetic field at a plurality of points over a reference surface; generating a polynomial that solves Laplace's equation with boundary conditions given on the reference surface, the polynomial representing the magnetic field on the reference surface and having a plurality of harmonic terms, each associated with a coefficient; determining the coefficients from the field sampling values; defining a grid for positioning a plurality of correction elements and relating it to the field structure; and calculating the position and magnitude parameters of the correction elements, such that the correction elements affect the coefficients of the magnetic field to obtain the desired field characteristics, wherein the reference surface is a superquadric surface, such that the magnetic field is corrected in a volume delimited by the superquadric surface.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: July 17, 2018
    Assignee: ESAOTE S.P.A.
    Inventor: Vincenzo Punzo
  • Patent number: 10014782
    Abstract: A DC/DC conversion apparatus includes a DC voltage source, an oscillation circuit being electrically connected to the DC voltage source, a plurality of switch elements, a switch controller, which closes or opens electrical connection between the DC voltage source and the oscillation circuit by switching turn-on and turn-off of the plurality of switch elements, and switches a direction of a voltage applied on the oscillation circuit between a first direction and a second direction, a transformation circuit, a detector to detect one or more parameter values of an input voltage and input current of the DC voltage source and an output voltage and output current to the transformation circuit, wherein when the parameter values vary, the switch controller adjusts a length of time in which the voltage applied on the oscillation circuit is in one of the first direction and the second direction, such that the output voltage and/or output current returns to an initial value.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: July 3, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Jiale Dai, Yu Cao, Kezhi Wang
  • Patent number: 9927500
    Abstract: Device for alternating examination of a measurement object (103) by means of MPI and MRI within a magnetic system is characterized in that the magnetic system has a specified magnetic field profile, which is not temporally variable during the alternating examination, and both magnetic field generating elements (101,102; 201,202; 801a,801b,811,812) generate a magnetic field portion, in the first examination region (104) and in the second examination region (105), which is essential for the MRI operation and for the MPI operation, and in that there is a transport apparatus (106) by means of which the measurement object can be moved out of the first examination region and into the second examination region and/or vice versa. The total space requirement for both modalities is thus reduced and the complexity of an integrally designed hybrid system is minimized.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: March 27, 2018
    Assignee: Bruker BioSpin MRI GmbH
    Inventors: Michael Heidenreich, Jochen Franke, Volker Niemann, Rainer Pietig
  • Patent number: 9873000
    Abstract: There is provided a medical device comprising a low intensity electromagnetic field source to increase the respiratory control index values (RCI) of mitochondria. The medical device may be implantable, such as a cardiac rhythm management device, a stent, or a vascular graft. The device may also be worn externally, such as a treatment device having a matrix of magnetic coils that is worn on the head for the treatment of various neurological conditions.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: January 23, 2018
    Assignee: UNIVERSITY OF ROCHESTER
    Inventors: Arthur Jay Moss, Ilan Goldenberg, Shey-Shing Sheu, Gisela Beutner, Mark F. Bocko, Ido Goldenberg
  • Patent number: 9810755
    Abstract: A system for energizing a main coil of superconducting magnet in a magnetic resonance imaging (MRI) system includes a cryostat comprising a housing. A first coil is positioned within the housing of the cryostat. Alternatively, the first coil may be positioned external to the housing of the cryostat. A second coil is coupled to the first coil and positioned external to the housing of the cryostat. The second coil is configured to inductively couple to the main coil. A controller is coupled to the first coil and the second coil and is configured to control the first coil and the second coil to induce current in the main coil.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 7, 2017
    Assignee: General Electric Company
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Zhenyu Zhang, Venkata Kishore Mogatadakala
  • Patent number: 9778334
    Abstract: A passive magnetic field shim arrangement including a plurality of shim pairs. For shimming a number of magnetic field harmonics, each shim pair may include a first shim and a second opposite and substantially equal shim, each shim pair being configured for shimming one of the magnetic field harmonics. Each shim pair may include a first shim of order N and a second opposite and substantially equal shim of order N, the first and second shims together defining a magnetic field shim correction of order N?1. Each shim may include one or more shim elements arranged on a non-magnetic tubular support, the tubular supports being dimensioned such that the tubular supports may be arranged concentrically in relation to each other.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 3, 2017
    Assignee: Scott Technology NZ Limited
    Inventor: Michael John Disney Mallet
  • Patent number: 9759792
    Abstract: The present invention relates to a method of correcting inhomogeneity of the static magnetic field generated by the magnet of a Nuclear Magnetic Resonance imaging machine, wherein the magnet is flat and the magnetic field on one side of said magnet is corrected such that a volume is defined, which is bounded by a spherical cap surface, in which volume and along which surface the magnetic field is homogeneous, i.e. has field lines having equal parallel directions and equal intensities.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: September 12, 2017
    Assignee: ESAOTE S.P.A.
    Inventor: Vincenzo Punzo
  • Patent number: 9733327
    Abstract: In order to provide an NMR imaging device capable of distinguishing substances that cannot be distinguished by T2H, an NMR imaging device (1) according to this invention includes: a probe (3) capable of housing a sample in a static gradient magnetic field; an application portion (5) configured to apply a ? pulse having a Larmor frequency corresponding to the static gradient magnetic field at a predetermined position of the sample to the sample in a multiplexed manner at a predetermined time interval; and an image processing portion (7) configured to determine a relaxation time based on a nuclear magnetic resonance signal of the sample, and perform imaging of the relaxation time.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: August 15, 2017
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Susumu Sasaki, Tatsuro Yuge, Yoshiro Hirayama
  • Patent number: 9714992
    Abstract: A method, a system, and an article of manufacture are disclosed for obtaining imaging data from human extremities using an Extremities MRI (EMRI) system configured to accommodate both legs of a patient during scanning by providing multiple bores, including a scanning bore and one or more non-scanning bores, deployed within an actively or passively shielded, Cryogen-Free (CF), cooled superconducting electromagnet. In various embodiments, the non-scanning bores are located between field or main coils and shield coils, and the cross sections of the bores may be circular, oval, or any other appropriate and useful geometric shape. The longitudinal axis of extra bores may or may not be parallel to the longitudinal axis of the scanning bore. In various embodiments, the EMRI system may have a passively shielded superconducting magnet in which the other leg may be placed between the outside of a cryostat of the superconducting magnet and the ferromagnetic shield components.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: July 25, 2017
    Inventor: Shahin Pourrahimi
  • Patent number: 9709643
    Abstract: A method for generation of a radio-frequency (RF) pulse for excitation of nuclear spins in a predetermined layer of a specimen for magnetic resonance imaging and a magnetic resonance imaging device for performing the method are provided. The method includes determining a variation of a magnetic field in a measuring volume, and defining a spectral frequency distribution of the RF pulse. The RF pulse with the spectral frequency distribution is configured to excite nuclear spins in the specimen. The nuclear spins are polarized by the magnetic field at a predetermined flip angle in the measuring volume under a boundary condition of a substantially minimum energy content. The method also includes generating the RF pulse with the defined spectral frequency distribution.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 18, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans-Peter Fautz, Rene Gumbrecht
  • Patent number: 9711267
    Abstract: An arrangement for supporting a cylindrical superconducting coil structure has recesses in an axial end-surface of the coil structure, and support brackets that individually horizontally protrude into the recesses, such that a vertical loading on the support brackets bears the weight of the coil structure. Opposite ends of the support brackets engage a support member, which supports the support brackets engaged therein, thereby also bearing the weight of the coil structure.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: July 18, 2017
    Assignee: Siemens Healthcare Limited
    Inventors: Peter Jonathan Davis, Yunxin Gao, Martin Howard Hempstead, Matthew John Longfield
  • Patent number: 9684043
    Abstract: A mounting device for a body coil of a magnetic resonance device is provided. The mounting device includes a suspension device that has at least one suspension element. The at least one suspension element is mechanically connectable to a counterpart piece of the body coil. The suspension device is configured for suspension and coarse adjustment of the body coil in the magnetic resonance device during an adjustment process of the body coil. The mounting device also includes an adjustment device that has an adjuster for changing a position of the body coil, and adjustment indicators for displaying the position of the body coil. The adjustment device is provided for fine adjustment of the body coil during the adjustment process. The mounting device includes an attachment device differing from the suspension device. The attachment device includes at least one attachment element for mechanical interaction with the body coil.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: June 20, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Razvan Lazar, Martin Schramm