Treating Liquid Displaces Moisture Patents (Class 34/340)
  • Patent number: 11358218
    Abstract: A method of making a flux-coated binder includes treating metal binder slugs to have an adherent surface, adding a flux powder to the treated metal binder slugs, and distributing the flux powder on the adherent surface of the metal binder slugs. A method of making a metal-matrix composite-based drill bit body includes loading a matrix powder into a bit body mold, loading a flux-coated binder into the mold on top of the matrix powder to form a load assembly, and heating the load assembly to allow the binder to infiltrate into the matrix powder.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 14, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Mingdong Cai
  • Patent number: 10406475
    Abstract: A honeycomb rotor recovering and concentrating apparatus recovers a gas such as carbon dioxide from flue gases and the like and may be capable of utilizing low-temperature waste heat 100° C. or less. The proposed method involves sorbing carbon dioxide while vaporizing and cooling by contacting a water-insoluble carbon dioxide sorbing material (solid amines, etc.) having an acidic gas sorptive capacity with a mixed gas containing carbon dioxide in a wet state. Warm water is brought into contact with the water-insoluble carbon dioxide sorbing material sorbed with carbon dioxide to desorb high concentration of carbon dioxide. The warm water is separated from the water-insoluble carbon dioxide sorbent material desorbed from carbon dioxide. Then the apparatus is returned from the separation step to the sorption step. Thereby, it is possible to drastically increase the recovery rate and recovery concentration of acidic gas (carbon dioxide) continuously.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 10, 2019
    Assignee: SEIBU GIKEN CO., LTD.
    Inventor: Hiroshi Okano
  • Patent number: 10364379
    Abstract: Described are aqueous polymer dispersions for composite film lamination and a multistage process for preparing them from ethylenically unsaturated, radically polymerizable monomers. In a first stage, a first polymer is prepared by radical emulsion polymerization. In a further stage, an aqueous polymer dispersion is prepared in the presence of the first polymer. The monomers of the first stage comprise monomers with acid groups. The monomers of the further stage comprise monomers having oxazoline groups. The polymerization of the first stage takes place at a low pH of less than 5. The acid groups of the first polymer are neutralized before the polymerization of the further stage. The aqueous polymer dispersions can be used as adhesives for producing composite films.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: July 30, 2019
    Assignee: BASF SE
    Inventors: Matthias Zorn, Karl-Heinz Schumacher
  • Patent number: 9791211
    Abstract: The present disclosure provides methods, compositions and systems for drying coal fines.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: October 17, 2017
    Assignee: Ross Technology Corporation
    Inventors: Philip R. Harsh, Michael F. Hurley, Andrew K. Jones, Vinod K. Sikka
  • Patent number: 9677218
    Abstract: A method is provided for controlling a motor speed (v) of a motor (16) in a laundry dryer during a drying cycle, which motor (16) is provided for driving a laundry drum (20) and an air stream fan (14) of the laundry dryer. The drying cycle is subdivided into a first part and a second part. During the first part of the drying cycle the motor speed (v) takes a value of a first predetermined motor speed (v1). During the second part of the drying cycle the motor speed (v) takes a value of a second predetermined motor speed (v2). The value of the second predetermined motor speed (v2) is higher than the value of the first predetermined motor speed (v1) and allows laundry tumbling inside the drum (20). The drying cycle changes from the first part to the second part, when laundry dryness (38) of laundry inside the laundry drum (20) has reached a predetermined value.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: June 13, 2017
    Assignee: Electrolux Appliances Aktiebolag
    Inventors: Paolo Ros, Agnieszka Kustra
  • Patent number: 8832963
    Abstract: Disclosed is a process of stabilizing spent filter material that comprises mixing the filter media with a city media to produce a composition having a moisture content that is sufficiently low to retard microbial growth. The composition comprises spent filter media and a dry material, and preferably comprises diatomaceous earth. Soil is treated by adding the composition as a top dressing, soil amendment, or the like.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: September 16, 2014
    Assignee: Grain Processing Corporation
    Inventor: Sarjit Johal
  • Patent number: 8646469
    Abstract: A substrate processing apparatus which holds and rotates a substrate substantially horizontally; having a control unit which controls a rinsing liquid supply mechanism for supplying a rinsing liquid onto the substrate; a gas knife mechanism that sprays gas onto the substrate to form a gas spraying zone and scans the entire substrate without rotating the substrate; a rinsing liquid mechanism for supplying a rinsing liquid onto the substrate at its area downstream from the gas spraying zone; and a drying unit for drying the substrate by rotating the substrate.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 11, 2014
    Assignee: Dainippon Screen MFG. Co., Ltd.
    Inventors: Hiroyuki Araki, Kentaro Tokuri
  • Patent number: 8524009
    Abstract: A substrate processing method comprising: holding a substrate substantially horizontally by a rotatable substrate holding mechanism; supplying a rinsing liquid onto the top of the substrate held by the substrate holding mechanism at the substrate holding step; after the rinsing liquid supply step, spraying a gas onto the top of the substrate held by the substrate holding mechanism, by a gas knife mechanism, to form a gas spraying zone on the substrate top, and unidirectionally scanning the substrate top in its entirety by this gas spraying zone, without rotating the substrate; replenishing the rinsing liquid by supplying, in parallel to the gas knife spraying step, a rinsing liquid onto the substrate top at its area downstream in the gas-spraying-zone scanning direction rather than the gas spraying zone formed by the gas knife mechanism; and drying the substrate surface after the gas knife spraying step and the rinsing liquid replenishing step.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 3, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Hiroyuki Araki, Kentaro Tokuri
  • Patent number: 8486201
    Abstract: Disclosed is a method for drying a plate-like article; the method including rinsing with an aqueous rinsing liquid with subsequent rinsing with an organic solvent, wherein the organic solvent has a water content of below 20 mass-% wherein the organic solvent is supplied at a solvent temperature, which is at least 30° C. and not higher than 60° C.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 16, 2013
    Assignee: Lam Research AG
    Inventor: Aurelia Plihon
  • Patent number: 8372212
    Abstract: According to one embodiment, a supercritical drying method comprises cleaning a semiconductor substrate with a chemical solution, rinsing the semiconductor substrate with pure water after the cleaning, changing a liquid covering a surface of the semiconductor substrate from the pure water to alcohol by supplying the alcohol to the surface after the rinsing, guiding the semiconductor substrate having the surface wetted with the alcohol into a chamber, discharging oxygen from the chamber by supplying an inert gas into the chamber, putting the alcohol into a supercritical state by increasing temperature in the chamber to a critical temperature of the alcohol or higher after the discharge of the oxygen, and discharging the alcohol from the chamber by lowering pressure in the chamber and changing the alcohol from the supercritical state to a gaseous state. The chamber contains SUS. An inner wall face of the chamber is subjected to electrolytic polishing.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 12, 2013
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Patent number: 8336226
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each additional solvent can have a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 25, 2012
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James Faulconbridge
  • Patent number: 8323500
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to step-wise remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by step-wise replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each subsequent solvent has a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property then its predecessor.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: December 4, 2012
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James A. Faulconbridge
  • Patent number: 8133327
    Abstract: Provided is a substrate processing method that prevents generation of watermarks on a substrate and can be performed at a low cost. The method controls the ambient humidity around the substrate depending on the kind of the chemical liquid, when the substrate is processed with the chemical liquid. The control of the humidity is performed at least in a drying step that dries the substrate W. In one embodiment, the ambient humidity around the substrate is controlled when a fluid containing IPA as a drying fluid is supplied to the substrate W after processing the substrate W with the chemical liquid.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: March 13, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yoshichika Tokuno, Hiroshi Nagayasu
  • Patent number: 7857975
    Abstract: A process for removing water from solid material (10) using liquid-solid extraction and liquid-liquid extraction in an extraction system (100). Multiple solvents are used sequentially to replace the water with a first solvent, then replacing that solvent with a second solvent, etc., then eventually removing the last solvent from the solid materials. The solvents have progressively lower heats of vaporization, enthalphy of vaporization, boiling point or related property, so as to conserve use of thermal energy.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 28, 2010
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James Faulconbridge
  • Patent number: 7776218
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each additional solvent can have a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: August 17, 2010
    Assignee: KFI Intellectual Properties L.L.C.
    Inventor: Robert A. Wills
  • Patent number: 7444761
    Abstract: Parts to be chemically treated are processed in a controlled-environment processing chamber. The process includes applying a negative gauge pressure to the chamber to remove air or other non-condensable gases. The process includes introducing an oxygen free solvent or aqueous solution in a vapor or liquid state. A first system removes oxygen and volatile contaminants from the object being processed and chamber, and a second system further recovers residual solvent from the object and chamber. Eliminating oxygen from the process prevents deflagration within the system thus allowing for the use of flammable solvents within the process.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: November 4, 2008
    Inventor: Donald J. Gray
  • Publication number: 20070227032
    Abstract: A discharge pipe is provided within a processing chamber, and ejects a drying gas. A pressure reducing pump exhausts air from the processing chamber to create a reduced-pressure atmosphere in the processing chamber. A drying gas supply passage supplies the drying gas generated in a first drying gas generator and in a second drying gas generator to the discharge pipe. The first drying gas generator generates the drying gas by bubbling IPA liquid stored in a heating bath with nitrogen gas. The second drying gas generator generates the drying gas by mixing IPA vapor produced by evaporation in an IPA vapor generating bath and nitrogen gas together. Thus, the supply of the drying gas generated in the plurality of drying gas generators to the processing chamber increases the concentration of the IPA vapor within the processing chamber. This shortens the time required for drying to improve drying performance.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 4, 2007
    Inventor: Masahiro KIMURA
  • Patent number: 7181863
    Abstract: A wafer dryer and method featuring a nebulizer which emits a pressurized drying liquid stream that converges with an opposed pressurized non-reactive carrier gas stream to produce a drying liquid fog. The pressurized non-reactive gas spray device is disposed partially within a tub and partially within a wafer bath vessel housing a wafer to be dried. The tub has a vent port for allowing the drying liquid fog to pass into the wafer bath vessel to adhere to exposed wafer surfaces and displace remaining liquid on wafer surfaces, thus drying the wafer. The tub may further include a drain for draining drying liquid not converted into the fog or which has condensed. The vent also may include means for retaining larger drying liquid fog particles which allows smaller drying liquid fog particles to pass into the wafer bath vessel.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: February 27, 2007
    Assignee: SEZ America, Inc.
    Inventors: Gary W. Ferrell, Jagjit S. Ratra
  • Patent number: 6802137
    Abstract: The present invention is directed to a controlled environment processing chamber of chambers in which parts are to be dried. The parts either contain water on or imbibed into the part. The process includes a means of applying a negative gauge pressure to the chamber to remove air or other non-condensable gases. Further, means are provided for introducing a solvent in a vapor state to the chamber to cause the water to flash off the part. A first system recovers water or aqueous solution(s) from the object being dried and the chamber. A second system, separate from the first system, further recovers residual solvent from the object and chamber after the drying process.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: October 12, 2004
    Inventor: Donald Gray
  • Patent number: 6729040
    Abstract: A dryer for drying a substrate includes: a bath containing a fluid; a chamber; and a delivery system supplying a polar organic compound, such as isopropyl alcohol, and a hydrophobic organic compound, such as hydrofluoroether, to the interface between the substrate and the fluid as the substrate is removed from the fluid of the bath into the chamber. The dryer further includes a chamber environment control system that supplies a gas into the chamber to dry the substrate and controls temperature and humidity in the chamber and a chamber heater attached to the chamber to transfer thermal energy into the chamber. A drying method includes: immersing a substrate into a fluid contained in a bath; removing the substrate from the fluid into a chamber; and supplying isopropyl alcohol and hydrofluoroether to an interface between the substrate and the fluid.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: May 4, 2004
    Assignee: Oliver Design, Inc.
    Inventor: Yassin Mehmandoust
  • Patent number: 6678968
    Abstract: A critical point drying apparatus for sample preparation in electron microscopy and semiconductor wafer production includes a computer system to automate the operational modes in drying the specimen. These operational modes controlled by the computer system are: cooling, in which a drying chamber is cooled; starting, in which the specimen chamber is filled with a transitional fluid; purging, in which the transitional fluid purges an intermediary fluid from the drying chamber and the purged intermediary fluid is collected by a collector condenser; heating, in which the drying chamber is heated to elevate the transitional fluid to its critical point temperature and pressure; and bleeding, in which the drying chamber is depressurized to atmospheric pressure at a very slow rate until the drying chamber is completely vented, which signals the end of the drying operation. The computer system interfaces with a remote client terminal to update the status of the operation of the critical point drying apparatus.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: January 20, 2004
    Assignee: Tousimis Research Corporation
    Inventors: Anastasios J. Tousimis, Chris Tousimis
  • Patent number: 6655042
    Abstract: A drying system for drying a semiconductor substrate is provided. The drying system includes: a chamber for housing a vapor distributor and a fluid bath, said fluid bath being disposed in a lower portion of the chamber and said distributor being disposed in an upper portion of the chamber for distributing vapor for drying the substrate; and a fluid flow system for supplying fluid flow into said fluid bath for cleaning and drying the substrate and for draining said fluid from the fluid bath, wherein the chamber includes a plurality of exhaust vents disposed at the upper portion for venting the vapor.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: December 2, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun-jung Yi, Ki-seok Lee, Bo-yong Lee, Sang-oh Park, Pil-kwon Jun, Sang-mun Chon, Kyung-dae Kim
  • Patent number: 6589360
    Abstract: A method of and system for drying a wafer offer a short cycle of operation, and minimize the amount of time that the wafer is exposed to external air. The drying system includes a process bath, a loader for transferring the wafer from a wash bath to an elevator of the process bath, an unloading stage for supporting the wafer after it is dried, and a lid for drying the wafer after it is rinsed in the process bath and for transferring the wafer onto the unloading stage. The lid includes a lid body defining a cavity, a wafer holder disposed within the cavity, a gas distributer having gas injection holes facing the cavity, and a driving mechanism for moving the lid between the process bath and the unloading stage. In the drying method, the lid is positioned over the process bath after the wafer has been rinsed. The elevator of the process bath is then raised to move the rinsed wafer above the tub of the process bath and into the cavity defined in the lid body.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: July 8, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pyeong Sik Jeon, Hyoung Chul Choi
  • Patent number: 6526675
    Abstract: A method of dewatering fine particulate materials is disclosed. In this method, an aqueous slurry of fine particles is treated with appropriate hydrophobizing reagents so that the particulate material becomes moderately hydrophobic. A lipid of vegetable or animal origin is then added to the slurry in solutions of light hydrocarbon oils and short-chain alcohols, so that the hydrophobic lipid molecules adsorb on the moderately hydrophobic surface and, thereby, greatly enhance its hydrophobicity. By virtue of the enhanced hydrophobicty, the water molecules adhering to the surface are destabilized and more readily removed during the process of mechanical dewatering. The moisture reduction can be further improved using appropriate electrolytes in conjunction with the lipids, spraying surface tension lowering reagents onto the filter cake, subjecting the cake to a suitable vibratory means, and using combinations thereof.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: March 4, 2003
    Inventor: Roe-Hoan Yoon
  • Patent number: 6516537
    Abstract: In a process for drying microporous, fluid-containing particles, the fluid-containing particles to be dried are fed as a moving bed countercurrently to a drying fluid, the interfacial tension of the fluid being reduced in comparison with the interfacial tension of the fluid at room temperature, at near-critical to supercritical pressure of the fluid, preferably to a value in the range from 0 to {fraction (1/10)}, in particular from 0 to {fraction (1/20)}, of the interfacial tension at room temperature. Furthermore, microporous, three-dimensionally networked particles are prepared by a process comprising preparation of microporous particles containing pore liquid, exchange of the pore liquid in the particles for a fluid and drying of the fluid-containing particles, the exchange and drying being carried out in the moving bed by the countercurrent method.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: February 11, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Friedhelm Teich, Heiner Schelling, Herbert Köster, Horst Kratzer, Wolfgang Reichert, Martin Gall, Bernd Ziegler
  • Patent number: 6493964
    Abstract: A critical point drying apparatus for sample preparation in electron microscopy and semiconductor wafer production includes a computer system to automate the operational modes in drying the specimen. These operational modes controlled by the computer system are: cooling, in which a drying chamber is cooled; starting, in which the specimen chamber is filled with a transitional fluid; purging, in which the transitional fluid purges an intermediary fluid from the drying chamber and the purged intermediary fluid is collected by a collector condenser; heating, in which the drying chamber is heated to elevate the transitional fluid to its critical point temperature and pressure; and bleeding, in which the drying chamber is depressurized to atmospheric pressure at a very slow rate until the drying chamber is completely vented, which signals the end of the drying operation. The drying chamber incorporates concave surfaces for pressure dispersal and to facilitate purging the intermediary fluid completely.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: December 17, 2002
    Assignee: Tousimis Research Corp.
    Inventors: Anastasios J. Tousimis, Chris Tousimis
  • Patent number: 6460269
    Abstract: A wafer dryer for drying a wafer includes a chamber and a support adapted to support the wafer in the chamber. A spray nozzle is disposed in the chamber. A source gas supply tank is in fluid communication with the spray nozzle. At least one heater is operable to heat the chamber and the source gas supply tank. A pumping line is in fluid communication with the chamber. Drive means are operable to rotate the chamber and the spray nozzle. A method for drying a wafer using a wafer dryer including a chamber and a revolving spray nozzle includes the steps of: loading the wafer in the chamber; reducing the pressure in the chamber in which the wafer is loaded to a near vacuum state; creating a temperature controlled atmosphere in the pressure-reduced chamber to quicken drying of the wafer; and spraying the source gas on the wafer while rotating the chamber and the revolving spray nozzle in opposite directions in the pressure-reduced temperature controlled atmosphere.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: October 8, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-joon Cho, Gyu-hwan Kwag
  • Patent number: 6438867
    Abstract: In a process for drying microporous, fluid-containing particles, the heat required for increasing the temperature is supplied by convection by reducing the interfacial tension of the fluid, preferably to 0 to 1/10, in particular to 0 to 1/20, of the interfacial tension of the fluid at room temperature, by appropriately increasing the temperature at from close to the critical pressure to supercritical pressure of the fluid. Furthermore, microporous, three-dimensionally networked particles are prepared by a process in which the drying process is used. In addition, an apparatus is used for carrying out the drying process, the apparatus comprising a pressure container having an inner container and pressure-withstanding outer container and suitable measuring and control apparatuses and pump apparatuses and heat exchangers, the inner container being provided for holding the particles to be dried and a gap being provided between the inner container and the outer container.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: August 27, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Friedhelm Teich, Heiner Schelling, Herbert Köster, Horst Kratzer, Wolfgang Reichert, Martin Gall, Bernd Ziegler
  • Patent number: 6427359
    Abstract: Workpieces requiring low levels of contamination, such as semiconductor wafers, are loaded into a workpiece support or holder within a process chamber. The process chamber has a drain opening, slot or edge. The chamber is closed via a door. A process or rinsing liquid is introduced into the chamber. The liquid rises to a level so that the workpieces are immersed in the liquid. The chamber slowly pivots or rotates to move the drain opening down to the level of the liquid. The liquid drains out through the drain opening. The drain opening is kept near the surface of the liquid to drain off liquid at a uniform rate. An organic solvent vapor is introduced above the liquid to reduce or prevent droplets of liquid from remaining on the workpieces as the liquid drains off. An outer chamber may be provided around the process chamber to provide increased control of the process environment.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: August 6, 2002
    Assignee: Semitool, Inc.
    Inventors: Dana Scranton, Eric Bergman, Eric Lund, Gil Lund
  • Patent number: 6357142
    Abstract: A system for high-pressure drying of semiconductor wafers includes the insertion of a wafer into an open vessel, the immersion of the wafer in a liquid, pressure-sealing of the vessel, pressurization of the vessel with an inert gas, and then the controlled draining of the liquid using a moveable drain that extracts water from a depth maintained just below the gas-liquid interface. Thereafter, the pressure may be reduced in the vessel and the dry and clean wafer may be removed. The high pressure suppresses the boiling point of liquids, thus allowing higher temperatures to be used to optimize reactivity. Megasonic waves are used with pressurized fluid to enhance cleaning performance. Supercritical substances are provided in a sealed vessel containing a wafer to promote cleaning and other treatment.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: March 19, 2002
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Ian Sharp, Craig P. Meuchel, H. Frederick Woods
  • Patent number: 6357138
    Abstract: A tank stores a drying liquid for drying a semiconductor wafer. A boat vertically holds a plurality of target semiconductor wafers to be dried. The semiconductor wafers which are held by the boat are entirely soaked in the drying liquid. After this, the semiconductor wafers are lifted from the drying liquid at a rate in a range from 1 to 3 mm/min, so as to be dried. At this time, the surface of the drying liquid is divided with using a dividing liquid at each side of the semiconductor wafer. The dividing plate divides the surface of the drying liquid, thereby to prevent particles, which are once removed from the semiconductor wafer, from being again adhered onto the semiconductor wafer.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: March 19, 2002
    Assignee: NEC Corporation
    Inventor: Kenichi Nakabeppu
  • Patent number: 6286231
    Abstract: A method and apparatus for high-pressure drying of semiconductor wafers includes the insertion of a wafer into an open vessel, the immersion of the wafer in a liquid, pressure-sealing of the vessel, pressurization of the vessel with an inert gas, and then the controlled draining of the liquid using a moveable drain that extracts water from a depth maintained just below the gas-liquid interface. Thereafter, the pressure may be reduced in the vessel and the dry and clean wafer may be removed. The high pressure suppresses the boiling point of liquids, thus allowing higher temperatures to be used to optimize reactivity. Megasonic waves are used with pressurized fluid to enhance cleaning performance. Supercritical substances are provided in a sealed vessel containing a wafer to promote cleaning and other treatment.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: September 11, 2001
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Ian Sharp, Craig P. Meuchel, H. Frederick Woods
  • Patent number: 6270584
    Abstract: Method and apparatus for cleaning and/or drying objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces by a “chemical squeegeeing” effect. Surface contaminants are also removed by this process. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber. Inert gas flow is employed to provide aerosol particles of smaller size and/or with greater dispersion within the chamber. Continuous filtering and shunt filtering are employed to remove most contaminants from the selected liquid.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: August 7, 2001
    Inventors: Gary W. Ferrell, Thomas D. Spencer, Rob E. Carter
  • Patent number: 6243969
    Abstract: A process for dry cleaning fabrics comprising the steps of: (i) placing one or more fabrics to be cleaned in a device which provides heat and agitation; (ii) placing one or more carrier sheets in the device wherein the carrier sheets have 200 grams of a liquid cleaning/refreshment composition releasably absorbed therein; (iii) heating the air within the device to at least 130° F. (55° C.); and (iv) agitating the fabrics and the carrier sheets until at least 40% by weight of the liquid cleaning/refreshment composition from the carrier sheets has been evaporated and vented from the device. There is further provided a kit for dry cleaning fabrics comprising: one or more carrier sheets, and from 200 grams to 1,000 grams of a liquid cleaning/refreshment composition, wherein the one or more carrier sheets can absorb at least 200 grams of the liquid cleaning/refreshment compositions.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: June 12, 2001
    Assignee: The Procter & Gamble Company
    Inventor: Bruce Albert Yeazell
  • Patent number: 6132811
    Abstract: The invention relates to a procedure applicable for drying substrate surfaces of a large number of materials, such as semiconductors, metals, plastics and, in particular, silicon. The silicon (1) is dipped into a liquid bath (2) and the silicon (1) is separated from the liquid (3), the liquid of the bath (2) consisting of an aqueous HF solution (3) with a concentration between 0.001 and 50%. By removing the silicon from the bath at a speed of between 0.1 cm/sec and 20 cm/sec, the bath liquid drains from the hydrophobic surface to provide a clean, dry substrate.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: October 17, 2000
    Assignee: ICTOP Entwicklungs GmbH
    Inventors: Wilhelm Schellenberger, Dieter Herrmannsdorfer
  • Patent number: 6119366
    Abstract: Method and apparatus for drying and/or cleaning a workpiece, such as an electronic part, semiconductor wafer, printed circuit board or the like. As the workpiece is withdrawn from a processing liquid, a selected drying liquid, such as hydrofluoroether (HFE), ethylated HFE, an HFE azeotrope or an ethylated HFE azeotrope, that has a very small surface tension, is volatile, and has a density that is greater than the processing liquid density, is sprayed on, dribbled on or otherwise transferred to an exposed surface of the workpiece. The exposed surface may be stationary, may be rotating or may be moving along a selected path. The workpiece can be dried in 5-60 seconds, or less, in most situations and can be cleaned using the invention. Drying and/or cleaning can be performed in a single workpiece process, a single workpiece continuous process or a batch process.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: September 19, 2000
    Inventors: Gary W. Ferrell, Robert J. Elson, John F. Schipper
  • Patent number: 6105274
    Abstract: A process for treating a workpiece. The workpiece is cooled by directing toward the workpiece a material that includes a gas and particles of a material that undergoes a phase change when applied to the workpiece. The gas and the particle material are non-reactive with the workpiece during the cooling.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: August 22, 2000
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Ronald A. Warren
  • Patent number: 6101737
    Abstract: A drying apparatus and method of drying is provided for drying a semiconductor member mounted in a carrier that is placed in a processing tank through contact with isopropyl alcohol. An isopropyl alcohol liquid is vaporized in a bottom portion of the processing tank, and the resulting vapor is condensed in its top portion. A heater is disposed so as to heat the inside of the processing tank to keep the inside at a predetermined temperature range in a middle-layer portion, i.e., a drying portion, of the processing tank. The heater is covered with a heat insulating member.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: August 15, 2000
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ryoden Semiconductor System Engineering Corporation
    Inventor: Takatoshi Kinoshita
  • Patent number: 6096240
    Abstract: Method for the water removal from a surface, which comprises covering the surface with a composition having specific weight higher than that of the water, and subsequently removing water from the composition by skimming, such composition comprising a (per)fluoropolyether having molecular weight comprised between 300 and 1500 and a non ionic additive having a (perfluoropolyethereal structure similar to that of the solvent, linked to an hydrogenated part of hydrophilic type, the molecular weight of the (per)fluorinated part is comprised between 400 and 1200 and the ratio by weight between (per)fluorinated part and hydrogenated part is comprised between 1.5 and 3.5.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: August 1, 2000
    Assignee: Ausimont S.p.A.
    Inventors: Ezio Strepparola, Simonetta Fontana, Rossella Silvani
  • Patent number: 5974689
    Abstract: Method and apparatus for drying and/or cleaning a workpiece, such as an electronic part, semiconductor wafer, printed circuit board or the like. As the workpiece is withdrawn from a processing liquid, a selected drying liquid, such as hydrofluoroether (HFE) or an HFE azeotrope, that has a very small surface tension, is volatile, and has a density that is greater than the processing liquid density, is sprayed on, dribbled on or otherwise transferred to an exposed surface of the workpiece. The workpiece can be dried in 7-45 seconds, or less, in most situations and can be cleaned using the invention. Drying and/or cleaning can be performed in a single workpiece process, a single workpiece continuous process or a batch process.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: November 2, 1999
    Assignee: Gary W. Farrell
    Inventors: Gary W. Ferrell, Robert J. Elson, John F. Schipper
  • Patent number: 5968285
    Abstract: Methods for cleaning and/or drying objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces, possibly by a "chemical squeegeeing" effect. Surface contaminants are also removed by this process which may be performed at about room temperature. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber. Inert gas flow is employed to provide aerosol particles of smaller size and/or with greater dispersion within the chamber. Continuous filtering and shunt filtering are employed to remove most contaminants from the selected liquid.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: October 19, 1999
    Assignee: Gary W. Ferrell
    Inventors: Gary W. Ferrell, Thomas D. Spencer, Rob E. Carter
  • Patent number: 5964958
    Abstract: Methods for drying and cleaning objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces, possibly by a "chemical squeegeeing" effect. Surface contarminants are also removed by this process, which may be carried out at or near room temperature. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: October 12, 1999
    Assignee: Gary W. Ferrell
    Inventors: Gary W. Ferrell, Thomas D. Spencer
  • Patent number: 5815946
    Abstract: A process is described whereby wet coal may be dehydrated and inhibited against rehydration by immersing in a bath of molten paraffin hydrocarbon for a sufficient period of time to evaporate and expel inherent water from the coal. The hydrocarbon then inhibits any rehydration period. It is also an embodiment of this invention to describe a process whereby the water expelled may be recovered for useful purposes.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: October 6, 1998
    Inventor: Miles W. Dean
  • Patent number: 5758434
    Abstract: A wood drying system to eliminate the discharge of liquid kiln water includes a kiln which is heated to dry a batch of wood, a basin to collect the water driven from the wood, and an evaporator in which the collected water is converted into steam. The steam is provided to the kiln to balance the drying and alleviate the splitting, warping, etc. caused by over drying. The steam is ultimately vented harmlessly into the atmosphere to effectively eliminate any discharge of the kiln water as a liquid.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: June 2, 1998
    Assignee: Georgia-Pacific Corporation
    Inventor: George E. Gipson
  • Patent number: 5727578
    Abstract: Provided is a process for removing organic materials from semiconductor wafers and a process for chemical solvent drying of wafers. In the drying process, a wafer submerged in a bath having a lower aqueous layer and an upper organic layer is lifted from the lower aqueous layer up through the upper organic layer and removed from the bath. An apparatus for completing this process is also disclosed.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: March 17, 1998
    Assignee: Legacy Systems, Inc.
    Inventor: Robert Roger Matthews
  • Patent number: 5578138
    Abstract: Compositions based on 1,1-dichloro-1-fluoroethane and a surfactant comprising at least one imidazoline, which are usable for removing water from a solid surface.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: November 26, 1996
    Assignee: Solvay (Societe Anonyme)
    Inventors: Mireille Paulus, Robert Putteman, Pierre Barthelemy