Electronic Circuit Elements Patents (Class 324/322)
  • Patent number: 10976393
    Abstract: A magnetic resonance imaging (MRI) system is provided. The MRI system can include a magnetic field device to generate a magnetic field within a measurement volume and to generate a magnetic fringe field external to the measurement volume. The MRI system can include a ferromagnetic housing to envelop the magnetic field device. The housing can have a first portion and a second portion, where thickness of the first portion is different from thickness of the second portion. The MRI system can include a plate having a plate opening and positioned external to the housing at a predetermined distance from the housing. In some embodiments, the magnetic fringe field generated by the MRI system can be asymmetric with respect to a center of the measurement volume.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: April 13, 2021
    Assignee: ASPECT IMAGING LTD.
    Inventors: Uri Rapoport, Yoram Cohen, Yair Goldfarb
  • Patent number: 10963764
    Abstract: According to another embodiment, a system includes a driver circuit that drives a first output and a second output; a coil coupled between the first output and the second output such that the driver circuit drives current through the coil in response to control signals; and a programmable slew circuit coupled to the driver circuit. In some embodiments, a switch is coupled between the first output and the coil. In some embodiments an over-voltage protection circuit is coupled to protect the driver circuit.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 30, 2021
    Assignee: Integrated Device Technology, Inc.
    Inventors: Rui Liu, Tao Qi, Lijie Zhao, Gustavo James Mehas, Tae Kwang Park, Zhitong Guo, Siqiang Fan
  • Patent number: 10948843
    Abstract: Partial discharges in a high voltage electric machine can be monitored by a partial discharge monitor connected to the high voltage electric machine successively via a capacitive coupler and a connection cable. The connection cable can have a conductive element designed to self-destruct in the presence of electric current amplitude significantly exceeding expected current amplitudes from said partial discharges, and having diameter designed to avoid creation of additional partial discharges within the cable itself. The connection cable can be light enough to avoid adding excessive weight to the stator windings.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 16, 2021
    Assignee: VIBROSYSTM INC.
    Inventors: Marius Cloutier, Mathieu Cloutier
  • Patent number: 10929981
    Abstract: In a GTV segmentation method, a PET-CT image pair and an RTCT image of a human body are obtained. A PET image in the PET-CT image pair is aligned to the RTCT image to obtain an aligned PET image. A first PSNN performs a first GTV segmentation on the RTCT image to obtain a first segmentation image. The RTCT image and the aligned PET image are concatenated into a first concatenated image. A second PSNN performs a second GTV segmentation on the first concatenated image to obtain a second segmentation image. The RTCT image, the first segmentation image, and the second segmentation image are concatenated into a second concatenated image. A third PSNN performs a third GTV segmentation on the second concatenated image to obtain an object segmentation image.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Patent number: 10921413
    Abstract: A high-frequency magnetic field generating device includes two coils arranged with a predetermined gap in parallel with each other, the two coils (a) in between which electron spin resonance material is arranged or (b) arranged at one side from electron spin resonance material; a high-frequency power supply that generates microwave current that flows in the two coils; and a transmission line part connected to the two coils, that sets a current distribution so as to locate the two coils at positions other than a node of a stationary wave.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: February 16, 2021
    Assignee: SUMIDA CORPORATION
    Inventors: Yoshiharu Yoshii, Masaki Saito, Norikazu Mizuochi, Kan Hayashi
  • Patent number: 10921401
    Abstract: Various methods and systems are provided for a flexible, lightweight, low-cost radio frequency (RF) coil array of a magnetic resonance imaging (MRI) system. In one example, a RF coil array for a MRI system includes a plurality of RF coils, each RF coil comprising an integrated capacitor coil loop; a plurality of coupling electronics units each coupled to a respective coil loop; and a plurality of wires coupling each coupling electronics unit to an interface board configured to couple to a cable of the MRI system. The RF coil array is a high density (referring to the number of coil elements) anterior array (HDAA) or a high definition (referring to image resolution) anterior array.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 16, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Nabeel Malik, Michael Clark, Kolman Juhasz, Edwin Eigenbrodt, Robert Stormont, Scott Lindsay
  • Patent number: 10914850
    Abstract: A housing for shielding a sensor from a radiofrequency field and an imaging system including the same are provided in the present disclosure. The imaging system may include a magnetic resonance imaging (MRI) device. The housing may include a plurality of walls forming at least a part of a cavity for accommodating a sensor of the imaging system. At least one of the plurality of walls may include a substrate and a multi-layered structure disposed on the substrate. The multi-layered structure may include a plurality of metallic layers. At least one pair of adjacent layers of the plurality of metallic layers may include slits. The slits of the at least one pair of adjacent layers may be staggered.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: February 9, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Jiaxu Zheng, Lingzhi Hu, Tuoyu Cao, Tianyi Zeng
  • Patent number: 10890634
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 12, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Patent number: 10884081
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a transmission channel, a first phase shifter, and a second phase shifter. The transmission channel is configured to arrange, in at least a partial section between a generator and a transmitter coil, radio frequency (RF) pulse signals to be transmitted parallel to one another via a plurality of channels. The first phase shifter is configured to shift at least one of phases of the RF pulse signals to be transmitted via the channels, so that the phases of the RF pulse signals are in a relationship of being different from one another. The second phase shifter is configured to shift, in accordance with a phase amount shifted by the first phase shifter, at least one of phases of the RF pulse signals at a stage prior to inputting the RE pulse signals to the transmitter coil.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: January 5, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Haruki Nakamura, Kazuyuki Soejima
  • Patent number: 10871530
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 22, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Patent number: 10859648
    Abstract: Various systems are provided for magnetic resonance imaging (MRI). In one example, a method includes selecting a contour topology for operating a configurable radio frequency (RF) coil assembly, wherein the configurable RF coil assembly includes an array of conductive segments coupled via a plurality of switches, and the contour topology defines a configuration of one or more RF coil elements formed on the configurable RF coil assembly. The method further includes, during a receive mode, at least partially activating one or more subsets of switches of the plurality of switches according to the selected contour topology to form the one or more RF coil elements.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: December 8, 2020
    Assignee: GE Precision Healthcare LLC
    Inventors: Fraser John Laing Robb, Robert Steven Stormont, Victor Taracila, Dan Kenrick Spence
  • Patent number: 10838025
    Abstract: A radio-frequency system for a magnetic resonance apparatus has a local coil, a body coil, and an impedance adjusting shield. The body coil is wirelessly power-coupled with the local coil such that the body coil serves as a transmitting coil for radio-frequency signals and the local coil serves as a receiving coil for magnetic resonance signals. The local coil is disposed in an internal cavity of the impedance adjusting shield. An impedance of the local coil is adjusted by the impedance adjusting shield so as to match the impedance of the local coil and the body coil. The impedance adjusting shield has a frequency modulation element that adjusts the resonance frequency of the local coil. The body coil couples power to the local coil, and the impedance adjusting shield effectively reduces energy transmission efficiency loss caused by reflection, thereby improving energy transmission efficiency.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: November 17, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Yan Li Chen, Shu Du, Markus Vester, Jian Min Wang
  • Patent number: 10838028
    Abstract: An MRI RF coil array for use in a multi-channel MRI system, comprising a plurality of coils arranged in a M by N array, the number of columns corresponding with the number of channels in the MRI system. Columns are aligned with the B0 field. The plurality of coils are configured as a plurality of combined coils, corresponding with the number of columns, comprising a coil in a first row of the array connected with a coil in each of the remaining rows. The column position of each coil of a combined coil is distinct from the column position of each other coil of the combined coil. Coils of a combined coil are disjoint from the coils of each, other, combined coil. A combined coil is configured to connect with a corresponding member of the plurality of Rx channels, and is decoupled from each, other combined coil.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 17, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Patent number: 10837926
    Abstract: An example includes performing near infra-red (NIR) spectrometry to provide NIR measurement data for a sample compound. The method also includes performing magnetic resonance (MR) spectrometry to provide MR measurement data for the sample compound. The method also includes analyzing, by a computing device, the MR measurement data in view of the NIR measurement data to characterize the sample compound.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 17, 2020
    Assignees: CASE WESTERN RESERVE UNIVERSITY, UNIVERSITY OF FLORIDA RESEARCH FOUNDATION
    Inventors: Soumyajit Mandal, Swarup Bhunia, Naren Vikram Raj Masna, Cheng Chen, Mason Greer, Fengchao Zhang
  • Patent number: 10788552
    Abstract: A control unit (56) operates a gradient coil device of a magnetic resonance imaging system (14). At least one first parameter of the gradient coil device (30) and/or at least one second parameter of the gradient coil device (30) is provided. A damage calculation of an operation of the gradient coil device (30) is performed by use of a mathematical model (66), which model (66) is based on the stress-cycle curve or a modified stress-cycle curve and uses the at least one first parameter (68) and/or the at least one second parameter (70, 72). Second parameters for further operation of said gradient coil device (30) are determined.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventor: Martijn Krelis Termeer
  • Patent number: 10775456
    Abstract: A sample pipe is provided in a sample temperature control pipe. A detection coil is provided in a low-temperature airtight chamber and configured to irradiate a sample with a high-frequency magnetic field. A room-temperature shield is provided on an outer circumferential surface of the sample temperature control pipe or on an inner circumferential surface thereof, and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching a region other than an observation object. A low-temperature shield is provided in an airtight chamber and between the detection coil and the room-temperature shield and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching the room-temperature shield.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: September 15, 2020
    Assignee: JEOL Ltd.
    Inventors: Katsuyuki Toshima, Shigenori Tsuji, Shinji Nakamura, Fumio Hobo, Takeshi Tsukada, Akifumi Nomura
  • Patent number: 10746823
    Abstract: A transport device for transporting an NMR sample to a probe head (16), having a shuttle (15) and a locking apparatus (3) for the rotor (5), which, when attaching the shuttle to the probe head, releases the rotor, and having a detecting apparatus for detecting the rotor in the shuttle. The probe head has a positioning apparatus (2), which holds the probe head in a defined measuring position relative to the shuttle. The detecting apparatus includes a sensor line, which transmits a signal dependent on the position of the probe head to the shuttle's end. A first portion (1a) of the sensor line is mounted inside the shuttle and extends from the rotor in a transport state to the end of the shuttle. A second portion (1b) of the sensor line is mounted inside the probe head and, in the measuring position, is directly adjacent to the first portion.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: August 18, 2020
    Assignee: BRUKER SWITZERLAND AG
    Inventors: Jonathan De Vries, Sven Sieber, Roger Meister
  • Patent number: 10739427
    Abstract: The gradient coil assembly is designed to address a neck-shoulder clearance problem by configuring the coil holder housing with a cylindrical portion modified with a slanted surface and positioning current return elements of the coil pattern at the slanted surface, while positioning the active electrical elements on the cylindrical surface, thus eliminating influence of an undesired magnetic field generated by the current return elements, shortening the coil, and moving the homogeneous field gradient region toward the end of the cylindrical portion of the bore in the coil holder housing. The subject assembly operation is further improved by the direct external cooling approach, where a coolant flows in direct contact with electrical wires of the gradient coil inside the cooling channels in the surface of the coil holder housing.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: August 11, 2020
    Assignees: University of Maryland, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Bao Yang, Hanbing Lu, Zhi Yang
  • Patent number: 10677873
    Abstract: A system for correcting an artifact within MR data is provided. The system includes a magnet assembly and a controller in electronic communication with the magnet assembly. The controller is operative to: acquire the MR data from a subject via the magnet assembly, the MR data having a first portion and a second portion, the first portion including the artifact; and to populate the first portion of the MR data with substitute data corresponding to the second portion. The first portion corresponds to a first region of the subject, and the second portion corresponds to a second region of the subject that is anatomically symmetrical to the first region.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: June 9, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Gaspar Delso
  • Patent number: 10670673
    Abstract: A transmitting device and a method for transmitting two high frequency signals for a magnetic resonance tomograph are provided. The transmitting device includes a shielded balanced transmission line, a first signal driver, and a second signal driver. The first signal driver and the second signal driver feed the first high frequency signal to a first conductor and the second high frequency signal to a second conductor of the balanced transmission line. A shielding of the balanced transmission line has an electrical connection to a common ground potential for the first signal driver and the second signal driver.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: June 2, 2020
    Assignee: Siemens Healthcare GmbH
    Inventor: Jan Bollenbeck
  • Patent number: 10641851
    Abstract: A radio frequency (RF) coil array with multiple RF coil elements for a magnetic resonance examination system is disclosed. The decoupling of RF coil elements involves sets (pairs) of transformers and may also include geometrical overlap of adjacent coils. The mutual coupling between the transformers is adjustable. This provides additional degrees of freedom to fully decouple the RF coil elements from each other.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 5, 2020
    Assignee: Koninklijle Philips N.V.
    Inventors: Peter Vernickel, Christian Findelkee, Christoph Leussler
  • Patent number: 10641845
    Abstract: A technique for reconciling large sensitivity area and high sensitivity for deep part in a multi-channel array coil of an MRI apparatus without complicating the configuration, and realizing both higher speed imaging and high image quality is provided. An RF coil (array coil) of a magnetic resonance imaging apparatus comprising a plurality of subcoils is provided. At least one of the subcoils is a first subcoil of which resonance frequency as that of the subcoil alone differs from magnetic resonance frequency. The first subcoil is adjusted so that it magnetically couples with a second subcoil, which is at least one other subcoil, and thus resonates at the same frequency as the magnetic resonance frequency. Input and output terminals of the first subcoil and the second subcoil are connected to different low input and output impedance signal processing circuits, respectively.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 5, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Yosuke Otake, Hisaaki Ochi, Kohjiro Iwasawa
  • Patent number: 10641846
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: May 5, 2020
    Assignee: Life Services LLC
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Patent number: 10637444
    Abstract: A near field radio-frequency identification (“RFID”) probe includes a probe tip comprising a resonant coil configured to communicate with an RFID compatible device at a predetermined resonant frequency. The near field RFID probe further includes a plurality of switch capacitor networks each comprising a capacitor and an RF switch, wherein switching the plurality of switch capacitor networks changes the capacitance of the resonant coil, thereby changing the resonant frequency of the resonant coil. The near field RFID probe further includes a probe control module configured to adjust the resonant frequency of the resonant coil to maintain the predetermined resonant frequency by switching the switch capacitor networks responsive to detecting that the resonant frequency of the resonant coil has deviated from the predetermined resonant frequency.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 28, 2020
    Assignee: NORTHROP GRUMAN SYSTEMS CORPORATION
    Inventor: Scott Kent Suko
  • Patent number: 10620288
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes processing circuitry. The processing circuitry sets imaging parameters for each scan. The processing circuitry specifies the size of the object region in the phase encode direction from a first image. The first image acquired by using a pulse sequence different from EPI. The processing circuitry sets parameters in a field of view in the phase encode direction in a phase correction scan based on the specified size and the size of the field of view in the phase encode direction in a second scan. The phase correction scan is executed for acquiring phase correction information for the first image. The second scan is executed for acquiring a second image by using EPI.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 14, 2020
    Assignee: Canon Medical Systems Corporation
    Inventors: Hiroshi Kusahara, Yutaka Machii, Yuki Takai
  • Patent number: 10598688
    Abstract: An oscillation control system includes an actuator, a sensor unit, and a control module. An actuator includes at least one piezoelectric material coupled with an electrode. The sensor unit is located on the actuator and is configured to detect an acceleration value of deformation of the actuator. A control module includes an operational unit and a gain unit. The operational unit generates an operational result according to the acceleration value and conditions of the actuator. The gain unit is coupled to the operational unit and the electrode and is configured to convert the operational result into a control signal which adjusts the actuator. An oscillation control method includes using a reciprocal state space system to proceed with closed-loop control of a state derivative feedback. The reciprocal state space system is represented by a plurality of equations.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: March 24, 2020
    Assignee: I-SHOU UNIVERSITY
    Inventors: Yuan-Wei Tseng, Rong-Ching Wu, Chia-Chuan Tsai
  • Patent number: 10578690
    Abstract: A system and method synchronizes a digitizer clock of a Magnetic Resonance Imaging (MRI) device with a system clock of an imaging device. In a first method, an original reference signal is split into first and second reference signals in which the second reference signal is phase shifted to generate an orthogonal reference signal. A reliability of image data may be determined based upon a product between the first reference signal and the orthogonal reference signal. In a second method, a reference signal is transmitted from the imaging device to the MRI device and a return signal is received from the MRI device to the imaging device. A discrepancy between the digitizer clock and the system clock may be determined based upon the return signal which includes a variable time delay.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 3, 2020
    Assignee: Koninklijke Philips N.V.
    Inventor: Arne Reykowski
  • Patent number: 10578688
    Abstract: Provided is a method and an apparatus for filtering a magnetic field induced in a coil of a magnetic resonance imaging (MRI) system. The method includes: applying an electromagnetic signal to an object, wherein the applying is performed by a transmit coil; while the electromagnetic signal is applied, emitting light toward a receive-only coil that obtains a magnetic resonance signal that is generated in the object due to the applied electromagnetic signal; and when the receive-only coil receives the emitted light, filtering a magnetic field induced in the receive-only coil due to the applied electromagnetic signal.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: March 3, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyoungnam Kim
  • Patent number: 10571408
    Abstract: A method propagates a pulse of wave through the material to receive a set of echoes resulted from scattering the pulse by different portions of the material and simulates a propagation of the pulse in the material using a neural network to determine a simulated set of echoes. Each node in a layer of the neural network corresponds to a portion of the material and assigned a value the permittivity of the portion of the material, such that the values of the nodes at locations of the portions form the image of the distribution of the permittivity of the material. The connection between two layers in the neural network models a scattering event. The method updates the values of the nodes by reducing an error between the received set of echoes and the simulated set of echoes to produce an image of the distribution of the permittivity of the material.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: February 25, 2020
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Ulugbek Kamilov, Dehong Liu, Hassan Mansour, Petros T. Boufounos
  • Patent number: 10534051
    Abstract: A radio-frequency shielding unit for shielding a radio-frequency antenna unit of a magnetic resonance apparatus and a magnetic resonance apparatus are provided. The radio-frequency shielding unit includes a support layer, a first conducting layer, an insulating layer, and a second conducting layer. The first conducting layer is arranged between the support layer and the insulating layer, and the insulating layer is arranged between the first conducting layer and the second conducting layer.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 14, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Ludwig Eberler, Jürgen Nistler, Markus Vester
  • Patent number: 10534050
    Abstract: Methods, devices, and apparatus for determining an input voltage of an inverter circuit in a magnetic resonance imaging system are provided. In one aspect, a method includes: determining a maximum inductance voltage value corresponding to a maximum current value of a current sequence according to a relationship between inductance voltage and inductance current of a gradient coil, determining a minimum DC voltage value corresponding to the maximum inductance voltage value according to a relationship between output voltage and input voltage of the inverter circuit, and controlling the input voltage into an input terminal of the inverter circuit to have the minimum DC voltage value when the current sequence is input into a control terminal of the inverter circuit. The inverter circuit is configured to generate an AC voltage based on the input voltage and the current sequence and output the AC voltage to the gradient coil.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: January 14, 2020
    Assignee: Shanghai Neusoft Medical Technology Co., Ltd.
    Inventors: Yingfeng Lin, Wei Li, Gong Cheng
  • Patent number: 10495704
    Abstract: A shutting assembly for a magnetic resonance imaging device (MRD) bore aperture, comprising at least one first movable portion and at least one second portion affixed to the MRD, wherein the shutting assembly further comprising a normally closed or normally open sliding mechanism. The sliding mechanism couples at least one first moveable portion to at least one second portion affixed to the MRD, thereby enabling a reciprocal movement of at least one first moveable portion parallel to the MRD bore aperture in an upwards and downwards directions in respect to at least one second portion affixed to the MRD.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: December 3, 2019
    Assignee: ASPECT IMAGING LTD.
    Inventor: Uri Rapoport
  • Patent number: 10481227
    Abstract: A transmission apparatus for transmitting an intermediate frequency signal and an oscillator signal for mixing down the intermediate frequency signal, a magnetic resonance tomograph with a local coil, a receive unit, and a transmission apparatus are provided. The transmission apparatus has a symmetrical transmission line for transmission of the oscillator signal and the intermediate frequency signal and a symmetrizing element for adaptation of an unsymmetrical signal source and/or signal sink to the symmetrical transmission line. The symmetrizing element has only ferrite-free inductances. The local coil and the receive unit are connected for signaling purposes via the transmission apparatus.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: November 19, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Jan Bollenbeck, Martin Hemmerlein
  • Patent number: 10465482
    Abstract: A system and method for enabling inductive charging through downhole casings for electro acoustic technology devices.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 5, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mikko Jaaskelainen, Brian V. Park, Seldon David Benjamin
  • Patent number: 10459047
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a gradient magnetic field power supply configured to supply power to a gradient coil. The gradient magnetic field power supply includes a plurality of switching circuits and a processing circuitry. Each of the switching circuits is configured to output a predetermined pulse voltage. The processing circuitry is configured to change the number of switching circuits to be caused to perform switching operation among the switching circuits, in accordance with an intensity of the voltage to be output to the gradient coil.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: October 29, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Sho Kawajiri, Motohiro Miura
  • Patent number: 10444307
    Abstract: A surface coil for a magnetic resonance imaging system includes a first plane coil placed on a first plane. A first curved surface coil is disposed symmetrically to the first place coil and disposed on one curved surface. The first plane coil is disposed tangentially to the first curved surface coil, wherein the first plane coil and the first curved surface coil are electrically connected to each other through at least two surface portions.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: October 15, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyoung Nam Kim
  • Patent number: 10436868
    Abstract: A magnetic resonance tomography system includes a computer configured to implement signal processing of transmit signals and/or receive signals. The signal processing is configured to implement a mixer, an upsampler, a decimator, a filter, or any combination thereof.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventor: Nikolaus Demharter
  • Patent number: 10422840
    Abstract: In a method for manufacturing a flat insulation layer for use in a gradient coil, a thermoplastic insulating material in the form of a plate, strip or foil is three-dimensionally deformed in a hot shaping step to form specified local elevations on at least one side, which are spaced apart from one another.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 24, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Lothar Schön, Stefan Stocker
  • Patent number: 10416250
    Abstract: In one embodiment, an MRI apparatus includes a wireless RF coil; a control side oscillator configured to output a control-side clock signal used for executing a pulse sequence; and a synchronization signal transmission circuit configured to wirelessly transmit a synchronization signal to the wireless RF coil in an executing period of the pulse sequence, except an MR-signal detection period during which the wireless RF coil detects a magnetic resonance signal, wherein the synchronization signal is within a frequency band of a Larmor frequency and reflects a phase of the control-side clock signal.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 17, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Sojiyuuro Kato, Kazuya Okamoto, Kazuyuki Soejima
  • Patent number: 10416255
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes a gradient coil, power supply circuitry, and control circuitry. The gradient coil generates a gradient magnetic field. The power supply circuitry supply power to the gradient coil, the power being required by the gradient. The control circuitry temporarily change an upper limit value of power to be supplied by the power supply circuitry to a second value higher than a first value as a rated value based on the power required by the gradient coil.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: September 17, 2019
    Assignee: Canon Medical Systems Coprporation
    Inventors: Sho Kawajiri, Naoyuki Furudate, Yutaka Machii
  • Patent number: 10408897
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes a first transmit coil transmitting a first RF pulse corresponding to a resonance frequency of a first nuclide species in an object placed in an imaging space, a first receive coil receiving a first NMR signal of the first nuclide species, a cable connected to the first receive coil, a balun attached to the cable and/or the first receive coil, a substance attached to the balun and/or a vicinity of the balun, the substance including a second nuclide species having a resonance frequency different from the resonance frequency of the first nuclide species, a second transmit coil transmitting a second RF pulse corresponding to a resonance frequency of the second nuclide species, and a second receive coil receiving a second NMR signal of the second nuclide species in the substance.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Sadanori Tomiha, Satoshi Imai
  • Patent number: 10353028
    Abstract: Example apparatus and magnetic resonance imaging (MRI) radio frequency (RF) coils concern controlling current magnitude at different sections in one MRI RF coil. In one embodiment, an MRI RF coil comprises a plurality of loop coils configured to transmit or receive an RF signal. A member of the plurality of loop coils comprises an inductor and at least one capacitor. The MRI RF coil further comprises at least one coaxial transmission line that electrically couple in series a first member of the plurality of loop coils with a second, different member of the plurality of loop coils. The at least one coaxial transmission line has a length that is one-quarter wavelength (?/4) of the RF signal, or an odd integer multiple of ?/4 of the RF signal.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 16, 2019
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Chris Allen
  • Patent number: 10352883
    Abstract: A mobile measuring apparatus for nondestructively determining a material measurement value that relates to a material property of a workpiece comprises a housing in which at least a first sensor device and a second sensor device are located, a control device, an evaluating device, and a device for the supply of energy to the measuring apparatus. The first sensor device has a nuclear magnetic resonance sensor and the second sensor device has a sensor based on dielectric and/or resistive methods. Information about the material property of the workpiece, in particular moisture present in the workpiece, is obtained by evaluating a measurement signal provided by the first sensor device, which information is intended for the optimized control of the second sensor device and/or optimized evaluation of measurement signals provided by the second sensor device.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 16, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Reiner Krapf, Felix Kurz
  • Patent number: 10345412
    Abstract: An imaging system includes determination of a first range of values of an imaging parameter, determination of a cost function expressing a difference between a first pulse profile and a second pulse profile, the second pulse profile generated based on respective values of each of a set of pulse parameters, identification of first coefficient values of each function of a set of functions which substantially minimize the cost function over the first range of values of the imaging parameter, where each of the set of functions determines a value of a respective one of the set of pulse parameters based on a value of the imaging parameter, and storage of the first coefficient values of each function of the set of functions in association with the first range of values.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 9, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Shivraman Giri, Kieran O'Brien
  • Patent number: 10345405
    Abstract: A radiofrequency (RF) coil for use in a magnetic resonance imaging (MRI) system using a plurality of RF coils includes a main loop coil including a plurality of electrical conductors, and an auxiliary loop coil disposed around the plurality of electrical conductors and including a plurality of electrical conductors.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: July 9, 2019
    Assignees: Samsung Electronics Co., Ltd., Samsung Life Public Welfare Foundation
    Inventors: Kyoungnam Kim, Yeon Hyeon Choe
  • Patent number: 10348421
    Abstract: In accordance with an embodiment a device is usable to measure radio frequency (RF) signals including microwave signals to provide an alarm when a power level at its input exceeds predetermined levels. A user can attach the device to a coax cable on a microwave or wireless tower to determine if certain power levels are present and what levels are exceeded. If high power is indicated by the device, the user will then avoid attaching that coax cable to other measurement equipment which would be damaged by excessive RF power. The device is further usable, for example, to apply power to one coax cable in a cable bundle then identify which cable of the bundle is getting the power by connecting the device on the output end of each coax in the bundle, one by one.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 9, 2019
    Assignee: ANRITSU COMPANY
    Inventors: Donald Anthony Bradley, Richard Glenn Barber, Stephen Andrew Robertson, Russel A. Brown, Elijah Brandon Jones, Danny Quintos Barrera
  • Patent number: 10302716
    Abstract: A system and method synchronizes a digitizer clock of a Magnetic Resonance Imaging (MRI) device with a system clock of an imaging device. In a first method, an original reference signal is split into first and second reference signals in which the second reference signal is phase shifted to generate an orthogonal reference signal. A reliability of image data may be determined based upon a product between the first reference signal and the orthogonal reference signal. In a second method, a reference signal is transmitted from the imaging device to the MRI device and a return signal is received from the MRI device to the imaging device. A discrepancy between the digitizer clock and the system clock may be determined based upon the return signal which includes a variable time delay.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 28, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Arne Reykowski
  • Patent number: 10295628
    Abstract: An apparatus to provide power for operating at least one gradient coil of a magnetic resonance imaging system. According to some aspects, the apparatus comprises a plurality of power terminals configured to supply different voltages of a first polarity, and a linear amplifier configured to provide at least one output to power the at least one gradient coil to produce a magnetic field in accordance with a pulse sequence, the linear amplifier configured to be powered by one or more of the plurality of power terminals, wherein the one or more of the plurality of power terminals powering the linear amplifier is selected based, at least in part, on the at least one output.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 21, 2019
    Assignee: Hyperfine Research, Inc.
    Inventors: William J. Mileski, Gregory L. Charvat, Jonathan M. Rothberg, Jeremy Christopher Jordan
  • Patent number: 10291300
    Abstract: A system includes a transmitter having a first transmit device having a first transmit antenna and a first OAM multiplexer designed to receive two input signals and to convert the input signals to orthogonal OAM beams. The first transmit antenna is designed to transmit a first output signal that includes the OAM beams. The transmitter also includes a second transmit device that functions in a similar manner as the first transmit device. A receiver includes a first receive device having a first receive antenna designed to receive the first output signal and a first OAM demultiplexer designed to convert the first output signal to received signals corresponding to the input signals. The receiver also includes a second receive device having similar features as the first receive device. The receiver also includes a MIMO processor designed to reduce interference between the received signals.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: May 14, 2019
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Alan E. Willner, Yongxiong Ren, Long Li
  • Patent number: 10274567
    Abstract: A magnetic resonance imaging apparatus according to one embodiment includes an arranger, a sensitivity deriver, and an image generator. The arranger arranges time-series data at a part of sampling points out of sampling points of a k-space determined based on an imaging parameter. The sensitivity deriver derives a sensitivity distribution in a time-space, in which the time-series data transformed in a time direction is expressed with a coefficient value, based on the time-series data. The image generator generates an image of the time-series data using the time-series data and the sensitivity distribution.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: April 30, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Hidenori Takeshima