Signal To Noise Ratio Or Noise Figure Patents (Class 324/614)
  • Patent number: 10276182
    Abstract: A sound processing device includes a processor configured to generate a first frequency spectrum of a first sound signal corresponding to a first sound received at a first input device and a second frequency spectrum of a second sound signal corresponding to the first sound received at a second input device, calculate a transfer characteristic based on a first difference between an intensity of the first frequency spectrum and an intensity of the second frequency spectrum, generate a third frequency spectrum of a third sound signal transmitted from the first input device and a fourth frequency spectrum of a fourth sound signal transmitted from the second input device, specify a suppression level of an intensity of the fourth frequency spectrum based on a second difference between an intensity of the third frequency spectrum and an intensity of the fourth frequency spectrum.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: April 30, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Takeshi Otani, Taro Togawa, Sayuri Nakayama
  • Patent number: 10191098
    Abstract: The invention relates to an electronic measurement device and a method for operating the electronic measurement device. The electronic measurement device comprises a signal generating unit which is configured to generate a signal that is applied to an input node of a device under test. The electronic measurement device comprises a controlling unit which is configured to control the signal generating unit in that the generated signal is at least adjustable in its signal frequency. Furthermore, the electronic measurement device comprises at least a receiving unit, wherein the receiving unit retrieves a signal from an output node of the device under test in time domain.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: January 29, 2019
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Matthias Beer
  • Patent number: 10145877
    Abstract: In an exemplary embodiment of the disclosure, a signal analyzer includes at least one noise reduction system in the form of an adaptive noise reduction system. The adaptive noise reduction system executes an adaptive noise floor extension (NFE) procedure that includes determining a predicted standard deviation of a response by the signal analyzer to intrinsic noise in the signal analyzer when various signal processing parameters desired by a user are applied to an input signal. The predicted standard deviation is then used in the signal analyzer to select and apply various noise subtraction values upon the input signal before displaying of a signal spectrum of the input signal upon a display of the signal analyzer. The adaptive NFE procedure is directed at reducing or eliminating various ambiguities and/or errors in the displayed signal spectrum.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: December 4, 2018
    Assignee: Keysight Technologies, Inc.
    Inventors: Joseph Michael Gorin, John Francis McLaughlin
  • Patent number: 10120005
    Abstract: Embodiments of synchronous detection circuits and methods are provided for extracting magnitude and phase information from a waveform. One embodiment of a synchronous detection circuit includes a driver circuit, an analog-to-digital converter (ADC) and a controller. The driver circuit is configured to supply an input waveform at an input frequency to a load. The ADC is coupled to receive an output waveform from the load, and configured for generating four digital samples, each spaced 90° apart, for every period of the output waveform. The controller is configured for setting an oversampling rate (OSR) of the ADC, so that the ADC generates an integer number, M, of sub-samples for each digital sample generated by the ADC, where the integer number, M, of sub-samples is inversely proportional to the input frequency of the input waveform. The controller is further configured to use the digital samples generated by the ADC to extract magnitude and phase information from the output waveform.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: November 6, 2018
    Assignee: Silicon Laboratories Inc.
    Inventors: Alexander Cherkassky, Bruce P. Del Signore
  • Patent number: 10101371
    Abstract: Embodiments of synchronous detection circuits and methods are provided for extracting magnitude and phase information from a waveform. One embodiment of a synchronous detection circuit includes a driver circuit, an analog-to-digital converter (ADC) and a controller. The driver circuit is configured to supply an input waveform at an input frequency to a load. The ADC is coupled to receive an output waveform from the load, and configured for generating four digital samples, each spaced 90° apart, for every period of the output waveform. The controller is configured for setting an oversampling rate (OSR) of the ADC, so that the ADC generates an integer number, M, of sub-samples for each digital sample generated by the ADC, where the integer number, M, of sub-samples is inversely proportional to the input frequency of the input waveform. The controller is further configured to use the digital samples generated by the ADC to extract magnitude and phase information from the output waveform.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: October 16, 2018
    Assignee: Silicon Laboratories Inc.
    Inventors: Alexander Cherkassky, Bruce P. Del Signore
  • Patent number: 9829316
    Abstract: A detection device includes: a drive circuit which receives a feedback signal from a physical quantity transducer and drives the physical quantity transducer; a detection circuit which receives a detection signal from the physical quantity transducer and detects a desired signal; and a control unit which controls switching on/off of an AGC loop in the drive circuit. The drive circuit outputs a drive signal based on a control voltage that is set by the AGC loop in an on-period of the AGC loop to the physical quantity transducer and thus drives the physical quantity transducer in an off-period of the AGC loop.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: November 28, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Katsuhiko Maki, Takashi Nomiya
  • Patent number: 9734128
    Abstract: A method for recovering a sparse signal of a finite field may include: updating discrete probability information of a target signal element of the finite field and discrete probability information of a measurement signal element of the finite field by exchanging the discrete probability information of the target signal element with the discrete probability information of the measurement signal element a predetermined number of times, wherein the target signal element and the measurement signal element are related to each other; calculating a final posteriori probability based on a priori probability of the target signal element and the discrete probability information of the measurement signal element, acquired as the exchange result; and recovering the target signal by performing maximum posteriori estimation to maximize the final posteriori probability.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: August 15, 2017
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Heung No Lee, Jin Taek Seong
  • Patent number: 9484043
    Abstract: Provided is a method, non-transitory computer program product and system for an improved noise suppression technique for speech enhancement. It operates on speech signals from a single source such as either the output from a single microphone or the reconstructed speech signal at the receiving end of a communication application. The system performs background noise monitoring of an in-coming speech signal and determines its level, and performs a time domain gain calculation. The noise suppressed output signal is the gain shaped original speech signal.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: November 1, 2016
    Assignee: QOSOUND, INC.
    Inventor: Huan-Yu Su
  • Patent number: 9366710
    Abstract: A wideband four noise parameter extraction method uses randomly distributed source states; the data are collected using wideband electro-mechanical tuners and noise and small signal receivers (network analyzers) in fast frequency sweeps; because of the random nature of source impedances reliable noise parameter values are extracted using selected source admittance states, distinctly regrouped in a cluster around the reflection factor associated with the optimum noise figure Fmin and a cluster located anti-diametric to it for determining the equivalent noise resistance Rn. Multiple noise parameter extractions for all possible cross-combinations of source impedance states in each cluster at each measured frequency allows reliable and physically meaningful generation of wideband noise parameters, even for very low noise and potentially unstable DUT's.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: June 14, 2016
    Inventor: Christos Tsironis
  • Patent number: 9103861
    Abstract: A multi-function sensor apparatus includes multiple sensing electrodes and a control circuit adapted to receive signals from each of the sensing electrodes and to deem whether the sensing electrodes are in a touched state or an untouched state. The control circuit also is adapted to selectively provide an output based on the sensor's states and the manner in which the sensors came to be in such states.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 11, 2015
    Assignee: METHODE ELECTRONICS, INC.
    Inventor: Ian Sage
  • Patent number: 8963559
    Abstract: A variable impedance device includes a passive tuner that includes at least one variable component, which is controllable to apply a variable impedance value to an input signal of the passive tuner. A low noise amplifier is configured to supply the input signal to the passive tuner by amplifying an input RF (radio frequency) signal.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 24, 2015
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicorelectronics SA
    Inventors: Thomas Quemerais, Daniel Gloria, Romain Debroucke
  • Patent number: 8928334
    Abstract: An apparatus relating to on-chip noise measurement is disclosed. In such an apparatus, an asynchronous comparator receives a first input and a second input to provide a digital output. A threshold voltage generator receives a first periodic signal and a second periodic signal to provide the second input as an analog voltage responsive to the first and second periodic signals. A sampling circuit is coupled to receive the digital output signal and a third periodic signal. The sampling circuit is configured to sample the digital output signal using the third periodic signal to provide a sampled signal of the digital output signal. A processor is coupled to receive a delay signal and the sampled signal to determine a noise measurement signal for the first input signal.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: January 6, 2015
    Assignee: Xilinx, Inc.
    Inventors: Mayank Raj, Didem Z. Turker Melek
  • Patent number: 8797047
    Abstract: Depending on a sensor signal, a noise signal which suppresses a useful signal spectrum of the sensor signal is determined by filtering using a filter. A noise variable, which is a measure of a noise of the sensor signal, is determined depending on the noise signal. An error of the sensor signal is identified depending on the noise variable determined.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 5, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Zheng-Yu Jiang, Matthias Kretschmann, Herbert Preis, Christoph Resch
  • Patent number: 8729908
    Abstract: A monitoring circuit and method, wherein a voltage waveform having a linear falling edge is applied to a first node of at least one test memory cell (e.g., a plurality of test memory cells connected in parallel). The input voltage at the first node is captured when the output voltage at a second node of the test memory cell(s) rises above a high reference voltage during the falling edge. Then, a difference is determined between the input voltage as captured and either (1) the output voltage at the second node, as captured when the input voltage at the first node falls below the first reference voltage during the falling edge, or (2) a low reference voltage. This difference is proportional to the static noise margin (SNM) of the test memory cell(s) such that any changes in the difference noted with repeated monitoring are indicative of corresponding changes in the SNM.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: May 20, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hayden C. Cranford, Jr., Terence B. Hook
  • Publication number: 20140118006
    Abstract: A communication apparatus and an associated estimation method are provided. The communication apparatus is electrically connected to a loading terminal and operates at a common bias voltage. The communication apparatus includes a transmitter, a connector, and a receiver. The connector includes a bridging circuit and a measurement circuit. The bridging circuit has a positive measurement end and a negative measurement end. The transmitter transmits an analog output signal. The receiver receives a common bias voltage during an estimation process. During the estimation process, the measurement circuit estimates a positive loading resistance and a negative loading resistance corresponding to the loading terminal according to a voltage difference between the common bias voltage and voltage at one of the positive measurement end and the negative measurement end.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 1, 2014
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventors: Sheng-Fu Chuang, Su-Liang Liao, Liang-Wei Huang, Hsuan-Ting Ho
  • Publication number: 20140090860
    Abstract: A method for detection of false positive condition that an object is in contact with an implement in a power tool includes sampling an electrical signal received from the implement, identifying in-phase and a quadrature components of the sampled electrical signal, identifying a magnitude of each of the samples with reference to the in-phase component and the quadrature component for the samples, detecting an object approaching the implement with reference to the plurality of samples, identifying a signal-to-noise ratio for the samples, and identifying a false positive condition for the detected object with reference to the identified signal-to-noise ratio for the identified samples.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 3, 2014
    Applicants: Robert Bosch GmbH, Robert Bosch Tool Corporation
    Inventors: Bharadwaja Maharshi Ramaswamy, Sai Yogesh Kumar Mangapuram, Niranjan Sathyanarayanarao Krishnarao, Vishwanatha Manevarthe Srikantiah
  • Patent number: 8686741
    Abstract: A noise figure deriving device is provided to precisely obtain the noise figure (NF) of a receiver. The noise figure deriving device includes a first NF deriving unit that derives a first noise figure, which is a noise figure when a predetermined receiver-side pin pin1R is connected to a receiver, based on a ratio Y of one power to the other power of two types of reference noise. The noise figure deriving device also includes a second NF deriving unit that derives a second noise figure, which is a noise figure when receiver-side pins pin2R, pin3R, and pin4R are connected to the receiver, based on an inter-measurement-device-side-terminal difference and the first noise figure. The inter-measurement-device-side-terminal difference is a difference between the first noise figure and the second noise figure.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 1, 2014
    Assignee: Advantest Corporation
    Inventor: Takeshi Nagasaka
  • Publication number: 20130214795
    Abstract: To reduce the pixel size to the smallest dimensions and simplest form of operation, a pixel may be formed by using only one ion sensitive field-effect transistor (ISFET). This one-transistor, or 1T, pixel can provide gain by converting the drain current to voltage in the column. Configurable pixels can be created to allow both common source read out as well as source follower read out. A plurality of the 1T pixels may form an array, having a number of rows and a number of columns and a column readout circuit in each column.
    Type: Application
    Filed: March 21, 2013
    Publication date: August 22, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventor: LIFE TECHNOLOGIES CORPORATION
  • Patent number: 8456154
    Abstract: In a low voltage differential-mode signaling (LVDS) test system and method, a positive signal waveform and a negative signal waveform of an LVDS signal pair are obtained. A differential-mode high voltage, a differential-mode low voltage, and a common-mode noise are measured according to the positive signal waveform and the negative signal waveform. The measurement results are output to an output device.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 4, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Jui-Hsiung Ho, Wang-Ding Su
  • Patent number: 8446155
    Abstract: The invention relates to a test device for an analog circuit to be mounted on a mixed circuit including said analog circuit and a synchronous digital circuit. The test device includes a disturbance emulator connected to a first supply source (UrefD) capable of disturbing a second supply source (UrefA) of the analog circuit, the first and second supply sources being optionally merged, the emulator being adapted for receiving data representative of the evolution, during a given duration, of the average (?I) and the typical deviation (?I) of a first inrush current (I) that would be applied to the first supply source by the digital circuit, and being adapted for applying to the first supply source during successive intervals, each successive interval having said duration, a second inrush current (Irep) equal to the sum of the average and of the product of the typical deviation and of a pseudo-random signal varying according to a Gaussian law.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 21, 2013
    Assignee: Dolphin Integration
    Inventors: Florian Espalieu, Paul Giletti, Frédéric Poullet
  • Publication number: 20130099797
    Abstract: A variable impedance device includes a passive tuner that includes at least one variable component, which is controllable to apply a variable impedance value to an input signal of the passive tuner. A low noise amplifier is configured to supply the input signal to the passive tuner by amplifying an input RF (radio frequency) signal.
    Type: Application
    Filed: August 31, 2012
    Publication date: April 25, 2013
    Applicants: STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Quemerais, Daniel Gloria, Romain Debroucke
  • Publication number: 20130093433
    Abstract: An integrated circuit capable of on-chip jitter tolerance measurement includes a jitter generator circuit to produce a controlled amount of jitter that is injected into at least one clock signal, and a receive circuit to sample an input signal according to the at least one clock signal. The sampled data values output from the receiver are used to evaluate the integrated circuit's jitter tolerance.
    Type: Application
    Filed: September 17, 2012
    Publication date: April 18, 2013
    Applicant: RAMBUS INC.
    Inventors: Hae-Chang Lee, Jaeha Kim, Brian Leibowitz
  • Patent number: 8421478
    Abstract: Radio frequency integrated circuits with on-chip noise source for use in the performance of tests and/or calibrations. A radio frequency integrated circuit includes at least one noise source residing on the radio frequency integrated circuit, the noise source being controllable by a digital input, and a radio frequency circuit residing on the radio frequency integrated circuit and being coupled to the noise source, wherein at least one attribute of the radio frequency circuit is determinable by controlling the noise source via the digital input.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brian Allan Floyd, David Ross Greenberg, Ramana Murty Malladi, Bradley Alan Orner, Scott Kevin Reynolds
  • Publication number: 20120296185
    Abstract: A signal acquisition circuit detects a wanted signal in a composite signal containing the wanted signal and an unwanted signal, where the highest frequency in the unwanted signal is higher than the highest frequency in the wanted signal. A sensor captures the composite signal and an analog-to-digital converter samples and converts the composite signal to digital format, and a filter subtracts the unwanted signal from the composite signal. The sampled signal contains a first component containing the sum of the wanted signal and the unwanted signal sampled at a first rate at least equal to the Nyquist rate for the wanted signal but less than a second rate that is at least equal to the Nyquist rate for the unwanted signal, and a second component containing the unwanted signal sampled at the second rate.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: ZARLINK SEMICONDUCTOR AB
    Inventors: Didier Serge Sagan, Reghu Kunnath Rajan
  • Patent number: 8289032
    Abstract: An integrated circuit capable of on-chip jitter tolerance measurement includes a jitter generator circuit to produce a controlled amount of jitter that is injected into at least one clock signal, and a receive circuit to sample an input signal according to the at least one clock signal. The sampled data values output from the receiver are used to evaluate the integrated circuit's jitter tolerance.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 16, 2012
    Assignee: Rambus Inc.
    Inventors: Hae-Chang Lee, Jaeha Kim, Brian Leibowitz
  • Patent number: 8283932
    Abstract: A noise measurement system in a power stabilization network, a variable filter applied to the power stabilization network, and a method for measuring noise in the power stabilization network are provided. A power line communication signal from the power stabilization network is attenuated relative to a particular frequency using a filter in order to allow the power line communication signal to operate within an input range of an Electromagnetic Interference (EMI) measurer. A signal from a forbidden frequency band is transmitted to the EMI measurer without any attenuation or influence on a noise floor.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: October 9, 2012
    Assignee: LS Industrial Systems Co., Ltd.
    Inventor: Young Gyu Yu
  • Publication number: 20120182052
    Abstract: Device for providing electrical signals with high immunity to noise. The invention develops a device for processing electrical signals (100) coming from a measurement sensor (60), said sensor (60) being subjected to noise disturbances caused by radio interference and lightning effects, such that said device uses a single current-loop cable (70), through which passes the electrical signal (100) encoded according to the signal time (Ta) and repetition time (Tr) of the current wave of said signal (100), such that said signal (100) contains an upper current state (10) and a lower current state (20) whose values are outside the decision window that activates a reading device (4) in the device, which reads the electrical signal (100) coming from the sensor.
    Type: Application
    Filed: July 21, 2011
    Publication date: July 19, 2012
    Applicant: Eads Construcciones Aeronauticas, S.A.
    Inventor: Eladio Lorenzo Pena
  • Patent number: 8155912
    Abstract: The invention concerns a method for determining a calibration value indicating the extent of loss of calibration of a group of three or more sensors in a sensor network, the method involving receiving a plurality of data values captured over a period of time by each of the sensors, determining by a processing unit (404) at least one correlation value associated with each sensor, each correlation value corresponding to the correlation between the data values captured by the associated sensor and the data values captured by at least one other sensor; extracting by a high pass filter (410) a noise component of the correlation values and outputting the calibration value determined based on the difference between the noise component and a reference noise value.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: April 10, 2012
    Assignee: Accenture Global Services Limited
    Inventor: Younes Souilmi
  • Publication number: 20110309943
    Abstract: A system transmits electric signals, electric energy or media over short distances between units movable relative to each other. The system has at least one first unit disposed along the trajectory of the movement and at least one second unit disposed for movement relative to the first unit. A diagnosis unit is associated with at least one of the units to detect the condition of at least one of said movable units and signals that detected condition to a central control unit.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: Schleifring und Apparatebau GmbH
    Inventor: Georg LOHR
  • Patent number: 8036616
    Abstract: According to an aspect of the present description a method for determining selected parameters of a noise characterization equation which describes a noise performance of a device as a function of a controllable variable of the device is provided. The method includes selecting a number of different values of the controllable variable of the device, the number of different values being equal to or larger than the number of parameters that are to be determined; measuring the noise performance of the device for the different values; utilizing the noise characterization equation to set up a number of independent relations which relate the parameters with the measurement results, the number of independent relations being equal to the number of parameters that are to be determined; and determining the parameters from the relations.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: October 11, 2011
    Assignee: Infineon Technologies AG
    Inventor: Anton Brueckler
  • Publication number: 20110178776
    Abstract: One of the objects of the present invention is to precisely obtain the noise figure (NF) of a receiver. A noise figure deriving device includes a first NF deriving unit that derives a first noise figure, which is a noise figure when a predetermined receiver-side pin pin1R is connected to a receiver, based on a ratio Y of one power to the other power of two types of reference noise, which are different from each other in a level, are output from a reference noise source an excessive noise ratio of which is known, and are measured by the receiver when the two types of reference noise are fed as input signals to the receiver via the predetermined receiver-side pin pin1R and the excessive noise ratio of the reference noise source, and a second NF deriving unit that derives a second noise figure, which is a noise figure when receiver-side pins pin2R, pin3R, and pin4R are connected to the receiver, based on an inter-measurement-device-side-terminal difference and the first noise figure.
    Type: Application
    Filed: May 19, 2009
    Publication date: July 21, 2011
    Applicant: ADVANTEST CORPORATION
    Inventor: Takeshi Nagasaka
  • Patent number: 7969162
    Abstract: The present invention is to provide a method and device of dynamically adjusting the operating voltage of a network integrated circuit including the steps of detecting and ranking the signal-to-noise ratio of N ports to single out a port for arbitration, dynamically controlling the operating voltage according to the signal-to-noise ratio of the port for arbitration, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a first threshold, increasing the operating voltage to a default operating voltage when the signal-to-noise ratio of the port for arbitration is smaller than the first threshold, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a second threshold, and increasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is smaller than the second threshold.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: June 28, 2011
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chieh-Sheng Lee, Liang-Wei Huang, Jiun-Hung Yu, Shieh-Hsing Kuo
  • Patent number: 7952364
    Abstract: A power noise detecting device includes a plurality of power lines, and a power noise detecting part configured to detect power noise by rectifying voltages of the plurality of power lines and converting the rectified voltages into effective voltages.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 31, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyung-Soo Kim, Yong-Ju Kim, Sung-Woo Han, Hee-Woong Song, Ic-Su Oh, Tae-Jin Hwang, Hae-Rang Choi, Ji-Wang Lee, Jae-Min Jang, Chang-Kun Park
  • Patent number: 7933559
    Abstract: A system for testing radio frequency (RF) communications of a device capable of such communications is provided. The system includes a chamber for isolating the device from RF interference, an antenna that is suitable for RF communications with the device wherein the antenna is capable of communications over a range of frequencies, the antenna being located within the chamber, and a digital communication link for providing non-RF communications with the device.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: April 26, 2011
    Assignee: Psion Teklogix Inc.
    Inventor: Zivota Zeke Stojcevic
  • Publication number: 20110043221
    Abstract: The present invention is to provide a method and device of dynamically adjusting the operating voltage of a network integrated circuit including the steps of detecting and ranking the signal-to-noise ratio of N ports to single out a port for arbitration, dynamically controlling the operating voltage according to the signal-to-noise ratio of the port for arbitration, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a first threshold, increasing the operating voltage to a default operating voltage when the signal-to-noise ratio of the port for arbitration is smaller than the first threshold, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a second threshold, and increasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is smaller than the second threshold.
    Type: Application
    Filed: October 28, 2010
    Publication date: February 24, 2011
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventors: Chieh-Sheng Lee, Liang-Wei Huang, Jiun-Hung Yu, Shieh-Hsing Kuo
  • Publication number: 20110040507
    Abstract: A method of inspecting a stack body of at least a porous layer and a dense layer comprises the first step of measuring the length of the stack body before the stack body is fired, the second step of measuring the length of the stack body after the stack body is fired, the third step of calculating a shrinkage rate of the stack body based on a first measured value from the first step and a second measured value from the second step, the fourth step of determining whether the calculated shrinkage rate of the stack body is acceptable or not based on the calculated shrinkage rate, the fifth step of calculating an S/N ratio of the stack body based on the first measured value and the second measured value, and the sixth step of determining whether the current-voltage characteristics of the stack body are acceptable or not based on the calculated S/N ratio.
    Type: Application
    Filed: February 16, 2009
    Publication date: February 17, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Mari maruyama, Ushio Harada, Hiroshi Ichikawa
  • Patent number: 7839152
    Abstract: The present invention is to provide a method and device of dynamically adjusting the operating voltage of a network integrated circuit including the steps of detecting and ranking the signal-to-noise ratio of N ports to single out a port for arbitration, dynamically controlling the operating voltage according to the signal-to-noise ratio of the port for arbitration, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a first threshold, increasing the operating voltage to a default operating voltage when the signal-to-noise ratio of the port for arbitration is smaller than the first threshold, decreasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is greater than a second threshold, and increasing the operating voltage by a voltage unit when the signal-to-noise ratio of the port for arbitration is smaller than the second threshold.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 23, 2010
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chieh-Sheng Lee, Liang-Wei Huang, Jiun-Hung Yu, Shieh-Hsing Kuo
  • Patent number: 7804304
    Abstract: A method for measuring the noise factor (FDUT) of a device under test, which requires exclusively a network analyzer. The noise factor (FDUT) is calculated from the internal noise (NNWA) of the network analyzer determined in a calibration process, the power amplification (GDUT) of the device under test determined by measuring the S-parameters of the device under test, and the measured value (PNOISE) of the noise output (NNWA) applied at a first gate of the device under test without exciting the device under test with a noise signal.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 28, 2010
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Werner Held
  • Patent number: 7787978
    Abstract: An apparatus, method, and computer program are provided for controller performance monitoring in a process control system. A level of disturbance associated with the process system is determined, and at least one value identifying a stability measure of a controller in the process system is determined using the determined level of disturbance and operating data associated with operation of the process system. The at least one value is compared to at least one threshold value, and a problem with the controller is identified based on the comparison. As an example, the process system could represent a product production system. Also, the operating data could include at least one of: measurement data from one or more sensors and control data for one or more actuators. The controller may be operable to receive the measurement data and generate the control data.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: August 31, 2010
    Assignee: Honeywell International Inc.
    Inventors: Sachindra K. Dash, Sujit V. Gaikwad, Konstantinos Tsakalis
  • Patent number: 7773681
    Abstract: In a wireless communication system, a method and apparatus for noise estimation of a received OFDM communication signal, wherein the signal comprises a data frame with a preamble having at least one long training field (LTF) containing two substantially similar OFDM symbols, comprise examining the LTF for substantially similar OFDM symbols. The noise power in the signal is estimated and the received signal power is measured. The signal to noise ratio is calculated and the signal power is determined by subtracting the noise power from the signal noise.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: August 10, 2010
    Assignee: InterDigital Technology Corporation
    Inventors: Chang-Soo Koo, Peter J. Voltz, I-Tai Lu, Qingyuan Dai, Robert L. Olesen
  • Publication number: 20100156437
    Abstract: Provided are apparatus and methods for demonstrating cable performance in real time. An apparatus may include a cable bundle of multiple disturber cables and a test cable arranged proximate one another, each coupled between a pair of data transceivers. A data loading device is configured to generate data for transmission across at least one of the disturber cables and the test cable, and a transmission data analyzer is configured to analyze data transmission performance of the test cable.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 24, 2010
    Inventors: Terry Cobb, Peter B. Kidd, Richard Y. Mei, Yinglin (Frank) Yang
  • Patent number: 7688057
    Abstract: An analysis circuit in an electromagnetic flowmeter provides diagnostic operating conditions and identifies one or more of the diagnostic operating conditions for which the coil current is stable during a sample interval. A diagnostic operating condition is selected as a measurement operating condition as a function of a noise floor measurements of the electrode voltage.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: March 30, 2010
    Assignee: Rosemount Inc.
    Inventors: Scot R. Foss, Robert K. Schulz
  • Publication number: 20080297172
    Abstract: A method for measuring the noise factor (FDUT) of a device under test, which requires exclusively a network analyzer. The noise factor (FDUT) is calculated from the internal noise (NNWA) of the network analyzer determined in a calibration process, the power amplification (GDUT) of the device under test determined by measuring the S-parameters of the device under test, and the measured value (PNOISE) of the noise output (NNWA) applied at a first gate of the device under test without exciting the device under test with a noise signal.
    Type: Application
    Filed: November 16, 2006
    Publication date: December 4, 2008
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventor: Werner Held
  • Publication number: 20080238441
    Abstract: A noise receiver is included in a network analyzer block diagram such that noise power and S-parameters measurements can be made almost simultaneously without mechanical switching in the test set. Additionally, a variable mismatch device tuner that is used by the network analyzer for S-parameter calibrations, is further used during the noise figure measurements method to remove the effect of source match variations so that the expected noise figure performance of the DUT when connected to a desired input (probably 50 ohms) can be determined.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Richard L. Rhymes, John C. Faick, Barry A. Brown, Robert E. Shoulders, Roger D. Pollard
  • Publication number: 20080191710
    Abstract: An integrated circuit arrangement has a signal input 20 and a signal output 60, a signal processing unit 100 which is connected to the signal input 20 and to the signal output 60, a noise source 50 for generating a noise signal, and a noise line 55 which connects the noise source 50 to the signal input 20.
    Type: Application
    Filed: March 1, 2007
    Publication date: August 14, 2008
    Inventor: Johann Peter Forstner
  • Patent number: 7412341
    Abstract: There is provided a jitter amplifier for amplifying or attenuating a jitter component contained in an input signal, having a jitter demodulating section for demodulating the jitter component from the input signal and an amplifying circuit for amplifying or attenuating the jitter component by controlling phase of the input signal based on the jitter component.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: August 12, 2008
    Assignee: Advantest Corporation
    Inventors: Kiyotaka Ichiyama, Masahiro Ishida, Takahiro Yamaguchi
  • Patent number: 7397865
    Abstract: A system analyzer may generate an estimated frequency response of a device, system, communication medium, or combination thereof by utilizing a stimulus signal that is robust against IQ modulator impairments. A stimulus generator may be used to generate a plurality of discrete tones according to a frequency spacing and a frequency offset. The frequency spacing and the frequency offset cause spectrally inverted spurs (generated by impairments of the IQ modulator) to occur at frequencies other than frequencies of said modulated signal that are associated with said plurality of discrete tones. Additionally, by implementing a Discrete Fourier Transform (DFT) to possess a frequency resolution equal to the frequency offset, there is no leakage of power associated with the spectrally inverted spurs into frequency bins of the DFT associated with the desired frequency components. Likewise, leakage between the desired frequency components and leakage associated with the local oscillator may be avoided.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: July 8, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: George S. Moore, Raymond A. Birgenheier
  • Patent number: 7315172
    Abstract: A mechanism for measuring noise densities below the noise floor of a measuring instrument. The measuring instrument may first acquire a fully-averaged reference spectral noise density trace and estimate corresponding reference statistical parameters. Based on the reference statistical parameters, the measuring instrument may construct a reference spectral noise density distribution. The measuring instrument may also acquire a fully-averaged sum spectral noise density trace and estimate corresponding sum statistical parameters. Based on the sum statistical parameters, the measuring instrument may construct a sum spectral noise density distribution. The measuring instrument may extract a spectral noise density distribution from the reference and sum distributions. The measuring instrument may also determine a confidence interval based on a desired confidence level.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: January 1, 2008
    Assignee: National Instruments Corporation
    Inventor: Mohamad A. Zeidan
  • Patent number: 7279907
    Abstract: A method of testing for power and ground continuity of a semiconductor device having Input and Output (IO) pins and at least a pair of power and ground pins includes identifying the power and ground pins of the device. A victim pin is selected from the IO pins of the device for each pair of the power and ground pins, and an aggressor pin for each victim pin is selected from the remaining IO pins. The aggressor pins are toggled between a high state and a low state. A level of switching noise on each victim pin is measured, and the measured levels of switching noise are compared with predetermined data to determine power and ground continuity of the device.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: October 9, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wai Khuin Phoon, Vivien Wong, Wah Yew Tan
  • Patent number: 7260507
    Abstract: An improved method for determining whether a measurement point, measured using a differential absorption LIDAR (DIAL) system, represents a plume point or a non-plume point. Concentration path lengths (CPL's) for a plurality of measurement points are determined. An average non-plume CPL, CPL, is provided. For each measurement point, a standard deviation, CPLsd, is calculated based on first order error propagation and it is determined that the measurement point represents a non-plume point when the Hooshmand decision rule (HDR) is met. The HDR is given by, ( cpl - CPL _ CPL sd ) 2 > ( T ) 2 , where cpl is the corresponding CPL of the measurement point being tested and T is a threshold standard deviation level.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: August 21, 2007
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: Hooshmand Mahmood Kalayeh