Abstract: The invention relates to a method for adjusting a pulse detection threshold consisting in detecting a pulse when the edge of said pulse envelop crosses the threshold, in allocating (A) a staring value (TH0) to the threshold and in adjusting (B1) the threshold (TH) in such a way that the number of pulses detected on at least one observation window (OWj) satisfies a predetermined criterion in a determined time.
Abstract: A transmission system for a measurement device on a coordinate positioning apparatus comprises a station (18) mounted on the measuring device (10) and a station (20) mounted on the coordinate positioning apparatus (22), wherein the stations communicate with each other using a spread spectrum radio link, for example frequency hopping. The station on the probe sends a regular signal and on receiving the signal the station on the coordinate positioning apparatus synchronises its clock and sends an acknowledgement signal. Measurement data is either sent in the regular signal or in a measurement event driven signal.
Type:
Grant
Filed:
December 18, 2003
Date of Patent:
October 26, 2010
Assignee:
Renishaw PLC
Inventors:
Martin Woollett, John Styles, John Liptrot
Abstract: A mud pulse telemetry technique that uses a number of bits per interval based on parameters of the pulse position modulation system in order to reduce data transfer time in a pulse position modulation system. More particularly, depending on parameters of the pulse position modulation such as the minimum-time and the bit-width, it may be possible to decrease overall transmission time by splitting values having a larger number of bits into multiple transmissions with each transmission having a smaller number of bits.
Type:
Grant
Filed:
November 27, 2002
Date of Patent:
September 7, 2004
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Cili Sun, Laban M. Marsh, Bipin K. Pillai
Abstract: A system for generating a signal which, in addition to first information representing the rotational speed of a rotating part, contains at least second information. The signal changes over time between a first and a second current level and/or voltage level (high/low). The first information is represented by the time interval between a substantially identical change either between the first to the second level (high/low edge) or a substantially identical change between the second to the first level (low/high edge). On the other hand, the second information is represented by the length of time either of the first or of the second level. No further current levels or voltage levels are used to transmit the additional information, and that the additional information can be evaluated relatively simply. High data integrity can be attained by pulses which are as long as possible.