Using A Specific Transmission Medium (e.g., Conductive Fluid, Annular Spacing, Etc.) Patents (Class 340/854.3)
  • Patent number: 10316652
    Abstract: A method for selecting a drilling fluid pressure pulse transmission frequency in a downhole telemetry tool comprises: emitting a frequency sweep wave in a drilling fluid that comprises pressure pulses over a range of frequencies and over a period of time; measuring a pressure of the drilling fluid at the telemetry tool while the frequency sweep wave is being emitted; determining a signal strength at each frequency in the range of frequencies from the measured pressure of the drilling fluid; and selecting at least one frequency in the range of frequencies that meets a selected signal strength threshold as a telemetry signal transmission frequency for the telemetry tool.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: June 11, 2019
    Assignee: Evolution Engineering Inc.
    Inventors: Gavin Gaw-Wae Lee, Justin C. Logan, Kurtis West, Luke Stack, Aaron W. Logan
  • Patent number: 10253622
    Abstract: Various embodiments include methods and systems structured to transmit data from downhole sensors to the surface at a well site. The transmission can be implemented to overcome downhole connections that can act as obstructions to direct electrical and optical communication in a wellbore. Electrical signals from one or more sensors in a sensor unit, located on a side of a downhole connection in a wellbore opposite the surface of the wellbore, can be used to drive an acoustic transmitter to transmit an acoustic signal via a production string or casing or fluid in the production string or casing across the downhole connection, where the acoustic signal is received on the surface side of the downhole connection. Data correlated to the received acoustic signal can be provided to a surface location of the wellbore. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 9, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mikko Jaaskelainen, Brian Vandellyn Park
  • Patent number: 10246973
    Abstract: The disclosed embodiments include energy harvesting devices, methods to operate the energy harvesting devices, and downhole power generating systems. In one embodiment, an energy harvesting device includes an outer stator having a first cavity formed therein. The energy harvesting device further includes a rotor disposed within the first cavity, the rotor including a second cavity, at least one radial slot, and a helical slot extending from a first end of the rotor towards a second end of the rotor. The energy harvesting device further includes an inner stator disposed within the second cavity. The energy harvesting device further includes an armature adjacent to the rotor, the armature coupled to at least one winding coupled to an electrical component to provide an electrical current to power the electrical component. The energy harvesting device further includes a housing coupled to the outer stator.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: April 2, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Krunal Kanubhai Mehta, Ragi Lohidakshan Poyyara, Richard T. Hay
  • Patent number: 10202846
    Abstract: A downhole telemetry well system transmits data at a high rate inside a tubular pipe by encoding signals on a Stoneley wave. Telemetry devices for the Stoneley mode are implemented in short pipe joints inserted at various intervals between the tubulars. Each telemetry device includes Stoneley transducers, which may act as a transmitter, receiver, or repeater. The Stoneley telemetry devices transmit and receive the Stoneley waves making up the carrier of the signal. The Stoneley telemetry devices may be powered by on-board batteries or via some remote power source.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: February 12, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Roland E. Chemali, Ronald Dirksen, Paul F. Rodney, Arthur C. H. Cheng, Tianrun Chen
  • Patent number: 10138693
    Abstract: A method of drilling a subterranean wellbore using a drill string comprising the steps of: a. injecting a drilling fluid into the well bore via the drill string and removing said drilling fluid from an annular space around the drill string (the annulus) via an annulus return line, b. oscillating the pressure of the fluid in the annulus, c. determining the wellbore storage volume and wellbore storage coefficient for each fluid pressure oscillation, d. using the wellbore storage volume and wellbore storage coefficient to determine the proportion by volume of gas and proportion by volume of liquid in the annulus during that pressure oscillation.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: November 27, 2018
    Assignee: MANAGED PRESSURE OPERATIONS PTE LTD
    Inventor: Christian Leuchtenberg
  • Patent number: 10066479
    Abstract: Method and apparatus to allow continuous recovery and broadcast of data and commands to and from a tubular string (32) through all phases of drilling and completion running in a wellbore. A RF transceiver (76/74) is located on the tubular string, the transceiver being adapted to receive signals and broadcast the signals, and a RF transceiver (88/90) is located remote from the tubular string and adapted to receive the broadcasted signal by virtue of an antenna (92) arranged within a fluid filled annulus (60) around the tubular string. RF transmission through the wellbore using distributed RF transceivers providing data and command transmission up and down the tubing string.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: September 4, 2018
    Assignee: GREEN GECKO TECHNOLOGY LIMITED
    Inventors: Mark Gregory Maylin, Adrian Robert Bowles, Micheal Alan Jones
  • Patent number: 9976415
    Abstract: A downhole apparatus for measuring drilling fluid characteristics. The downhole apparatus may comprise one or more sensors located within a housing. The sensors may include one or more of an imaging device, a resistivity/conductivity sensor, a temperature sensor, a pressure sensor, a flowmeter and a fluid density sensor. The downhole apparatus may also include a controller for receiving measurements and/or determining optimal electromagnetic telemetry transmission settings. The downhole apparatus may also comprise a transmitter for transmitting the measurements and/or the optimal electromagnetic transmission settings. The downhole apparatus may be operated to determine optimal transmission settings for an electromagnetic telemetry system. Optimal transmission settings may include settings relating to one or more of frequency, amplitude, voltage, current, and power.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 22, 2018
    Assignee: Evolution Engineering Inc.
    Inventors: Justin C. Logan, Aaron W. Logan, Patrick R. Derkacz
  • Patent number: 9926780
    Abstract: In accordance with embodiments of the present disclosure, systems and methods for sensing and communicating sensed downhole parameters using a hybrid micro-structured fiber optic cable are provided. The micro-structured fiber optic cable may be used to communicate and/or amplify sensor signals indicative of the sensed downhole parameters. These sensed downhole parameters may include one or more of a downhole temperature, pressure, magnetic field, electromagnetic energy, radioactivity, telemetry signal, or some other downhole measurement. The micro-structured fiber optic cable may include opto-electronic circuitry built into the internal structure of the cable for modulating the optical signal based on the sensed parameters. The opto-electronic circuitry may include diodes, triodes, and other components that are communicatively coupled to external sensors used to measure downhole parameters.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 27, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yong Zeng, William Schaecher
  • Patent number: 9732608
    Abstract: A telemetry system with a plurality of controllers and telemetry systems, where the controllers are configured to obtain information from one or more sensors and transmit that information on one or more of the plurality of telemetry systems. The configuration of a controller may be changed so as to change which information is transmitted on a given telemetry system.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 15, 2017
    Assignee: Evolution Engineering Inc.
    Inventors: Aaron W. Logan, David A. Switzer, Jili Liu, Justin C. Logan
  • Patent number: 9695686
    Abstract: Devices, systems and methods for transmitting downhole data are provided. The devices include a rotor-stator modulator configured for use in a drill string, and a drive and control system configured to drive the rotor according to a modulation scheme resulting in both oscillating and full rotational movement. The modulation scheme can comprise a trajectory algorithm such as a QAM trajectory algorithm. The systems include a modulator disposed within a drill string which creates modulated pulses according to an algorithm providing for both oscillating and full rotational movement of the rotor, and may also include a demodulator. The methods include transmitting coded data by driving a rotor relative a stator disposed in a drill string according to a modulation scheme that provides both oscillating and full rotational movement and results in modulated mud pulses representative of data recorded downhole, and may involve decoding the data.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: July 4, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hugues Bouvier, Alain Guelat, Remi Hutin
  • Patent number: 9670772
    Abstract: The present invention concerns a method and a well string element for transmitting data in a well. The well string element (20c) includes an elongated body (80) that defines a through channel (110) and also includes a side pocket (92) that is open to ambient (91); and an acoustic modem (60) provided in the pocket (92) and configured to emit acoustic waves. The acoustic modem (60) is configured to receive electrical signals from one or more sensors (50, 52), transform the electrical signals into the acoustic waves and emit the acoustic waves into a wall (112) of the elongated body (80) when receiving an acoustic wake-up call from a device (70) outside the drill string element (20c).
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: June 6, 2017
    Assignee: SERCEL
    Inventors: Nicolas Bravard, Pascal Coince
  • Patent number: 9175515
    Abstract: Exemplary embodiments provide systems and methods for minimizing erosion of a transmission cable extending through a downhole drilling assembly. The drilling assembly includes an elongated flow diverter having a plurality of apertures for diverting the drilling fluid from an axial flow through a transmission shaft to a radial flow through a drive shaft. Exemplary flow diverters are configured to minimize erosion of transmission cables that may be present adjacent to the flow diverters.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 3, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Joachim Sihler
  • Patent number: 9133707
    Abstract: A downhole signal transmission system provides electric radiofrequency signals that are coupled to electrically conductive or non-conductive fluids through electrical insulators. A plurality of signal repeaters are tuned to the frequencies of the radiofrequency signals, and a plurality of transmission lines terminated by resonance circuits are also provided such that the terminating resonance circuits resonate on the frequencies of the electric radiofrequency signals. The plurality of signal repeaters and plurality of transmission elements are arranged to be redundant such that a failure of one or more of the signal repeaters or a failure of one or more of the transmission elements does not substantially affect the operation of the data transmission system. The signal repeaters and transmission elements also are arranged such that a failure of any of the signal repeaters or a failure of any of the transmission elements is communicated to the surface.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: September 15, 2015
    Assignee: Martin Scientific LLP
    Inventor: Manfred G. Prammer
  • Patent number: 9024777
    Abstract: An arrangement having a piston configured to move along an axial pathway a rotating seal configured to seal an inside environment from an outside environment, the rotating seal configured to be acted upon by a pressure exerted from the piston, a differential pressure sensor measuring a pressure difference between a first fluid from the outside environment and a second fluid on the inside environment, a motor connected to the piston, the motor configured to actuate the piston to a position along an axial pathway and an electronic feedback control system connected to the motor, the electronic feedback system configured to interface with the differential pressure sensor and maintain a pressure generated by the piston onto the rotating seal to a desired pressure.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 5, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Remi Hutin
  • Patent number: 9010461
    Abstract: A managed bulk drilling system that employs a guide wire for ranging and crosswell telemetry. Some system embodiments include multiple drilling assemblies operating in the vicinity of a reference well that contains an electrical cable. The electrical cable is coupled to a surface control system. The control system uses the electrical cable as part of an antenna to receive uplink signals from the drilling assemblies and to broadcast down-link signals to the drilling assemblies. The uplink signals can include position data and the downlink signals can include individual steering commands to adjust the trajectories of each drilling assembly. The cable can also generate a guidance field for the drilling assemblies to detect and follow.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: April 21, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Richard T. Hay
  • Patent number: 9007231
    Abstract: A system and method to synchronize distributed measurements in a borehole are described. The system includes a plurality of wired segments coupled together by couplers and a plurality of nodes configured to measure, process, or relay information obtained in the borehole to a surface processing system, each of the plurality of nodes comprising a local clock and being disposed at one of the couplers or between couplers. The system also includes a surface processing system coupled to a master clock and configured to determine a time offset between the master clock and the local clock of an nth node among the plurality of nodes based on a downhole generated synchronization signal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: John D. Macpherson
  • Patent number: 9007232
    Abstract: A method for reducing noise in downhole fluid communications includes processing first and second received signals in combination with a strobe signal from an active pump to obtain pump signatures at first and second spaced measurement locations. The pump signatures are used to compute a transfer function of the fluid channel between the two measurement locations. The transfer function may then be used to estimate the telemetry signal traveling in the uphole direction.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 14, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Andrew G. Brooks
  • Patent number: 8981957
    Abstract: Remote operation of downhole tools in a subterranean wellbore is performed by inserting untethered, mobile devices sequentially into the wellbore. The mobile devices can include motive means, power supply, communication and data storage means, etc. In one embodiment, the method comprises maneuvering a first mobile device into proximity with a downhole tool, the device powering the tool. The first device is then removed, such as by flowing up or dissolving. The now-powered tool is used to perform a test or other operation. A second mobile device is maneuvered into proximity with the downhole tool and data is transferred. The second device is retrieved with the data or, using on-board logic devices, provides “if-then” commands to the downhole tool. Alternately, a third mobile device can be used to power and transfer commands to the tool. The method can be used for various tasks, such as opening bypass ports on ICD valves.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: John C. Gano, Luke W. Holderman, Michael Fripp, Jean Marc Lopez, Floyd R. Simonds
  • Patent number: 8982667
    Abstract: A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 17, 2015
    Assignee: Xact Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen, Douglas S. Drumheller
  • Patent number: 8981958
    Abstract: The present invention concerns application of a unique conductive electrode geometry used to form an efficient wideband, one- or two-way wireless data link between autonomous systems separated by some distance along a bore hole drill string. One objective is the establishment of an efficient, high bandwidth communication link between such separated systems, using a unique electrode configuration that also aids in maintaining a physically robust drill string. Insulated or floating electrodes of various selected geometries provide a means for sustaining or maintaining a modulated electric potential adapted for injecting modulated electrical current into the surrounding sub-surface medium. Such modulated current conveys information to the systems located along the drill string by establishing a potential across a receiving insulated or floating electrode.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 17, 2015
    Assignee: Scientific Drilling International, Inc.
    Inventors: Timothy M. Price, Donald H. Van Steenwyk, Harold T. Buscher
  • Patent number: 8931549
    Abstract: The present invention is directed towards methods of oil and gas well logging, monitoring, and the field of electrically powering submersible devices like electrical motors in oil and gas wells.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 13, 2015
    Inventor: David Randolph Smith
  • Patent number: 8922387
    Abstract: A generally three-part EM gap sub comprising a first conductive cylinder incorporating a male tapered threaded section, a second conductive cylinder incorporating female tapered threaded section, both axially aligned and threaded into each other is described. One or both tapers incorporate slots whereby non-conductive inserts may be placed before assembly of the cylinders. The inserts are designed to cause the thread roots, crests and sides of the tapered sections of both cylinders to be spatially separated. The cylinders can be significantly torqued, one into the other, while maintaining an annular separation and therefore electrical separation as part of the assembly procedure. The co-joined coaxial cylinders can be placed into an injection moulding machine wherein a high performance thermoplastic is injected into the annular space, thereby forming both an insulative gap (the third part) and a strong joint between the cylinders in the newly created EM gap sub.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 30, 2014
    Assignee: XACT Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen
  • Publication number: 20140354444
    Abstract: A method of interpreting a signal transmitted through a drilling fluid disposed within a telemetry channel of a wellbore that includes defining a finite number of distinct message signals for representing conditions within the wellbore. The method also includes transmitting one of the message signals through the telemetry channel, and receiving a distorted signal that includes the message signal as distorted by transmission through the telemetry channel. A channel impulse response is estimated and applied to at least one of the message signals to generate at least one predicted signal. A comparison is made between the predicted signal and the distorted signal, and an estimation is made as to which of the finite number of message signals is included in the distorted signal based on the comparison.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 4, 2014
    Applicant: Scientific Drilling International, Inc.
    Inventors: Tim Whitacre, Matthew A. White, Brett Vansteenwyk
  • Patent number: 8902078
    Abstract: Devices capable of being disposed in a wellbore for outputting acoustical signals for monitoring downhole parameters are described. Receiving devices positioned remote from the devices and can receive the acoustical signals and determine the downhole parameters. The devices can output acoustical signals in response to fluid flow or otherwise.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 2, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James Dan Vick, Jr., Bruce Edward Scott, Michael Linley Fripp
  • Patent number: 8890710
    Abstract: An electromagnetic telemetry repeater. At least some of the illustrative embodiments are methods comprising inducing an electrical signal along a metallic tubular (the electrical signal carrying the information and the inducing within a borehole beneath the ocean floor), sensing an electric field proximate to the ocean floor, sensing a magnetic field proximate to the ocean floor, recreating the information using one sensed field as indicative of the information and the other sensed field as indicative of the noise, and sending the information toward the ocean surface.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 18, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Paul F. Rodney
  • Patent number: 8872670
    Abstract: A communication system for communicating information with a compliant medium is disclosed, the communication device includes a constrained fluid, a valve, a modulator, a sensor and a demodulator. The constrained is fluid distributed along a length. The valve is configured to operatively engage a second point relative to the length. The modulator configured to actuate the valve according to information. The sensor configured to measure pressure at a first point relative to the length, where the first point is distant from the second point. The demodulator is coupled to the sensor to recover the information.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: October 28, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Benjamin Peter Jeffryes
  • Patent number: 8863861
    Abstract: A telemetry tool having position and direction sensors, a power supply, a signal receiver and a signal emitter is mounted in a drill string adjacent to a drill bit. A base unit at the surface generates, and transmits into the geological formation, a carrier signal, which may be a DC carrier signal. The geological formation provides a current path between the carrier current generator and the downhole end at which a portion of the carrier current is received by the telemetry tool. The drill string defines a relatively low resistance return signal conductor. The telemetry unit superimposes a time varying signal on the carrier current. The time varying signal includes a recognition sequence, followed by a data string which may include compass direction, azimuth dip, rotational speed, acceleration, and so on. The base unit strips the signal off the carrier current, and reads the code.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: October 21, 2014
    Inventor: Mariusz Thomas Zientarski
  • Patent number: 8860583
    Abstract: A system for optimizing a mud-pulse telemetry system, the system including: a plurality of sensors distributed along a drill string adapted for being disposed in a borehole, each sensor configured to perform a measurement of a characteristic of at least one of mud in a column within the borehole and a mud-pulse telemetry signal propagating in the mud; and a processing unit for receiving the measurements, the processing unit comprising an algorithm to compile a data set from the measurements and to determine a parameter of the mud-pulse telemetry system using the data set to optimize the mud-pulse telemetry system. A method and a computer program product are also provided.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: October 14, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Ingolf Wassermann, John D. Macpherson
  • Patent number: 8842020
    Abstract: The present disclosure is directed to systems and methods for relative positioning of wells. A method in accordance with an exemplary embodiment may include drilling a new well in a field having at least three completed wells using a drilling tool that includes a magnetometer. The method may further include driving current on a first pair of the at least three completed wells and then driving current on a second pair of the at least three completed wells, wherein the current is driven on each of the first and second pairs in a balanced mode. The method may also include measuring a direction of a first magnetic field generated by the current on the first pair using the magnetometer, measuring a direction of a second magnetic field generated by the current on the second pair using the magnetometer, and determining a location of the drilling tool relative to the completed wells based on the direction of the first magnetic field and the direction of the second magnetic field.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: September 23, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Brian Clark, Jan S. Morley
  • Publication number: 20140266769
    Abstract: A telemetry system produces, transmits and receives signal sets from network nodes, which correspond to transceiver stations. Repeater scheduling and other interference mitigating techniques are utilized to simultaneously transmit from multiple nodes with minimized network degradation. Update interval/rate and network throughput are thereby fixed regardless of the number of network nodes and a network telemetry method is provided using the system.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Xact Downhole Telemetry, Inc.
    Inventor: John-Peter van Zelm
  • Patent number: 8824241
    Abstract: A method for a pressure release encoding system for communicating downhole information through a wellbore to a surface location includes positioning a valve and a brake in a drilling mud circulation system, initiating flow of drilling mud through the system, sensing flow through the valve and setting the brake at predefined pressure levels, sensing downhole conditions and releasing corresponding percentages of pressure across the valve at time intervals, and determining the downhole conditions at the surface by analyzing those associated time intervals. The method includes activation of the encoding system using drilling mud flow and setting predefined pressure levels, so that the pressure drops in the encoding process are from predefined levels at equilibrium and independent of fluid flow.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 2, 2014
    Inventors: David Close, Paul Deere
  • Patent number: 8810428
    Abstract: A rotary coupler for transferring electrical power and data between members is presented wherein the coupler has a first member having an internal surface, a first inductor positioned on the internal surface, a second member and a second inductor carried on a portion of the second member and positioned internal of the first inductor, wherein one of the inductors rotates relative to the other inductor.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: August 19, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Raghu Madhavan, Frederic Latrille
  • Patent number: 8811118
    Abstract: Pressure measurements are made using a pressure sensor in the proximity of the drillbit during drilling operations. A filtered version of the pressure measurements is provided to a pulser for a mud-pulse telemetry system so as to cancel pressure variations due to drilling noise while a telemetry signal is being sent. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 19, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: Hanno Reckmann
  • Publication number: 20140218206
    Abstract: A multi-scheme downhole tool bus system is provided. The system may comprise a tool bus master and a number tool bus slaves coupled together via a communications link The communications link may include an uplink communication and a downlink communication. The uplink communication and the downlink communication may include a number of communication schemes or data rates.
    Type: Application
    Filed: September 11, 2012
    Publication date: August 7, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Theodorus Tjhang, Yuichi Kobayashi, Takeaki Nakayama, Motohiro Nakanouchi, David Santoso
  • Patent number: 8791832
    Abstract: Aspects of the inventions generally provide a method and apparatus for coupling a communication sub to a wired drill pipe. In one aspect, a surface of a coupler head is non threaded and configured to provide a retaining force. In another aspect, a coupler head is coupled to a body, and a support mechanism is coupled to the body and configured to secure the coupler head within a receiving end of the wired drill pipe. In another aspect, a method of placing a communication sub involves inserting the communication sub into the receiving end of the wired drill pipe, adjusting the position of the communication sub until an indication of signal communication between the communication sub and the wired drill pipe is observed, and after the indication of signal communication is observed, retaining the communication sub within the receiving end until removal of the communication sub is desired.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 29, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Andrew Hawthorn, Goke Akinniranye, Benjamin Jeffryes
  • Patent number: 8792304
    Abstract: A downlinking signal is transmitted downhole from the surface using drilling fluid as the communications medium. The downlinking signal includes at least a synchronization phase and a command phase. The downlinking signal is differentiated upon reception such that attributes of the synchronization phase may be used to determine corresponding attributes of the command phase. Commands may be transmitted downhole while drilling and simultaneously while using mud-pulse telemetry uplinking techniques.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 29, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Junichi Sugiura
  • Patent number: 8779932
    Abstract: Systems and methods for visually indicating an engagement status of a submerged subsea connector are provided. An example of a system includes a measurement device positioned to provide a signal indicating positive engagement of a locking mechanism for a submerged subsea connector, and a visual engagement status indicator assembly including a visual engagement status indicator positioned on an outside portion of a surrounding frame to provide a visual indication corresponding to an engagement status of the locking mechanism provided by the measurement device. A power supply assembly is configured to interface with portions of an adjacent cathodic protection system to provide supply power or voltage multiplication to the visual engagement status indicator.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: July 15, 2014
    Assignee: Vetco Gray U.K. Limited
    Inventor: Michal Damian Burzynski
  • Patent number: 8773278
    Abstract: A downhole electromagnetic telemetry unit for use with a tubing string (5) includes an insulated electrically conductive member (31) and a processing unit (15). The insulated electrically conductive member (31) is electrically coupled to the tubing string (5) at an upper measuring point (23) and a lower measuring point (25). The processing unit (15) is configured to process a voltage difference measured between the upper measuring point (23) and the lower measuring point (25) across the insulated electrically conductive member (31) and to derive therefrom a signal transmitted from a surface location (13).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 8, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Matthe Contant, Yves G. Mathieu, Erwann Lemenager, Juergen Zach
  • Patent number: 8749399
    Abstract: A system and method are provided for providing electromagnetic (EM) measurement-while-drilling (MWD) telemetry capabilities using an existing mud-pulse MWD tool. An EM tool intercepts the output from the mud-pulse tool and generates an EM signal that mimics a mud-pulse pressure signal. The EM signal is intercepted at the surface by a receiver module that conditions the signal and inputs the signal into the existing pulse tool receiver. Since the EM signal mimics a mud-pulse signal, the pulse tool receiver does not require software or hardware modifications in order to process an EM telemetry mode. The EM tool can be adapted to also provide dual telemetry by incorporating a conventional pressure pulser that would normally be used with the pulse tool.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: June 10, 2014
    Assignee: Mostar Directional Technologies Inc.
    Inventors: John Petrovic, Victor Petrovic, Matthew R. White, Neal P. Beaulac
  • Patent number: 8629782
    Abstract: A system and a method use dual telemetry for tools located in a wellbore. A first telemetry system and a second telemetry system coordinate communication with the tools. Both the first telemetry system and the second telemetry system may transmit data regarding the tools and/or drilling conditions from the tools to a surface location simultaneously. The first telemetry system or the second telemetry system may communicate with the surface location if communication using the other telemetry system is interrupted. The first telemetry system and the second telemetry system may have a master/slave relationship so that data requests from a specific telemetry system do not interfere with data requests from the other telemetry system.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: January 14, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Qiming Li, Desheng Zhang, Yi Zhang, Lili Zhong, Tang Xueyan, Brian Clark
  • Patent number: 8611074
    Abstract: A mechanism for adjusting the orientation of a user interface of an electronic system component from a rack mounted orientation to a tower orientation.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: December 17, 2013
    Assignee: Schneider Electric IT Corporation
    Inventors: Balasubramani Hari, Shankar Gopalakrishna, Arjun Jayaprakash, Ravichandran Sankaranarayanan, Murtige Prahlada
  • Patent number: 8581740
    Abstract: A method for communicating a signal to an instrument in a wellbore includes axially accelerating the instrument in a preselected pattern of acceleration. The predetermined pattern corresponds to the signal to be communicated. The axial acceleration of the instrument is detected, and the signal is decoded from the detected axial acceleration. A signal detection system for an instrument in a wellbore includes an accelerometer oriented along a longitudinal axis of the instrument and means for comparing measurements made by the accelerometer to at least one predetermined pattern.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: November 12, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Kelly W. Hagen, Kenneth R. Goodman, Dale W. Clinton, Feng Zhou
  • Patent number: 8559272
    Abstract: An acoustic logging while drilling tool includes an acoustic transmitter and a linear array of acoustic receivers. At least one of the transmitter and the linear array of receivers is deployed on a blade having an outer diameter greater than that of the tool body. In preferred embodiments the transmitter and linear array are each deployed on a distinct blade. Deployment of the transmitter and/or the receivers on a blade reduces the standoff distance to the borehole wall which tends to improve the signal strength of received guided waves without an increase in transmitter power or receiver sensitivity.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: October 15, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Tsili Wang
  • Patent number: 8547245
    Abstract: A system and method are provided for providing electromagnetic (EM) measurement-while-drilling (MWD) telemetry capabilities using an existing mud-pulse MWD tool. An EM tool intercepts the output from the mud-pulse tool and generates an EM signal that mimics a mud-pulse pressure signal. The EM signal is intercepted at the surface by a receiver module that conditions the signal and inputs the signal into the existing pulse tool receiver. Since the EM signal mimics a mud-pulse signal, the pulse tool receiver does not require software or hardware modifications in order to process an EM telemetry mode. The EM tool can be adapted to also provide dual telemetry by incorporating a conventional pressure pulser that would normally be used with the pulse tool.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: October 1, 2013
    Assignee: Mostar Directional Technologies Inc.
    Inventors: John Petrovic, Victor Petrovic, Matthew R. White, Neal P. Beaulac
  • Patent number: 8547246
    Abstract: A system for communicating with a slickline tool is disclosed. The system includes a closed-loop electrical circuit including a surface module, a forward path, a tool, and a return path. The forward path includes a slickline cable.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: October 1, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Clive D. Menezes, Billy C. Bankston
  • Publication number: 20130249703
    Abstract: Aspects of the inventions generally provide a method and apparatus for coupling a communication sub to a wired drill pipe. In one aspect, a surface of a coupler head is non threaded and configured to provide a retaining force. In another aspect, a coupler head is coupled to a body, and a support mechanism is coupled to the body and configured to secure the coupler head within a receiving end of the wired drill pipe. In another aspect, a method of placing a communication sub involves inserting the communication sub into the receiving end of the wired drill pipe, adjusting the position of the communication sub until an indication of signal communication between the communication sub and the wired drill pipe is observed, and after the indication of signal communication is observed, retaining the communication sub within the receiving end until removal of the communication sub is desired.
    Type: Application
    Filed: May 31, 2013
    Publication date: September 26, 2013
    Inventors: Andrew Hawthorn, Goke Akinniranye, Benjamin Jeffryes
  • Patent number: 8525690
    Abstract: A top drive assembly may comprise a drive motor that provides rotational torque to a drill string for driving the drill string into the earth. A sensor and a transmitter may be located on a section of the drill string or on a device that can be incorporated into a drill string. The sensor may take measurements of the drill string that is rotating during the drilling operation. If the sensor is located near the top drive assembly, the sensor may take measurements of an upper portion of the rotating drill string during the drilling operation. The transmitter may wirelessly transmit the sensor information in real-time to a coordinator or main radio. The transmitter may also be located near the top drive assembly and during the drilling operation, may transmit from the rotating drill string while located in a position above the earth's surface.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 3, 2013
    Assignee: APS Technology, Inc.
    Inventors: William J. Puro, Phillip T. Harkawik
  • Publication number: 20130222149
    Abstract: A method and apparatus of creating a mud pulse for a drilling system, comprising creating a mud flow through the drilling system and creating at least one pressure pulse in the mud flow with a power generation mechanism.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 29, 2013
    Applicant: Schlumberger Technology Corporation
    Inventor: Schlumberger Technology Corporation
  • Patent number: 8517113
    Abstract: A technique that is usable with a subterranean well includes communicating a wireless stimulus in the well. The technique includes actuating a valve in response to the communication. The valve has more than one controllable open position.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: August 27, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Randolph J. Sheffield
  • Publication number: 20130214934
    Abstract: A downhole logging tool, comprising: a sensor device comprising a sensor configured to electrically detect at least one physical characteristic downhole fluid such as temperature or flow. The sensor comprises a bridge circuit having a four electric components for electric detection of the physical characteristic. The electric components, often resistors, are often spaced apart in pairs where a first and second components are situated together next to each other; third and fourth electric components are situated together in close proximity and next to each other; whilst first and the third electric component are configured to be in parallel with the second and the fourth electric components. A heater may be added to the tool to generate a pulse of heat which may be detected by the sensors and provide data indicative of flow in the well. Accordingly embodiments of the invention can detect temperature in a well, and indeed fluid flow, which can be indicative of leaks in the well.
    Type: Application
    Filed: October 26, 2012
    Publication date: August 22, 2013
    Inventor: Paul Smart