Plural Coils Or Magnets Control Armature Movement Patents (Class 335/266)
  • Patent number: 10635178
    Abstract: One embodiment provides a multi-directional actuating module capable of moving in various directions and capable of delivering various tactile senses such as knocking or rubbing as well as vibration by controlling at least one of the intensity, direction or frequency of a magnetic field generation unit. Further, the multidirectional actuating module according to one embodiment may comprise: a moving body capable of moving in at least two or more axial directions by means of an external magnetic field; a support for supporting the moving body so as to be movable; and at least two or more magnetic field generation units which are in the form of a coil to generate the magnetic field.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 28, 2020
    Assignee: CK MATERIALS LAB CO., LTD.
    Inventors: Hyeong Jun Kim, Jong Hun Lee, Nam Seok Kim, Myung Sun Park, Ji Goo Kang
  • Patent number: 10423230
    Abstract: One embodiment provides a multi-directional actuating module capable of moving in various directions and capable of delivering various tactile senses such as knocking or rubbing as well as vibration by controlling at least one of the intensity, direction or frequency of a magnetic field generation unit. Further, the multidirectional actuating module according to one embodiment may comprise: a moving body capable of moving in at least two or more axial directions by means of an external magnetic field; a support for supporting the moving body so as to be movable; and at least two or more magnetic field generation units which are in the form of a coil to generate the magnetic field.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: September 24, 2019
    Assignee: CK MATERIALS LAB CO., LTD.
    Inventors: Hyeong Jun Kim, Jong Hun Lee, Nam Seok Kim, Myung Sun Park, Ji Goo Kang
  • Patent number: 9117583
    Abstract: An electromagnetic actuator device, comprising a coil unit (14), which surrounds a first yoke section (13) of a stationary yoke unit and can be activated by energizing the coil unit; and armature elements (10, 12), which are guided so as to be movable relative to the yoke unit and which interact with an output-side actuating partner and which can be driven in order to perform an actuating movement. The armature elements interact with at least one second yoke section (15, 16) of the yoke unit to form an air gap (26, 28) for a magnetic flux produced by the activated coil unit.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 25, 2015
    Assignee: ETO Magnetic GmbH
    Inventors: Raphael Bory, Jonas Boll, Daniela Haerter, Robert Steyer, Philipp Terhorst, Thomas Schiepp, Markus Laufenberg, Oliver Thode, Viktor Raff
  • Patent number: 9053848
    Abstract: An impulse solenoid valve with at least one solenoid coil, a magnetically soft magnetic circuit which comprises a stationary yoke and a movable solenoid core, and with a permanent magnet which is accommodated in the magnetic circuit such that it sectionally interrupts the magnetic circuit, is characterized in that a first portion and a second portion of the magnetic circuit each directly contact the same on opposite sides of the permanent magnet, preferably over the full surface.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 9, 2015
    Assignee: BUERKERT WERKE GMBH
    Inventors: Olaf Beyer, Sebastian Kahl, Martin Doerr
  • Publication number: 20150077204
    Abstract: A linear solenoid includes a movable element, a first stator element, a second stator element, a third stator element, a cover and a through hole. The third stator element has an opening formed on a thrust direction side of the third stator element. The cover covers the opening of the third stator element from the thrust direction side of an axial direction. The through hole passes through the third stator element. An inside of the third stator element is in fluid communication with an outside of the third stator element through the through hole.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventor: Jiro KONDO
  • Publication number: 20140375402
    Abstract: A linear solenoid has a moving core, a main coil, and a magnetically attractive core. The moving core is supported to be capable of sliding in an axial direction of the moving core. The main coil winds around the moving core and forms a tubular shape. The magnetically attractive core magnetically attracts the moving core based on magnetic force caused by the main coil. The linear solenoid may further have a secondary coil disposed separately from the main coil so that the secondary coil intersects with the moving core at a position corresponding to the secondary coil when the moving core moves toward the magnetically attractive core.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventor: Kimio UCHIDA
  • Publication number: 20140240068
    Abstract: [Means to Solve Problem] A coil (68) is housed in a main body (70). An inner cylindrical portion (98a) is disposed inward of the coil (68). An armature (80) adapted to be attracted by the coil (68) is disposed, being spaced from the inner cylindrical portion (98a). A magnetic flux concentrating member (100) is disposed on the side of the coil (68) nearer to the armature (80), being spaced from the inner cylindrical portion (98a). The gap between the inner cylindrical portion (98a) and the magnetic flux concentrating member (100) is larger than the gap between the armature (80) and the inner cylindrical member (100).
    Type: Application
    Filed: September 24, 2012
    Publication date: August 28, 2014
    Inventors: Nobuyuki Tsuru, Hiroshi Akase
  • Patent number: 8803644
    Abstract: A magnetic actuator has a static part and a dynamic part concentrically arranged therein. The static part comprises two permanent magnets and the dynamic part comprises two further permanent magnets. The magnet is oppositely oriented to the further magnets. The magnets are tuned to each other in such a way that the gravity on the dynamic part is compensated by the magnetic force on the dynamic part. The static part further includes a coil with which an additional magnetic field can be generated by which the actuation force can be adapted.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 12, 2014
    Assignee: J. Dams Beheer B.V.
    Inventor: Johannes Adrianus Antonius Theodorus Dams
  • Patent number: 8754731
    Abstract: A solenoid for a vehicle starter includes at least one coil with a passage extending through the coil in an axial direction. The solenoid further includes a plunger configured to move in the axial direction within the passage. The plunger includes a cylindrical outer surface with a substantially uniform diameter and a circumferential notch. The cylindrical outer surface includes a first portion with a first diameter on one side of the circumferential notch, and a second portion with the first diameter on an opposite side of the circumferential notch. The circumferential notch includes a portion with a second diameter that is less than the first diameter.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 17, 2014
    Assignee: Remy Technologies LLC
    Inventors: Stephen P. Santichen, Michael D. Bradfield
  • Patent number: 8729993
    Abstract: In a solenoid, a coil is energized in a state where movement of a plunger toward the inside of a yoke is stopped. Accordingly, when the coil is energized, it suffice that movement of the plunger toward the outside of the yoke is inhibited by a magnetic force, and it is not necessary to move the plunger into the yoke by the magnetic force. Therefore, it is not necessary that a force moving the plunger toward the inside of the yoke is increased by a conventional core. Accordingly, the conventional core is not assembled in a frame, so that number of components can be decreased so as to reduce the cost.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho
    Inventors: Hideaki Ito, Yoshiyuki Miwa
  • Patent number: 8662187
    Abstract: A linear motor activator for a downhole safety valve including a permanent magnet carrier; a plurality of permanent magnets mounted to the permanent magnet carrier; a coil carrier disposed in magnetic field proximity to the permanent magnet carrier; and a plurality of coils mounted to the coil carrier, one of the permanent magnet carrier and the coil carrier being movable relative to the other of the permanent magnet carrier and coil carrier, and being connected to a component of a downhole safety valve and method.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: March 4, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Gary Lake, Michael J. May, Priyesh Ranjan, Douglas Murray, Michael Rainone, Samuel Sackett, Talbot Presley
  • Patent number: 8641008
    Abstract: Method for controlling the position of an electromechanical actuator for reciprocating compressor valves. The actuator includes a member (302) movable in a direction parallel to the direction for opening and closing the obturator of the valve (12), between a position corresponding to the closed position and a position corresponding to the open position of the obturator (11). The member (302) is provided with a mechanism (322) able to act on the obturator (11) and with a magnetizable portion (312) co-operating with two electromagnets (102, 202) and being arranged in equilibrium between the latter via a suitable mechanism.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: February 4, 2014
    Assignee: Dott. Ing. Mario Cozzani S.r.l.
    Inventors: Massimo Schiavone, Andrea Raggi, Carlo Rossi
  • Patent number: 8525625
    Abstract: A solenoid for a vehicle starter comprises a spool including a first coil bay, a second coil bay, and an interior passage defining an axial direction. A first coil is positioned in the first coil bay of the spool, and a second coil positioned in the second coil bay of the spool. A plunger is positioned within the interior passage of the spool and configured to move in the axial direction when the first coil is energized. The first coil bay is positioned adjacent to the second coil bay in the axial direction. The spool further includes two end flanges and a middle flange. The middle flange separates the first coil bay from the second coil bay.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: September 3, 2013
    Assignee: Remy Technologies LLC
    Inventor: Michael D. Bradfield
  • Patent number: 8477001
    Abstract: A solenoid for a vehicle starter includes a pull-in coil made of a length of rectangular wire and a hold-in coil adjacent to the pull-in coil. A plunger is configured to move in an axial direction when the pull-in coil made of rectangular wire is energized. The pull-in coil and the hold-in coil are positioned on a spool with the plunger slideably positioned within a central passage of the spool. The plunger is configured to engage a plunger stop when the pull-in coil is energized. In at least one embodiment, the hold-in coil is separated from the plunger stop in the axial direction and the hold-in coil encircles the plunger stop.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Remy Technologies LLC
    Inventor: Michael D. Bradfield
  • Patent number: 8436703
    Abstract: A method for winding a coil on an object, wherein the coil includes a plurality of first coils and a plurality of second coils, may have winding the first coils on an exterior circumferences of the second coils, wherein an outer circumferences of the respective second coil is enclosed and in contact with outer circumference of at least three first coils, and wherein cross-sectional area of the second coil is smaller than that of the first coil, and wherein the outer circumference of the at least three first coils are in contact each other.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Hyundai Motor Company
    Inventor: Tae Won Lee
  • Patent number: 8421565
    Abstract: A solenoid for a vehicle starter includes at least one coil with a passage extending through the coil. A plunger is slideably positioned within the passage and configured to move in an axial direction between a first position and a second position. The plunger includes a substantially cylindrical outer surface portion with a circumferential notch formed in the outer surface portion. The at least one coil may include a pull-in coil and a hold-in coil wound on a spool. A plate member is positioned at one end of the spool and is separated from the plunger by a radial distance. The radial distance varies when the plunger moves in the axial direction as a result of the notch moving in relation to the plate member. A sleeve member may be coupled to the plunger such that the sleeve member covers the circumferential notch formed in the plunger.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 16, 2013
    Assignee: Remy Technologies LLC
    Inventors: Stephen P. Santichen, Michael D. Bradfield
  • Patent number: 8400243
    Abstract: There is an electromagnetic switch for a starter includes a first and second electromagnet and a frame and a cover. The first and second electromagnets are set alongside in the frame. The first and second electromagnets are configured to change a position with respect to the cover by rotating about the axis with respect to the frame.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 19, 2013
    Assignee: Denso Corporation
    Inventors: Tarou Okada, Mitsuhiro Murata, Takahisa Inagaki, Masami Niimi, Kiyokazu Haruno
  • Patent number: 8362862
    Abstract: A solenoid for a vehicle starter comprises a pull-in coil and a hold-in coil positioned axially adjacent to the pull-in coil. A plunger is positioned within the pull-in coil and configured to move in an axial direction when the pull-in coil is energized. The plunger is separated from a plunger stop in the axial direction by an air gap when the pull-in coil and the hold-in coil are not energized. When the pull-in coil and hold-in coil are energized, a shoulder of the plunger moves in an axial direction toward the plunger stop. The pull-in coil is positioned in the solenoid such that it is removed from the plunger stop in the axial direction. In contrast, the hold-in coil encircles the plunger stop.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 29, 2013
    Assignee: Remy Technologies, LLC
    Inventor: Michael D. Bradfield
  • Patent number: 8354908
    Abstract: The present invention provides a cylindrical magnetic levitation stage which includes a cylindrical substrate used to form micro-patterns of various arbitrary shapes on a large-area semiconductor substrate or display panel substrate, a cylindrical substrate, a combination of a first permanent magnet array and a first coil array and a combination of a first permanent magnet array and a first coil array, which are coupled to the cylindrical substrate, so that levitation, axial translation and rotation of the cylindrical substrate can be made finely through the control of a magnetic force generated by the interaction between a magnetic field generated by electric current applied to the coil arrays and a magnetic field generated from the permanent magnet arrays corresponding to the coil arrays.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 15, 2013
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Jeong Woo Jeon, Hyun Seok Oh, Sung Il Chung, Yeon Ho Jeong, Do Hyun Kang, S. A. Nikiforov, Mitica Caraiani
  • Patent number: 8237527
    Abstract: A permanent magnetic actuator includes a flux inducing unit having a hollow space therein and formed by laminating a plurality of plates, a movable element disposed in the hollow space of the flux inducing unit to be reciprocated, permanent magnets installed at inner walls of the hollow space, and guide members located between the permanent magnets and the movable element and configured to guide reciprocating motion of the movable element.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 7, 2012
    Assignee: LSIS Co., Ltd.
    Inventor: Young Gyu An
  • Patent number: 8237526
    Abstract: Apparatus for inductive braking of a projectile are disclosed. Embodiments include a receiver that has a unidirectional conductor having a closed conductive pathway that encircles a passageway for a moving projectile. The unidirectional conductor permits current to flow through it in substantially only one direction around the passageway. As the projectile and its associated magnetic field move past the unidirectional conductor, the moving magnetic field induces a current flow through the closed conductive pathway, which in turn generates a magnetic field behind the projectile having the same polarity as the projectile's field. The two fields attract one another, which both exerts a braking force on the projectile and tends to align the two fields. Alignment of these fields centers the projectile away from the passageway wall.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: August 7, 2012
    Assignee: Sierra Lobo, Inc.
    Inventors: Philip Travis Putman, Kamel Salama
  • Patent number: 8228149
    Abstract: An electromagnetic control mechanism (1) with an actuating element (15) which can move longitudinally and can be retained in three stable positions. By way of two coils (3, 4), the actuating element (15) can be switched to a first or to a second stable position, namely, the two opposed end positions. The actuating element (15) comprises an actuator rod (7) with a permanent magnet (8) arranged on the actuator rod (7), such that the actuating element (15) can be retained magnetically in the third stable position by the permanent magnet (8).
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: July 24, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Thomas Puth, Reiner Keller, Michael Pantke
  • Patent number: 8212640
    Abstract: A magnetically driven tool includes a shaft having a bottom application end including a contacting surface, at least one support around a portion of the shaft for supporting components positioned outside the shaft that float with respect to the shaft. A first magnet is affixed to the shaft. An electromagnet secured to the support is positioned outside the shaft and floats with respect to the shaft above the first magnet. At least one bearing is provided for sliding the shaft in an axial direction and optionally rotating the shaft. For pushing operations, the direction of current through the electromagnet is applied so that like poles relative to the first magnet face one another to provide a repulsive force, while for pulling operations unlike poles face one another. The magnitude of the current sets a force applied by the contacting surface to a workpiece.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 3, 2012
    Inventor: Jerome Tuschner
  • Patent number: 8040210
    Abstract: A switching contact, an electromagnetically operated electromagnet for driving the switching contact, and a drive power source device for driving the electromagnetically operated electromagnet. The electromagnetically operated electromagnet includes a movable core coupled to a movable contact of the switching contact, a fixed core located in a peripheral portion of the movable core, and coils wound around the movable core and the fixed core. Currents are supplied to the coils to drive the movable core. Capacitors store charges for supplying the current to the coils. Resistors are arranged in series with a path through which the capacitors are connected with the coils of the electromagnetically operated electromagnet and through which a current for closing operation flows. Capacitances of the capacitors and values of the resistors are controlled to adjust a supplied current characteristic to the electromagnetically operated electromagnet.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: October 18, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tae Hyun Kim, Akihiko Maruyama, Tomotaka Yano
  • Patent number: 8004378
    Abstract: A coil configuration having a tube-shaped coil brace of an electromagnetic drive is provided, particularly a two-stage starter solenoid switch, the coil configuration having a holding winding and a pull-in winding. The coil brace has at its one end a first delimitation and at its other end a second delimitation, between which the holding winding is situated. The first delimitation has on its side, facing away from its second delimitation, an axial recess for accommodating the pull-in winding.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 23, 2011
    Assignee: Robert Bosch GmbH
    Inventor: Hartmut Wanner
  • Patent number: 7852182
    Abstract: The actuator (10, 90) of a personal care appliance, such as a toothbrush (11), which includes a housing member (12), a double E shaped yoke assembly (14, 52) with two electrical coils (36, 38) wound around the opposing E shaped sections. An armature (28) extends adjacent the top of the yoke assembly (14, 52), extending beyond the edges thereof. The armature (28) further includes side portions which extend adjacent the sides of the E shaped yoke (52), with each side portion including two spaced magnets which are aligned with the coils (36, 38) when the actuator (10, 90) is in a rest position. Power is supplied from a battery source, and a programmable control assembly (46) applies power to the coils (36, 38) in a selected manner to produce axial and/or tangential or complex movement of the brushhead workpiece (33) at the end of an output shaft extending from the armature (28).
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 14, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ettes Willhelmus, Pawel Leshem, Pieter Johannes Bax, Andries Bron
  • Patent number: 7847661
    Abstract: An actuation magnet is provided for moving a closure needle of a hot-runner nozzle of an injection molding tool. The actuation magnet has an armature which is coupled in movement to the closure needle and may be displaced between first and second cores by subjecting at least one coil to current. A permanent magnet is arranged in a manner such that it exerts an additional magnetic force on the armature in at least one, preferably two, movement directions.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: December 7, 2010
    Assignee: Kuhnke Automation GmbH & Co. KG
    Inventors: Mathias Jotter, Borgar Pfeiffer, Manfred Rufer, Jens Storjohann, Wolfram Heisen
  • Patent number: 7746202
    Abstract: The invention relates to a magnetic actuating device containing a reference element and an adjusting element which is movably disposed between first and second end positions with respect to the reference element. The reference and/or adjusting elements contain a magnetizable material. A drive coil is provided for generating a magnetic field that moves the adjusting element from the first to the second end position. A mechanical clamping device is provided for producing mechanical forces that move the adjusting element from the second to the first end position. A fixing device is provided with a permanent magnet for generating a holding force fixing the adjusting element in the second end position with respect to the reference element. The fixing device contains a fixing unit separated from the adjusting element and provided with the permanent magnet.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: June 29, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jörg Hagen, Carsten Protze
  • Patent number: 7637475
    Abstract: A solenoid is provided which, in the preferred embodiment, has a housing having an axial opening in it. The housing has a divider mounted in the axial opening to separate the axial opening into a first segment and a second segment. Respective ones of a first pole piece and a second pole piece are located on opposite sides of the divider. The first pole piece is moveable with the first segment between an extended position and a retracted position, the first pole piece having a plunger positioned at an end of the first pole piece. A permanent magnet is moveably mounted from the axial opening and is moveable independently of the second pole piece between at least a first position adjacent to the divider, and a second position adjacent the second pole piece. The construction provides a fast acting, low cost latching solenoid construction.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 29, 2009
    Assignee: Kurz-Kasch, Inc.
    Inventor: Ross R. Adams
  • Publication number: 20090261930
    Abstract: At least two sets of driving coils of the same individual electromagnetic actuating device of the present invention in parallel connection or series and parallel connection to appear relatively lower impedance being actuated to obtain larger actuating force is further manipulated by the switching device to only partially electrified coils thus reducing current passing through driving coils, while required operating characteristics of the electromagnetic actuating device can still be satisfied by the electromagnetic effective force.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Inventor: Tai-Her Yang
  • Patent number: 7579935
    Abstract: An actuator has a resilient shape memory member 1 with superelasticity, a magnetic body 2, and a magnetic field generator 3. At least one of the magnetic body 2 and the magnetic field generator 3 is fixed to the resilient shape memory member 1 such that one of the magnetic body 2 and the magnetic field generator 3 is stationary while the other is movable, whereby the movable member is moved by a magnetic field provided from the magnetic field generator 3.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: August 25, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Masahiro Ohta, Toru Sukigara
  • Patent number: 7533834
    Abstract: A fuel injection valve for fuel injection systems of combustion engines, in particular for the direct injection of fuel into a combustion chamber of a combustion engine, comprising a fuel inlet which is adapted to have fuel flow into the fuel injection valve, an electrically controllable actuation means which cooperates with a valve arrangement in order to cause the fuel in a directly or indirectly controlled manner to exit into the combustion chamber through a fuel outlet, with the actuation means comprising a magnet coil arrangement to be supplied with current, an essentially soft magnetic magnet yoke arrangement cooperating with same, as well as an essentially soft magnetic magnet armature arrangement cooperating with same, with the magnet yoke arrangement and/or the magnet armature arrangement comprising a configuration which reduces eddy currents.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 19, 2009
    Assignee: Compact Dynamics GmbH
    Inventors: Andreas Gründl, Bernhard Hoffmann
  • Patent number: 7518479
    Abstract: An inline electromagnetic tool actuator incorporates an actuator housing, an elongated armature, a tool assembly, spaced-apart return magnets, at least one drive magnet, and at least one magnet wire. The elongated armature is located inside the housing, and is adapted for reciprocating linear movement along a notional assembly axis. The tool assembly is operatively attached to the armature. The return magnets are located inside the housing, and are coaxially aligned with the armature. The return magnets have respective inward facing surfaces defining respective magnetic poles. The drive magnet is affixed to the armature, and is arranged between the return magnets. The drive magnet has opposing outward facing surfaces each of like polarity to adjacent inward facing surfaces of the return magnets. The magnet wire is coiled about the armature.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 14, 2009
    Inventors: Thomas Mask, Mark Evans
  • Patent number: 7301426
    Abstract: Electromagnetic actuator for operating at least one movable contact of a switch into a switched-on position or a switched-off position. The electromagnetic actuator (1) has a first magnetic circuit for making a movable (3) and a fixed (4) pole body move towards one another and a second magnetic circuit, separate from the first magnetic circuit, with a permanent magnet (9) and a retaining plate (10). A switching-off coil (15) operates to counteract the magnetic field in the second magnetic circuit so that the actuator (1) can return to a switched-off position. In the axial direction of the actuator (1), the switching-off coil (15) is positioned Gloser to the retaining plate (10) than the permanent magnet (9), as a result of which more effective operation of the actuator is possible. Furthermore, the actuator is constructed from cylindrical elements that are easy to produce and to assemble.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: November 27, 2007
    Assignee: Eaton Electric B.V.
    Inventor: Arend Jan Willem Lammers
  • Patent number: 7278447
    Abstract: An actuator assembly comprised of: a first coil and a second coil, each with a bore and a producing a magnetic flux when subject to an electric signal; a tube extending through the bores such that coils are coaxial; a magnetic pole piece within the tube and generally between the first bore and the second bore; a magnetic ring set outside of the tube and between the coils, in which the magnetic flux paths both travel through the magnetic pole piece and the magnetic ring to complete their respective magnetic paths; and a first and second axially translatable movable member within the tube and wherein the movable members each axially translate towards the magnetic pole piece in the presence of the magnetic flux such that by controlling the electric signal, proportionality can be achieved.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 9, 2007
    Inventor: Viraraghavan S. Kumar
  • Patent number: 7278593
    Abstract: A common rail fuel injector comprises a three-way control valve that controls the flow of high-pressure fuel to a fuel cavity for fuel injection. Specifically, when the control valve is transitioning to a first, on position, from a second, off position, high-pressure fuel is provided to both the fuel cavity and to a check control cavity, thereby preventing fuel injection until the control valve seats in the first, on position. Once seated in the first, on position, the control valve only provides high-pressure fuel to the fuel cavity allowing fuel injection to occur. To stop injection, the control valve is moved from the first, on position to the second, closed position. Once again, while the control valve is in the transition location between the two positions, high-pressure fuel is provided to both the fuel cavity and to the check control cavity thereby terminating injection.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 9, 2007
    Assignee: Caterpillar Inc.
    Inventors: Yongxin Wang, Ye Tian, Norman D. Knapp, Norval J. Wiemken
  • Patent number: 7249579
    Abstract: A valve actuator for an internal combustion engine is described having a core having a wound coil located therein, said core further having at least one permanent magnet located at least partially inside or outside said coil and positioned at an angle relative to a direction of movement of an armature. Further, various recesses, indentations, chamfers, bevels, and/or depressions may be included to affect flux leakage, and/or force generation.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: July 31, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Feng Liang, Michael Degner
  • Patent number: 7222554
    Abstract: A shift actuator for a transmission for turning, in a direction of shift, a shift lever support mechanism mounting the shift lever of the transmission, wherein it comprises an operation lever coupled, at its intermediate portion, to said shift lever support mechanism, the first electromagnetic solenoid and the second electromagnetic solenoid which are each coupled to both ends of said operation lever so as to operate in the upward and downward directions; and an operation rod of said first electromagnetic solenoid is coupled to one end of said operation lever and an operation rod of said second electromagnetic solenoid is coupled to the other end of said operation lever.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 29, 2007
    Assignee: Isuzu Motors Limited
    Inventors: Masahiko Hayashi, Yasushi Yamamoto, Nobuyuki Iwao
  • Patent number: 7191963
    Abstract: The injector has a cylindrical body, which houses an injection nozzle regulated by an injection valve provided with a moveable pin, a fuel supply line, an injection chamber communicating with the supply line, housing a lower portion of the pin and delimited below by a valve seat of the injection valve, a control chamber communicating with the supply line and housing an upper portion of the pin, and a control valve, which is capable of putting the control chamber in communication with a drain for the low-pressure fuel and is controlled by an electromagnetic actuator provided with a pair of electromagnets identical with each other and arranged mechanically in series with each other so that their respective thrust forces are added together.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: March 20, 2007
    Assignee: Magneti Marelli Powertrain S.p.A.
    Inventors: Andrea Cobianchi, Fabio Cernoia
  • Patent number: 7100470
    Abstract: A gear change device including a shift lever support mechanism arranged in a casing to support a shift lever so as to slide in the axial direction of the casing and to rotate, a select actuator for operating the shift lever support mechanism to slide the shift lever in the axial direction which is the direction of selection, and a shift actuator for rotating the shift lever support mechanism to rotate the shift lever in the direction of shift. The shift actuator has an operation lever, with a base portion mounted on the shift lever support mechanism, and a pair of electromagnetic solenoids arranged facing each other, with the acting portion of the operation lever interposed therebetween. The solenoids are inclined with respect to the horizontal direction. A compression spring produces an urging force in the direction of operation of the electromagnetic solenoid which operates upward along the inclination.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 5, 2006
    Assignee: Isuzu Motors Limited
    Inventor: Michinobu Suzuki
  • Patent number: 6971346
    Abstract: A system for electronically actuating valves in an engine. The system includes a first voltage source, a second voltage source, and plural valve actuator subsystems coupled between the first voltage source and the second voltage source. Each valve actuator subsystem has a valve actuator and a switch. One of the actuator subsystems is configured so that current flows from the first voltage source through the valve actuator of the subsystem when the switch is in a first position, and when the switch is in a second position, current is permitted to flow from the valve actuator toward the second voltage source. Another of the valve actuator subsystems is configured so that current flows from the second voltage source through the valve actuator of the subsystem when the switch is in a first position, and when the switch is in a second position, current is permitted to flow from the valve actuator toward the first voltage source.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: December 6, 2005
    Assignee: Ford Global Technologies, LLC
    Inventor: Gary Flohr
  • Patent number: 6948461
    Abstract: A system and method for controlling an internal combustion engine provide valve actuation that selectively couples an energy storage device to a launching coil to recover energy stored in the magnetic field and valve spring of the launching coil, decouples the energy storage device during a valve opening or closing event to control energy supplied to the catching coil, and couples the energy storage device to the catching coil to transfer energy from the storage device to the catching coil to provide a repeatable soft landing. A nonlinear feedback controller incorporates a feedforward system with an observer to control the rate of energy into the magnetic field of the catching coil while compensating for system losses and work to overcome gas forces within the combustion chamber. Feedback linearization techniques improve stability of the control system.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: September 27, 2005
    Assignee: Ford Global Technologies, LLC
    Inventor: Allan J. Kotwicki
  • Patent number: 6925803
    Abstract: An actuator includes a solenoid with a ferromagnetic nucleus which slides inside the solenoid. The nucleus is combined with a rod appropriate for interacting with a turbocharger's pivot point. The actuator is provided with a sensing system of the position of the ferromagnetic nucleus in the solenoid. The actuator also includes an electronic circuit which:—on the way in receives at least the signal from the engine's electronic control unit and the feedback signal, connected to the position of the ferromagnetic nucleus of the solenoid;—on the way out it distributes the electric current, connected to the entry signals, with which it feeds the solenoid.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: August 9, 2005
    Inventor: Gianfranco Natali
  • Patent number: 6925975
    Abstract: A controller for an electromagnetic actuator comprises a pair of springs acting on opposite directions, and an armature connected to the springs. The armature is held in a neutral position given by the springs when the armature is not activated. The actuator also comprises a pair of electromagnets for driving the armature between two end positions. In response to a release of the armature held in one of the end positions, the controller applies brake to the armature according to a load condition of the armature. In high-load conditions, the valve can surely be opened without additional electric power. In low-load conditions, the armature is prevented from colliding with a yoke of the electromagnet. The application of brake includes over-excitation operation, flywheel operation and suspension of power supply. In the over-excitation operation, voltage is applied to the electromagnet corresponding to one of the end positions from which the armature is released for a first period.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: August 9, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hidetaka Ozawa, Kenji Abe, Yoshitomo Kouno, Minoru Nakamura, Toshihiro Yamaki, Yasuo Shimizu
  • Patent number: 6892971
    Abstract: A fuel injector, in particular a fuel injector for fuel-injection systems of internal combustion engines, includes a first magnetic coil cooperating with a first armature, a second magnetic coil cooperating with a second armature, and a valve needle which is in force-locking connection with the first armature via a first flange and to the second armature via a second flange, to actuate a valve-closure member. A restoring spring acts upon the valve needle in a closing direction of the fuel injector. A first positioning spring, situated between the first flange and the first armature, acts upon the first armature in the closing direction of the fuel injector, while a second positioning spring, situated between the second flange and the second armature, acts upon the second armature in an opening direction of the fuel injector.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 17, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Franz Rieger, Fevzi Yildirim, Andreas Eichendorf, Günther Hohl, Michael Hübel, Jürgen Stein
  • Patent number: 6823757
    Abstract: An electromagnetic solenoid comprising a cylindrical body yoke, a front yoke arranged on one end side of the body yoke, a fixed yoke formed integrally with the front yoke, a back yoke arranged on the other end side of the body yoke, a center yoke arranged at the central portion of the body yoke, a first electromagnetic coil arranged along the inner peripheral surface of the body yoke between the center yoke and the front yoke, a second electromagnetic coil arranged along the inner peripheral surface of the body yoke between the center yoke and the back yoke, an operation rod arranged being inserted through the front yoke and the fixed yoke so as to move, a first moving yoke mounted on an end of the operation rod on the side of the back yoke, a second moving yoke arranged on the operation rod so as to slide between the first moving yoke and the fixed yoke, and a limiting means for limiting the second moving yoke from moving toward the back yoke at an intermediate position in a range in which the first moving y
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: November 30, 2004
    Assignees: Isuzu Motors Limited, Transtron Inc.
    Inventor: Kazuhiko Kobayashi
  • Patent number: 6791442
    Abstract: A magnetic latching solenoid including a solenoid operating mechanism, and further comprising a magnetic latching subassembly cooperating with, but positioned independently of the solenoid operating mechanism. In a preferred embodiment, the solenoid operating system may be of a bi-directionally operated structure arranged for alternative magnetically latching function. Independently operated, magnetic latching subassemblies are spaced apart from one another and from opposite ends of the bi-directionally operated solenoid operating mechanism.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: September 14, 2004
    Assignee: Trombetta, LLC
    Inventor: Stephen M. Schmidt
  • Patent number: 6768405
    Abstract: A switching device of low power consumption type, in which magnetic pole portions 37c of a pair of iron cores 37 constructing an electromagnet block 30 are individually arranged on the bottom face of a sealing case 41. The other end portions of the paired iron cores 37 are connected to each other by a yoke 39. As the electromagnet block 30 is magnetized and demagnetized, the two end portions of a moving iron member 63 of a contact mechanism block 50 are attracted by and leave the paired magnetic pole portions 37c of the iron cores 37.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: July 27, 2004
    Assignee: Omron Corporation
    Inventors: Takeshi Nishida, Yasuyuki Masui, Kozo Maenishi
  • Patent number: 6732607
    Abstract: A gear change device comprises a select actuator for operating the shift lever of a transmission in the direction of selection and a shift actuator for operating the shift lever in the direction of shift. The select actuator has a casing, a shift lever support member that is arranged in the casing so as to slide in the axial direction and supports the shift lever, a magnetic moving means arranged on the outer periphery of the shift lever support member, a cylindrical fixed yoke arranged surrounding the magnetic moving means, a pair of coils arranged inside the fixed yoke, and a select position-limiting means for limiting the operation position of the shift lever support member according to a thrust produced by the shift lever support member in proportion to the amount of electric power fed to the pair of coils, and further, magnetic members are arranged on both sides of the pair of coils.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: May 11, 2004
    Assignee: Isuzu Motors Limited
    Inventors: Yasushi Yamamoto, Nobuyuki Iwao
  • Patent number: 6526928
    Abstract: The multiple actuator for an electromechanically actuated valve has a housing and a plurality of armature shafts extending through the housing. Each of the armature shafts carry an armature, and two electromagnets which both lie inside the housing. Two springs act on each armature, forcing it into a position of repose between the electromagnets. This configuration makes optimum use of the available basic area above a valve which is to be driven. The armature has a maximum surface area, and optimum dissipation of heat through thermal conduction is possible via the corresponding housing underside.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: March 4, 2003
    Assignees: Siemens Aktiengesellschaft, Bayerische Motoren AG
    Inventors: Erwin Bauer, Albert Hoerl-Liegl, Ferdinand Loebbering, Stefan Loidl