Abstract: A power amplifier can include an input stage that includes an amplifying transistor having an input node and an output node, such that a signal at the input node has a first power level and an amplified signal at the output node has a second power level. The power amplifier can further include a bias circuit configured to provide a bias signal to the amplifying transistor, and a feedback circuit that couples the output node of the amplifying transistor to the input node of the amplifying transistor. The feedback circuit can include a resistance and a capacitance arranged in series. The power amplifier can further include a gain compensation circuit implemented relative to the input stage such that the second power level is compensated for a variation in temperature associated with the power amplifier.
Abstract: A method of correlating physical locations with respective positions along an optical waveguide can include transmitting to the waveguide a signal including an indication of the transmitting location, and the waveguide receiving the signal. A system for correlating a physical location with a position along an optical waveguide can include a transmitter which transmits to the optical waveguide a signal including an indication of the transmitter location, and a computer which correlates the location to the position, based on the signal as received by the waveguide. A method of determining a position along an optical waveguide at which a signal is transmitted can include modulating on the signal an indication of a transmission location, and transmitting the signal to the waveguide, thereby causing vibration of the waveguide.
Abstract: The design and use of a simplified, highly efficient, waveguide-based wireless distribution system are provided. A low-loss waveguide is used to transport wireless signals from a signal source or sources to one or more receiver locations. One or more adjustable signal coupling devices partially insert into the waveguide at predetermined locations along the length of the system to provide variable, controlled extraction of one or more wireless signals. Low-loss impedance matching circuitry is provided between the waveguide coupling devices and output connectors to maintain high system efficiency. The system offers the capability of supplying signals of high strength and high quality to a large number of receivers in a wide wireless coverage area via a plurality of signal radiators. Some embodiments of the system are readily adaptable for wireless distribution service in HVAC plenum spaces. A system that combines the functions of fire extinguishing and waveguide wireless distribution is also disclosed.
Abstract: The present invention discloses a photon detection device that is adapted to detect at least one packet of photons. The photon detection device may include a photon-sensitive element having an output, an amplifier; and a non-linear feedback (NLF) element. The photon-sensitive element generates charges upon the engagement of at least one photon packet therewith. An increase from a first number of charges in the photon-sensitive element to a second number of charges, results in a corresponding increase of a first reset time required to reset the first number of charges to a respective second reset time required to reset the second number of charges in the photon-sensitive element, whereby the reset time is non-linear to with respect to an increase in the charges. Additional and alternative embodiments are described and claimed.
Type:
Grant
Filed:
March 14, 2008
Date of Patent:
June 16, 2009
Assignee:
CSEM Centre Suisse D'Electronique Et De Microtechnique SA
Inventors:
Michael Lehmann, Rolf Kaufmann, Max Erick Busse-Grawitz
Abstract: An amplifier system for a radio receiver, comprising: an amplifier for amplifying a signal applied to an amplifier input to generate an amplifier output signal; a variable reactance means coupled between the emitter or source of the amplifier and a ground voltage; and a feedback loop for sensing the amplifier output signal and, in response to a relatively high level of the output signal, controlling the reactance of the variable reactance means to maintain the amplifier in a substantially linear mode of operation.