Abstract: The rotating type variable resistor includes a housing; a rotating member disposed to be rotatable in the housing; a ring-shaped support member having a conductive pattern at one surface of the support member and disposed at any one side between the housing and the rotating member; and a sliding member disposed at the other side between the housing and the rotating member, and capable of sliding relative to the conductive pattern, wherein the conductive pattern is composed of a high resistor unit containing carbon and a low resistor unit having a specific resistance lower than that of the high resistor unit, and the high resistor unit and the low resistor unit are alternately and repeatedly formed along a direction where the conductive pattern and the sliding member slide.
Abstract: A first resistive element and a second resistive element are serially connected to each other, and a contact element having a lower resistivity than the first resistive element elastically contacts the first resistive element. The resistance between both ends of the first resistive element varies with the contact area between the first resistive element and the contact element. When a predetermined voltage is applied to the first and the second resistive elements, an output voltage, which corresponds to the resistance ratio of the first resistive element to the second resistive element, is obtained from a conductive pattern. When the resistance ratio of the first resistive element to the second resistive element is set in the range of 1 to 3, the linearity is improved and a wide variation range of the output voltage is obtained.
Abstract: A chip-type variable resistor is provided which includes an insulating substrate formed with a resistor strip which is arcuate at least partially and has both ends electrically connected to respective extremity electrode terminals, an intermediate terminal member mounted to the substrate, and a contact member electrically connected to the intermediate terminal member and rotatably mounted to the substrate in slidable contact with the resistor strip. The resistor strip includes at least one portion having a lower area resistivity (defined as a resistance per unit surface area) and at least another portion having a higher area resistivity.
Abstract: A vernier control (10) with independent coarse and fine adjustments includes a track pattern (17) that is formed along three concentric rings on a single base (11). A horseshoe-shaped, low-resistance track (17a) extends around a segment of the inner ring and has a pair of termination tracks (17d, 17e) connected to its opposite ends and extending in reverse directions in opposite half-sections of the intermediate ring. A pair of high-resistance tracks (17b, 17c) are formed in opposite half-sections of the outer ring, each extending alongside a respective termination track (17d, 17e). A fine adjustment rotor (16) is journaled in the base (11) in the center of the track pattern (17), and carries a fine adjustment contact (15) that engages both a collector terminal (19) on the base (11) and the low-resistance track (17a). An annular contact carrier (12) is mounted for rotation around the rotor (16) and carries a pair of coarse adjustment contacts (13 ).