Composite (e.g., With Overlay) Patents (Class 337/296)
  • Patent number: 11749482
    Abstract: A protection element includes a first electrode (1), a second electrode (2) having a spring property, and a fuse element material (3) that is disposed between the first electrode and the second electrode, in which the fuse element material (3) is supported by being interposed between the first electrode (1) and the second electrode (2) in a bent state.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 5, 2023
    Assignee: DEXERIALS CORPORATION
    Inventor: Yoshihiro Yoneda
  • Patent number: 11688577
    Abstract: A high-voltage direct-current thermal fuse includes one or more fusible components each having two fusible alloy support arms, a fluxing agent, a fusing cavity, two pins, and an insulation block. Two fusible alloy support arms are arranged opposite, and the fusible component is U-shaped. The fusible component and the fluxing agent are sealed within the fusing cavity. The two pins are respectively connected to the two fusible alloy support arms. The insulation block is arranged between the two fusible alloy support arms and separates the two pins. A volume ratio of the fluxing agent to the fusing cavity is approximately 50% or less, preferably, 10%-50%. The number of the one or more fusible components is at least two, and the at least two fusible components are arranged separately. The thermal fuse can avoid the burst and quickly cut off the current, which provides effective thermal protection for a circuit.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 27, 2023
    Assignee: XIAMEN SET ELECTRONICS CO., LTD
    Inventor: Yaoxiang Hong
  • Patent number: 11640892
    Abstract: A protective element includes an insulating substrate, a plurality of electrodes provided on the insulating substrate, a fuse element electrically connected to any electrode of the plurality of electrodes, and a heat generation element provided on the insulating substrate for heating and fusing the fuse element. The fuse element contains a composite metal material in which a first fusible metal and a second fusible metal are stacked, some of a component of the first fusible metal being dissolved at a joint working temperature, the second fusible metal being lower in melt temperature than the first fusible metal, at least some of a component of the second fusible metal being molten at the joint working temperature.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 2, 2023
    Assignee: SCHOTT JAPAN CORPORATION
    Inventors: Shintaro Nakajima, Tsuyoshi Hattori
  • Patent number: 11631565
    Abstract: A thermal fuse may comprise an electrode and a conductor separated by a phase change material. The electrode may be formed from a conductive material that generates hydrogen when exposed to water or hydrogen peroxide. The phase change material may release water or hydrogen peroxide at or above an activation temperature.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: April 18, 2023
    Assignee: Science Applications International Corporation
    Inventors: John P. Timler, Xingcun C. Tong
  • Patent number: 11618109
    Abstract: Provided is a wire for electric bonding, which includes a solder wire and a composition for bonding adjacent to the solder wire, the solder wire is wet when reaches to a melting point as heat is transferred, the composition for bonding includes an epoxy resin, a reducing agent, and a curing agent, the reducing agent removes a metal oxide formed on a surface of the solder wire, and the epoxy resin is cured by chemically reacting with the reducing agent and the curing agent at a curing temperature.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: April 4, 2023
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Gwang-Mun Choi, Yong Sung Eom, Kwang-Seong Choi, Jiho Joo, Chanmi Lee, Ki Seok Jang
  • Patent number: 11482393
    Abstract: A fuse and a production method therefor. The fuse includes upper and lower insulating layers provided with terminal electrodes, and a fuse element between the upper and lower insulating layers. The fuse further includes a functional layer provided between the fuse element and the insulating layers. The functional layer includes a substrate and an arc extinguishing material uniformly or substantially uniformly distributed in the substrate; the arc extinguishing material includes a sealed cavity; the substrate includes low temperature co-fired ceramic powder, aerosol silicon oxide, silicon oxide, inert resin, phosphoric acid, and phosphate ester polyester; the content of the arc extinguishing material is 1-50 wt %. The fuse overcomes the shortcomings of phenomena such as deformation, bending, and defects occurring to a fuse element caused by the shrinkage mismatch of the fuse element with a buffer layer and an arc extinguishing layer in a sintering process.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 25, 2022
    Assignee: AEM Components (Suzhou) Co., Ltd.
    Inventors: Xiqing Chen, Xiangming Li, Xiaobing Shan, Yonglin Yang
  • Patent number: 11145480
    Abstract: Provided is a fuse device used for high rating and high current applications excellent in impact resistance at the time of current interruption, and capable of preventing falling off of the case. The fuse device includes: a base member; a cover member fitted to the base member and covering a surface of the base member; and a fuse element mounted on the surface of the base member; wherein one of the base member and the cover member is provided with a side wall intersecting with the plane of the surface of the base member and including an opening formed therein, and the other of the base member and the cover member is provided with a fitting projection projecting outward from a plane intersecting with the plane of the surface of the base member and fitted into the opening of the side wall.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: October 12, 2021
    Assignee: DEXERIALS CORPORATION
    Inventor: Yoshihiro Yoneda
  • Patent number: 10553384
    Abstract: An anti-surge winding fusible resistor fuse includes: a first column, in combination with a first cap, a first fuse wire wound around the first column at intervals and in combination with the first cap; a second fuse wire, coated on a second column in combination with the first column; a first ring, configured on a contact of the first column with the second fuse wire, and the first fuse wire in combination with the first ring; an insulation body, in combination with the second fuse wire; a third column, in combination with the insulation body and a second cap, a third fuse wire wound around the third column at intervals and in combination with the second cap; and a second ring, covered on the second fuse wire, insulation body and third column, and the third fuse wire in combination with the second ring.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: February 4, 2020
    Assignee: CONQUER ELECTRONICS CO., LTD.
    Inventor: Hung-Chih Chiu
  • Patent number: 9184609
    Abstract: A protection element, connected onto an electric current path of an electric circuit, is provided with an insulating substrate, a heating resistor formed on one surface of the insulating substrate with a first insulating layer interposed therebetween, a low-melting-point metal body disposed above the heating resistor with a second insulating layer interposed therebetween and that constitutes part of the electric current path, and connection portions connected to both ends of the low-melting-point metal body and that electrically connect the electric current path and the low-melting-point metal body. The connection portions are formed on the surface of the insulating substrate with a first glass layer interposed therebetween.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: November 10, 2015
    Assignee: Dexerials Corporation
    Inventors: Koichi Mukai, Masahiko Ishimaru, Takahiro Asada, Chisato Komori, Shoko Nagaki
  • Publication number: 20150102896
    Abstract: A fuse including a fuse element, a diffusion layer, and a barrier layer is provided. The barrier layer acts to slow down and/or prevent premature diffusion of the diffusion material into the fuse element during normal operation. As a result, the fuse may be operated in environments having higher ambient temperatures and/or higher currents than otherwise possible. some examples provide a fuse including a fuse element formed from a first conductive material, the fuse element, a barrier layer disposed on a surface of the fuse element, the barrier layer including first and second portions separated by a gap, the barrier layer formed from a second conductive material different from the first conductive material, and a diffusion layer disposed in the gap on the surface of the fuse element, the diffusion layer formed from a third conductive material different from the second conductive material and first conductive material.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: LITTELFUSE, INC.
    Inventors: GORDON TODD DIETSCH, FRANCISCO URIBE, FREDERICK DELOS REYES, JOHN J. MONKOWSKI, JR.
  • Patent number: 9007164
    Abstract: The present invention provides a complex type fusible link which includes an insulative block base including a plurality of cavities; a conductive connecting plate which is integrally embedded in the insulative block base, a part of the conductive connecting plate being exposed to at least one of the cavities; a plurality of fusible elements each of which is accommodated in corresponding one of the cavities and includes a first end which is connected to the part of the conductive connecting plate and a second end; and a plurality of terminals each of which is integrally embedded in the insulative block base and includes a first end which is connected to the second end of corresponding one of the fusible elements and a second end which is exposed from the insulative block base.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: April 14, 2015
    Assignee: Yazaki Corporation
    Inventors: Masashi Iwata, Norio Matsumura, Tatsuya Aoki, Kenya Takii
  • Patent number: 8994489
    Abstract: Some embodiments include a fuse having a tungsten-containing structure directly contacting an electrically conductive structure. The electrically conductive structure may be a titanium-containing structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Some embodiments include a method of forming and using a fuse. The fuse is formed to have a tungsten-containing structure directly contacting an electrically conductive structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Current exceeding the predetermined level is passed through the interface to rupture the interface.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Giorgio Servalli
  • Patent number: 8957755
    Abstract: A multi-layer fuse and its manufacturing method are provided. The multi-layer fuse comprises a ceramic substrate, back electrodes, front electrodes, fuse wire, protective layers and metal ends, wherein the fuse wire is prepared in multiple layers and the adjacent layers of fuse wire are connected in a head-to-tail style; the two lead-outs of the fuse wire as a whole are respectively connected to the two front electrodes located at the two ends of the substrate, and each layer of the fuse wire is deposited with a protective layer. During manufacturing, all protective layers but the upmost one leaves the tail of each layer of fuse wire uncovered so that the head-to-tail series connection is possible.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: February 17, 2015
    Assignee: Nanjing Sart Science & Technology Development Co., Ltd.
    Inventors: Xiurong Lu, Shirong Nan, Manxue Yang
  • Publication number: 20150009009
    Abstract: The present invention provides a conductive polymer fuse comprising a substrate having printed thereon poly(3,4-ethylenedioxythiophene)/poly(styrene-sulfonate) and one or more high conductivity connections, wherein the conductive fuse is encapsulated with an encapsulant. Methods for producing the inventive conductive polymer fuses are also provided. Such conductive polymer fuses may find use in improving printed electronic devices by protecting those devices against short circuits.
    Type: Application
    Filed: April 5, 2012
    Publication date: January 8, 2015
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Ludwig Jenninger, Maria Jenninger
  • Patent number: 8749020
    Abstract: An integrated circuit structure is provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; a metal fuse in the dielectric layer; a dummy pattern adjacent the metal fuse; and a metal line in the dielectric layer, wherein a thickness of the metal fuse is substantially less than a thickness of the metal line.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Hao-Yi Tsai, Shin-Puu Jeng, Shih-Hsun Hsu
  • Patent number: 8686825
    Abstract: Embodiments of the invention are related to oxidative opening switches and related methods, amongst other things. In an embodiment, the invention includes a switch assembly including a first terminal, a second terminal, and an oxidative switch element in electrical communication with the first terminal and the second terminal, the switch element comprising a conductive material and an oxidizer, the switch element configured to interrupt electrical communication between the first terminal and the second terminal as a result of an oxidation reaction between the conductive material and the oxidizer. In an embodiment, the invention includes a fast opening switch for pulse power applications. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: April 1, 2014
    Assignee: JPA, Inc.
    Inventors: Richard F. Johnson, Randy Berg, Stanley E. Wood
  • Patent number: 8633795
    Abstract: The invention relates to a thermal fuse in a circuit structure, particularly a punched grid, having a plurality of circuit areas, having the circuit structure with connections sites (9) and having a fusible element (3), which is electrically and mechanically connected to the connection sites (9) of the circuit structure, a material of the fusible element (3) having a melting point, in order to melt at an ambient temperature greater than the melting point, such that material of the fusible element (3) collects at the connection sites (9) and the electrical connection formed by the fusible element (3) breaks.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 21, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Norbert Knab, Georg Schulze-Icking-Konert, Thomas Mohr, Stefan Kotthaus, Nikolas Haberl, Stefan Stampfer, Michael Mueller
  • Publication number: 20130293342
    Abstract: Methods of fabricating the fusible link are directed to processing a multi-layer clad foil having a first layer suitable for forming a fusible link and a second layer suitable for forming one or more welding tabs. In some embodiments, the first layer is an aluminum layer and the second layer is a nickel layer. A two-step etching process or a single step etching process is performed on the clad foil to form an etched clad foil having multiple tabs made of the second layer and connected to the current collector conductor pads and battery cell conductor pads, and one or more connections made of the first layer that form aluminum conductors. The aluminum conductors are shaped and sized to form aluminum fusible conductors during either the etching process or a subsequent stamping process. A single fusible link or an array of fusible links can be formed.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Peng Zhou, Paul Tsao
  • Patent number: 8461956
    Abstract: An over-current protection device includes a first conductive member, a second conductive member, a resistive device and a temperature sensing switch. The first conductive member includes a first electrode foil and a second electrode foil those are formed on a same plane. The resistive device is laminated between the first conductive member and the second conductive member and exhibits positive temperature coefficient or negative temperature coefficient behavior. The temperature sensing switch can switch the first electrode foil and the second electrode foil between electrically conductive status and current-restriction status, e.g., open circuit, according to temperature variation. The threshold temperature of the temperature sensing switch is lower than the trip temperature of the resistive device.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 11, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Chun Teng Tseng, David Shau Chew Wang
  • Patent number: 8368502
    Abstract: A surface mount current fuse of the present invention includes a first base which has a recess and is smaller in width at the other end than at one end in the longitudinal direction, and a second base which has the same shape as the first base. The first base and the second base are combined to form a box-shaped body by joining the lower surface of the second base to the upper surface of the upper surface of the first base in such a manner that one end of the first base and the other end of the second base are in contact with each other. The recess of the first base and the recess of the second base form a space portion in which to dispose an element portion. The borderline between the first base and the second base passes through the center point on a side surface of the body. As a result, the surface mount current fuse has high production efficiency.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: February 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Tomoyuki Washizaki, Toshiyuki Iwao, Kenji Senda, Takashi Watanabe, Kazutoshi Matsumura, Seiji Tsuda
  • Patent number: 8081057
    Abstract: A current protection device comprises a substrate having an upper portion and a lower portion; a fusing layer installed between the upper portion and the lower portion; ends of the fusing layer exposed from the substrate; a cavity formed near surfaces of the fusing layer for providing a space to receive the fusing layer as the fusing layer fuses; and an end electrode having three layers including a silver thin layer, a nickel thin layer and a tin thin layer; the end electrode being formed as a conductive electrode. The method for forming the same is provided.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 20, 2011
    Inventor: Hung-Chih Chiu
  • Publication number: 20110210814
    Abstract: The invention relates to the field of fuses, and particularly a multi-layer blade fuse and its manufacturing method. The said multi-layer blade fuse comprises a ceramic substrate, back electrodes, front electrodes, fuse wire, protective layers and metal ends, wherein the fuse wire is prepared in multiple layers and the adjacent layers of fuse wire are connected in a head-to-tail style; the two lead-outs of the fuse wire as a whole are respectively connected to the two front electrodes located at the two ends of the substrate, and each layer of the fuse wire is deposited with a protective layer. During manufacturing, all protective layers but the upmost one leave the tail of each layer of fuse wire uncovered so that the head-to-tail series connection is possible. Compared with the prior methods, the method disclosed herein is characteristic of simpler manufacturing processes, less investment on equipments and much shorter manufacturing duration, which consequently reduce the cost.
    Type: Application
    Filed: November 20, 2009
    Publication date: September 1, 2011
    Inventors: Xiurong Lu, Shirong Nan, Manxue Yang
  • Patent number: 7994892
    Abstract: Embodiments of the invention are related to oxidative opening switches and related methods, amongst other things. In an embodiment, the invention includes a switch assembly including a first terminal, a second terminal, and an oxidative switch element in electrical communication with the first terminal and the second terminal, the switch element comprising a conductive material and an oxidizer, the switch element configured to interrupt electrical communication between the first terminal and the second terminal as a result of an oxidation reaction between the conductive material and the oxidizer. In an embodiment, the invention includes a fast opening switch for pulse power applications. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 9, 2011
    Inventors: Richard F. Johnson, Randy Berg, Stanley E. Wood
  • Publication number: 20110163840
    Abstract: The invention relates to the field of fuses, and particularly to a blade fuse used to protect electronic components and its manufacturing method.
    Type: Application
    Filed: October 23, 2009
    Publication date: July 7, 2011
    Inventors: Xiurong Lu, Xiaoming Cao, Shirong Nan, Manxue Yang
  • Publication number: 20110050384
    Abstract: A thermal fuse includes a first contact surface connected to a top surface of a sensor and a bottom surface connected to a bottom surface of the sensor. The sensor includes a mixture of Sn and Zn. The distance between the top surface and the bottom surface of the sensor is sized to substantially limit Zn depletion in a center region of the sensor when a temperature of the sensor is below a melting temperature of the sensor. The center region of the sensor prevents the first contact surface and the second contact surface from separating when the temperature of the sensor is below the melting temperature, and the first contact surface and the second contact surface are configured to separate when the temperature of the center region of the sensor exceeds the melting temperature of the sensor.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: Tyco Electronics Corporation
    Inventors: Jianhua Chen, Martyn A. Matthiesen, Antonio F. Contreras
  • Patent number: 7884698
    Abstract: An electronic component is provided in which: impact-absorbing layers are provided so as to cover at least the corner portions of both end portions of a base which is made of an insulating mixture of ceramic and glass; a conductive film is formed so as to cover the surface of these impact-absorbing layers and the surface of the base; the portions of this conductive film which cover the surfaces of the impact-absorbing layers are formed into electrodes; and a resistance-adjusting groove is provided in an other portion of the conductive film than the portions serving as the electrodes.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: February 8, 2011
    Assignee: Panasonic Corporation
    Inventors: Hideki Tanaka, Tomoyuki Washizaki, Kiyoshi Ikeuchi, Toshiyuki Iwao, Yasuki Nagatomo, Kesato Iiboshi, Jiro Ota, Yasuhiro Izumi
  • Publication number: 20100289612
    Abstract: A current protection device comprises a substrate having an upper portion and a lower portion; a fusing layer installed between the upper portion and the lower portion; ends of the fusing layer exposed from the substrate; a cavity formed near surfaces of the fusing layer for providing a space to receive the fusing layer as the fusing layer fuses; and an end electrode having three layers including a silver thin layer, a nickel thin layer and a tin thin layer; the end electrode being formed as a conductive electrode. The method for forming the same is provided.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Inventor: Hung-Chih Chiu
  • Publication number: 20100085141
    Abstract: A fuse (10) is proposed for interrupting a voltage and/or current-carrying conductor (12) in case of a thermal fault, having a conductor bar (14) ensuring an electrically conductive connection of the voltage and/or current-carrying conductor during correct operation, said fuse (10) being characterized in that the conductor bar (14) melts upon an increase in temperature above the melting point, and the electrically conductive connection of the voltage and/or current-carrying conductor is interrupted due to inherent surface tension. Also proposed is a method for producing the fuse (10) according to the invention.
    Type: Application
    Filed: February 14, 2008
    Publication date: April 8, 2010
    Applicant: ROBERT BOSCH GMBH
    Inventors: Norbert Knab, Georg Schulze-Icking-Konert, Thomas Mohr, Stefan Kotthaus, Nikolas Haberl, Stefan Stampfer, Michael Mueller
  • Patent number: 7554432
    Abstract: A fuse is provided in a circuit, such that the fuse and an electric device in the circuit are thermally coupled to one another. The generation of the amount of heat by the electric device causes a fusible material in the fuse to melt. In this manner, the current terminal path of the electric device is interrupted.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: June 30, 2009
    Assignee: Infineon Technologies AG
    Inventors: Alfons Graf, Martin Maerz, Martin Saliternig
  • Publication number: 20090102594
    Abstract: A method of creating a fuse. The method comprises the steps of creating a fusible link electrically connecting a first terminal portion to a second terminal portion, the fusible link, the first terminal portion and the second terminal portion being made of a first electrically conductive material; and spraying a coating of a second electrically conductive material onto the fusible link. The second electrically conductive material has a lower melting point than the first electrically conductive material and is absorbable in the first electrically conductive material.
    Type: Application
    Filed: June 12, 2006
    Publication date: April 23, 2009
    Inventor: William Ogilvie
  • Patent number: 7498923
    Abstract: A transfer switch comprising a housing and a strip of metal enclosed in the housing, each end extending through the housing as a first connection. At least one first contact is integral to the metal strip. At least one second contact within the housing extends through the housing wall for a second electrical connection. At least one first section of the metal strip for severing and at least one second section of the metal strip having the properties of a hinge for pivoting. At least one exothermic source in the proximity of the first section that upon ignition severs the metal strip at the first section, and causes at least one segment of the severed metal strip to be propelled about the second section comprising the hinge, whereupon the first electrical contact is propelled to join the second electrical contact.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: March 3, 2009
    Inventor: Arthur H. Iversen
  • Patent number: 7425885
    Abstract: Electrical fuse devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 16, 2008
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7414513
    Abstract: The invention concerns a component of predominantly organic material which affords overvoltage protection for electronic circuits, and a circuit by which a multiple of the threshold voltage of an individual component can be implemented.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: August 19, 2008
    Assignee: PolyIC GmbH & Co. KG
    Inventors: Walter Fix, Dietmar Zipperer
  • Patent number: 7286037
    Abstract: A protective element with improved spherical segmentation performance during the melting of a low-melting metal member, has a heat-generating member and a low-melting metal member on a substrate, in which the low-melting metal member is heated and blown out by the heat generated by the heat-generating member. There is a region in which the low-melting metal member is suspended over the underlying base (such as an insulating layer), and when S (?m2) is the surface area of a lateral cross section of the low-melting metal member 4 between a pair of low-melting metal member electrodes 3a and 3b or 3b and 3c sandwiching the region, and H (?m) is the height at which the suspended region is suspended, then the relationship H/S?5×10?5 is satisfied. It is preferable here that the upper surfaces of both of the pair of low-melting metal member electrodes protrude beyond the upper surface of the underlying insulating layer.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 23, 2007
    Assignees: Sony Corporation, Sony Chemical and Information Device Corporation
    Inventor: Yuji Furuuchi
  • Patent number: 7268661
    Abstract: A composite fuse element includes a network or matrix of conductive material that is in contact and interspersed with arc suppressing materials at a particle level. In such a matrix, the conductive (e.g., metal) network and the arc suppressing material particles provides a large contact surface area between these materials. When the conductive network melts or vaporizes, the resulting conductive vapors are adsorbed into the arc suppressing particles in a short time due to the large contact area between conductive and arc suppressing materials and the short diffusion distance that the conductive vapors are required to travel before they are absorbed by the arc suppressing material.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: September 11, 2007
    Assignee: AEM, Inc.
    Inventors: Xiang-Ming Li, Liwu Wang, Jeffrey D. Montgomery, Daniel H. Chang
  • Patent number: 7142088
    Abstract: An alloy type thermal fuse is provided in which a ternary Sn—In—Bi alloy is used, excellent overload characteristic and dielectric breakdown characteristic are attained, the insulation stability after an operation can be sufficiently assured, and a fuse element can be easily thinned. A fuse element having an alloy composition in which Sn is larger than 25% and 44% or smaller, Bi is 1% or larger and smaller than 20%, and In is larger than 55% and 74% or smaller is used.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: November 28, 2006
    Assignee: Uchibashi Estec Co., Ltd.
    Inventor: Yoshiaki Tanaka
  • Patent number: 7116208
    Abstract: A printed wiring board includes a substrate (20) on which a wiring pattern (12) has been formed, and a fuse (6) provided on the substrate (20). One end of the fuse (6) is directly connected to a first pad (12a) of the wiring pattern (12), and the other end of the fuse (6) is directly connected to a second pad (12b) of the wiring pattern (12). The fuse (6) is covered by a protective material (7).
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: October 3, 2006
    Assignee: Rohm Co., Ltd.
    Inventors: Kohshi Nishimura, Satoshi Nakamura, Saizou Suzuki
  • Patent number: 7109839
    Abstract: A fuse link, especially for low voltage, high-breaking-capacity fuses, includes at least one fusible conductor having a soldering substance in a solder depot of a carrier, the solder being tin-based and the carrier being copper-based. The solder contains a tin alloy as an active substance, the tin alloy having two other constituents. The first constituent, which is the larger of the two in weight percent but which is smaller in weight percent than the proportion of the base substance tin, is selected for lowering the fusion temperature of the solder. The second constituent, which is the smaller of the two in weight percent, is a substance which does not dissolve in tin. Crystal nuclei are formed when said substance is cooled from the liquid state to the solid state, creating a fine structure and preventing the structure from becoming coarse under a load.
    Type: Grant
    Filed: September 11, 2001
    Date of Patent: September 19, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Alexander Etschmaier, Helmut Wieser
  • Patent number: 7064648
    Abstract: An alloy type thermal fuse is provided in which a Bi—Sn alloy is used as a fuse element, which has an operating temperature of about 140° C., which, even when used at a high power, can safely operate, and in which dispersion of the operating temperature can be sufficiently reduced. Also a material for a thermal fuse element is provided. An alloy composition in which Bi is larger than 50% and 56% or smaller, and a balance is Sn is used as a fuse element of the alloy type thermal fuse.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: June 20, 2006
    Assignee: Uchihashi Estec Co., Ltd.
    Inventor: Yoshiaki Tanaka
  • Patent number: 7042327
    Abstract: An alloy type thermal fuse is provided in which a ternary Sn—In—Bi alloy is used, the operating temperature belongs to the range of 130 to 170° C., the overload characteristic and the dielectric breakdown characteristic are excellent, the insulation stability after an operation can be sufficiently ensured, and thinning of a fuse element can be easily realized. A fuse element having an alloy composition in which Sn is larger than 43% and 70% or smaller, In is 0.5% or higher and 10% or lower, and a balance is Bi is used.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 9, 2006
    Assignee: Uchihashi Estec Co., Ltd.
    Inventors: Yoshiaki Tanaka, Toshiaki Saruwatari
  • Patent number: 7038569
    Abstract: The present invention relates to an alloy type thermal fuse and a fuse element which are particularly useful as a thermoprotector for a battery. It is an object of the invention to provide an alloy type thermal fuse in which a ternary In—Sn—Bi alloy or an alloy in which Ag or Cu is added to the ternary alloy is used as a fuse element, or the fuse element wherein dispersion of the operating temperature can be satisfactorily suppressed, the operating temperature can be set to about 100° C. or lower, and the specific resistance and the mechanical strength of the fuse element can be sufficiently ensured. A low-melting fusible alloy serving as the fuse element has an alloy composition of 50 to 55% In, 25 to 40% Sn, and balance Bi. In a preferable range of the composition, In is 51 to 53%, Sn is 32 to 36%, and a balance is Bi.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: May 2, 2006
    Assignee: Uchihashi Estec Co., Ltd.
    Inventor: Yoshihito Hamada
  • Patent number: 6963264
    Abstract: The invention relates to an alloy type thermal fuse and a wire member for a thermal fuse element, and provides an alloy type thermal fuse in which a fuse element does not contain a harmful metal, the operating temperature is about 150° C., the dispersion of the operating temperature can be sufficiently suppressed, and the operation stability to a heat cycle can be satisfactorily assured. The thermal fuse has an alloy composition of 30 to 70% Sn, 0.3 to 20% Sb, and a balance Bi.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: November 8, 2005
    Assignee: Uchihashi Estec Co., Ltd.
    Inventors: Miki Iwamoto, Naotaka Ikawa, Toshiaki Saruwatari, Yoshiaki Tanaka
  • Patent number: 6917277
    Abstract: The invention is to offer a fuse and a fuse production method excellent in reducing manufacturing cost. A fuse having an electrically conductive fuse element. The fuse element has a pair of terminal connection portions and a fusible member for electrically connecting the terminal connection portions to each other and for being fused and broken when an overload electric current flows. At least a part of the fusible portion is formed by spouting or dropping the melting metal drops.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: July 12, 2005
    Assignee: Yazaki Corporation
    Inventors: Hitoshi Ohashi, Tatsuya Kato, Hitoshi Ushijima, Hiroyo Ayuzawa
  • Patent number: 6911892
    Abstract: The invention provides a thermal fuse and a fuse element of the low-melting fusible alloy type in which the fuse element has an alloy composition of 37 to 43% In, 10 to 18% Sn, and the balance Bi. As a result, the operating temperature is in the range of 65 to 75° C., requests for environment conservation can be satisfied, the diameter of the fuse element can be made very thin or reduced to about 300 ?m?, self-heating can be suppressed, and the thermal stability can be satisfactorily guaranteed.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: June 28, 2005
    Assignee: Uchihashi Estec Co., Ltd.
    Inventor: Yoshiaki Tanaka
  • Patent number: 6903649
    Abstract: A fuse that includes an arc energy reducing coating to reduce arc energy during a short-circuit and/or a full voltage overload current interrupt is described. The fuse includes end conductor elements, and at least one fuse element secured between and making electrical contact with the end conductor elements. An elongate fuse housing, having a passageway extending longitudinally through the housing, extends between the end conductor elements. The fuse element extends through the housing passageway. An arc energy reducing coating at least partially coats each end portion of the fuse element.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: June 7, 2005
    Assignee: Cooper Technologies Company
    Inventor: John Marvin Ackermann
  • Patent number: 6888440
    Abstract: A fuse that includes an arc energy reducing coating to reduce arc energy during a short-circuit and/or a full voltage overload current interrupt is described. The fuse includes end conductor elements, and at least one fuse element secured between and making electrical contact with the end conductor elements. An elongate fuse housing, having a passageway extending longitudinally through the housing, extends between the end conductor elements. The fuse element extends through the housing passageway. An arc energy reducing coating at least partially coats each end portion of the fuse element.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: May 3, 2005
    Assignee: Cooper Technologies Company
    Inventor: John Marvin Ackermann
  • Patent number: 6838971
    Abstract: Quantity of flux coated on fusible alloy of a thermal fuse disclosed can be inspected accurately by an image processing method. The thermal fuse comprises: (a) first insulation film 11 coupled with a pair of metal terminals 12; (b) fusible alloy 13 coupled between ends of the metal terminals 12, being placed above first insulation film 11; (c) flux 14 coated on fusible alloy 13; and (d) second insulation film 15 disposed on first insulation film 11 so that an internal space is formed, being placed above fusible alloy 13, wherein at least either of first insulation film 11 or second insulation film 15 is transparent or translucent, and flux 14 has the Gardner color scale from 4 to 16.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: January 4, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kenji Senda, Takahiro Mukai
  • Patent number: 6819215
    Abstract: The invention provides a thermal fuse and a fuse element of the low-melting fusible alloy type in which the fuse element has an alloy composition of 37 to 43% In, 10 to 18% Sn, and the balance Bi. As a result, the operating temperature is in the range of 65 to 75° C., requests for environment conservation can be satisfied, the diameter of the fuse element can be made very thin or reduced to about 300 &mgr;m&phgr;, self-heating can be suppressed, and the thermal stability can be satisfactorily guaranteed.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: November 16, 2004
    Assignee: Uchihashi Estec Co., Ltd.
    Inventor: Yoshiaki Tanaka
  • Patent number: 6774761
    Abstract: The invention provides a thermal fuse and a fuse element of the low-melting fusible alloy type in which the fuse element has an alloy composition of 48 to 60% In, 10 to 25% Sn, and the balance Bi, and a total of 0.01 to 7 weight parts of at least one selected from the group consisting of Au, Ag, Cu, Ni, and Pd is added to 100 weight parts of the composition. As a result, the operating temperature is in the range of 57 to 67° C., requests for environment conservation can be satisfied, the diameter of the fuse element can be made very thin or reduced to about 300 &mgr;m&phgr;, self-heating can be suppressed, and the thermal stability can be satisfactorily guaranteed.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: August 10, 2004
    Assignee: Uchihashi Estec Co., Ltd.
    Inventor: Yoshiaki Tanaka
  • Patent number: 6750753
    Abstract: The present invention provides a fuse structure. The fuse structure comprises a substrate, a plurality of conductive layers, a dielectric layer and a plurality of conductive plugs. The fuse structure includes a plurality of fuse units, with increased the pitch between the fuse units. This structure prevents the fuse structure from failing when both misalignment of the laser beam or thermal scattering of the laser beam damage the second layer of the fuse structure in the laser blow process, which raises reliability and yield.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: June 15, 2004
    Assignee: Nanya Technology Corporation
    Inventor: Wu-Der Yang