Land-based Landing Guidance Patents (Class 340/947)
  • Patent number: 10325506
    Abstract: A method for monitoring an airspace includes a first control and detection system and a second control and detection system. The first control and detection system has a first flying device and a first control and detection unit, and the second control and detection system has a second flying device and a second control and detection unit. An airspace monitoring system is different from the first control and detection unit and also from the second control and detection unit. First data relating to the first flying device is transmitted from the first control and detection unit to the airspace monitoring system, and data based on the first data is transmitted from the airspace monitoring system to the second control and detection unit. In this manner, the method allows a system-independent airspace monitoring process.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: June 18, 2019
    Assignee: TECHNISCHE UNIVERSITÄT DORTMUND
    Inventors: Niklas Goddemeier, Sebastian Rohde, Christian Wietfeld
  • Patent number: 10244294
    Abstract: A computer-implemented method for generating an automated response to a catastrophic event, that includes (1) analyzing a sample set of data generated in association with a catastrophic event to determine a threshold pattern; (2) receiving, with customer permission or affirmative consent, home sensor data from a smart home controller via wireless communication or data transmission, the home sensor data including data regarding at least one of (i) structural status; (ii) wind speed; (iii) availability of electricity; (iv) presence of water; (v) temperature; (vi) pressure; and/or (vii) presence of pollutants in the air and/or water; (3) determining, based upon or from computer analysis of the home sensor data, whether the home sensor data indicates a match to the threshold pattern; and (4) automatically generating a response if the home sensor data indicates a match to the threshold pattern. As a result, catastrophic events and responses thereto may be improved through usage of a remote network of home sensors.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 26, 2019
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Phillip Sangpil Moon, Sunish Menon, Jeffrey Kinsey, Jeffrey Wilson Stoiber
  • Patent number: 10119693
    Abstract: A wirelessly powered airfield lighting device includes a base can and a wireless power transmitter disposed in the base can. The wireless power transmitter can wirelessly transmit power. The lighting device further includes an isolation transformer disposed inside the base can. The isolation transformer is electrically coupled to and between the wireless power transmitter and a power source. The lighting device also includes a light fixture that includes a base disposed on and sealing the top end of the base can and that includes an electronics compartment. The light fixture further includes a wireless power receiver disposed in the electronics compartment and that wirelessly receives power from the wireless power transmitter. The light fixture also includes a light source that receives power from the wireless power receiver.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 6, 2018
    Assignee: Cooper Technologies Company
    Inventors: Birger Pahl, Traver B Gumaer, John B Schneider
  • Patent number: 10057664
    Abstract: A computer-implemented method for generating an automated response to a catastrophic event, that includes (1) analyzing a sample set of data generated in association with a catastrophic event to determine a threshold pattern; (2) receiving, with customer permission or affirmative consent, home sensor data from a smart home controller via wireless communication or data transmission, the home sensor data including data regarding at least one of (i) structural status; (ii) wind speed; (iii) availability of electricity; (iv) presence of water; (v) temperature; (vi) pressure; and/or (vii) presence of pollutants in the air and/or water; (3) determining, based upon or from computer analysis of the home sensor data, whether the home sensor data indicates a match to the threshold pattern; and (4) automatically generating a response if the home sensor data indicates a match to the threshold pattern. As a result, catastrophic events and responses thereto may be improved through usage of a remote network of home sensors.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: August 21, 2018
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Phillip Moon, Sunish Menon, Jeffrey Kinsey, Jeffrey W. Stoiber
  • Patent number: 9998285
    Abstract: A method and system of securing the firmware of a router. Upon determining that a received digital message does not have integrity or the digital signature of the received digital message is not correct, the digital message is ignored or discarded. Otherwise the digital message is decrypted and a new firmware extracted therefrom. The existing firmware is then flashed with the new extracted firmware.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 12, 2018
    Assignee: T-Mobile USA, Inc.
    Inventor: Samir Hodroj
  • Patent number: 9897445
    Abstract: A method of determining a direction of a target in a ground referential, the method including: acquiring an image of a scene including the target and a control object using a camera; obtaining position data of the camera and control object using a geo-spatial positioning system; determining a control direction from the camera to the control object in the ground referential using the position data; estimating a camera attitude in the ground referential using the control direction; determining the target direction from the camera to the target using the estimated camera attitude and a pixel position of the target in the image.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: February 20, 2018
    Assignee: ISRAEL AEROSPACE INDUSTRIES LTD.
    Inventors: Gil Bar Hillel, Garry Haim Zalmanson
  • Patent number: 9863601
    Abstract: Overcoming limitation in brightness and heating effects for LED based Precision Approach Path Indicators and allowing both colors to be imaged in the far field with the proper abrupt transition between the red and white sectors, making use of linear arrays of LED's and cylindrical optics.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: January 9, 2018
    Assignee: LASER GUIDANCE INC.
    Inventors: David Mark Shemwell, Alan August Vetter
  • Patent number: 9785144
    Abstract: Method and device for automatically managing air operations requiring a guarantee of navigation and guidance performance of an aircraft. The device for automatically managing at least one air operation comprises activatable monitoring of the air operation, a computation unit configured to automatically calculate an anticipated activation point as a function of the application point of the air operation, this anticipated activation point being defined upstream of the application point in the direction of flight of the aircraft, and an activation unit configured to automatically activate monitoring and a display when the aircraft reaches, during its flight, the anticipated activation point.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 10, 2017
    Assignee: Airbus Operations (S.A.S.)
    Inventors: Jaouad Berrajaa, Jean-Damien Perrie
  • Patent number: 9709991
    Abstract: A method implemented by computer for calculating a lateral approach trajectory of an aircraft, comprises the steps of receiving selection of a landing runway; determining a zone Z1, the zone defining trajectory limits to carry out a last turn with a view to landing on the indicated runway; receiving indication of a trajectory point FF defining a point of alignment of the aircraft; determining a joining trajectory bound for a point FAF2, the joining trajectory going from the aircraft to the point FAF2 and then to the point FF and then to the indicated landing runway without passing through the zone Z1. Developments describe the use of a zone Z2 associated with visibility conditions, the calculation of the energy to be dissipated, the use of a predefined descent profile, the emission of alerts and trajectory adaptations by increasing the length of the joining trajectory or use of the airbrakes.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 18, 2017
    Assignee: THALES
    Inventors: Valérie Bataillon, Sonia Vautier, Emmanuel Dewas
  • Patent number: 9639088
    Abstract: A method of autonomous landing of an aircraft in a landing area includes receiving, with the processor, sensor signals related to the landing area via a sensor device; obtaining, with the processor, a template of the landing area in response to the receiving of the sensor signals; matching, with the processor, one or more features of the template with the features of the acquired images of the landing area; and controlling, with the processor, each of the sensor device and aircraft control system independently based on said matching.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 2, 2017
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Hongcheng Wang, Ziyou Xiong, Alan Matthew Finn, Christopher Stathis, Igor Cherepinsky
  • Patent number: 9533756
    Abstract: A system and method are provided for defining, optimizing, and controlling taxi profiles for aircraft equipped with onboard non-engine drive means controllable to drive one or more nose or main landing gear wheels to drive an aircraft autonomously during taxi. An onboard taxi profile control system may employ smart software to determine selected taxi operational data at an airport and use this data to control and maintain torque of the drive means at desired selected levels that move the aircraft during taxi in response to determined taxi data or predetermined programmed taxi parameters. The system is designed to set default taxi profiles for each taxi cycle to achieve efficient aircraft taxi and to extend operational life of drive means components. Taxi profiles are modified and updated at periodic intervals or in real time in response to actual taxi conditions to optimize aircraft taxi at a specific airport.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 3, 2017
    Assignee: Borealis Technical Limited
    Inventors: Isaiah W. Cox, Rodney T. Cox, Aaron Z. Sichel
  • Patent number: 9467879
    Abstract: Systems, methods, and apparatus for automated close-loop electromagnetic (EM) datalink testing are disclosed. In some embodiments, the disclosed method involves routing, by a user simulator, at least one user input data and at least one user control command to a controller. The method further involves encrypting, by an encryption device(s), at least one user input data to generate at least one encrypted user input data. Also, the method involves transmitting, by a first radio, at least one encrypted user input data to a second radio via an EM signal(s); and receiving, by the second radio, at least one received encrypted user input data. Additionally, the method involves decrypting, by the encryption device(s), at least one received encrypted user input data to produce at least one received user input data. Further, the method involves processing, by the user simulator, at least one received user input data to generate a status report.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 11, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Hai D. Ho, Daniel D. Nguyen, Brian Schultz, Robert F. Huber, Phu Le, Carl Chihak
  • Patent number: 9296490
    Abstract: A method of displaying aircraft operating and position information with an electronic display unit comprises determining a position of a first aircraft at an airport; determining an optimum speed range of the first aircraft; determining a first aircraft speed of the first aircraft; displaying on a screen of the display unit a map of at least part of the airport; displaying a first aircraft symbol on the map, the first aircraft symbol displayed in a position on the map indicative of position of the first aircraft; and displaying an optimum speed range symbol having a lower bound end and a higher bound end in a position on the map such that the first aircraft symbol is between the lower bound end and the higher bound end when the first aircraft speed is within the optimum speed range.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: March 29, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Olukayode Olofinboba, Joseph Nutaro, David Pepitone, Patrick Jackson
  • Patent number: 9261599
    Abstract: A system and method is disclosed for updating the universal time within a GPS enable device in real-time and utilizing that corrected time to improve upon pseudorange calculations in the GPS devices. A time shim is introduced to correct outlier time values and provide improved pseudorange calculations to the device operating system, as well as draw upon various predictive smoothing methods of timestamp and position data to improve GPS location values. The improved GPS data is then provided to a location services process running on the device in an expected format and timing such that the operating system is unaware that the prior application interface of the system has been circumvented.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 16, 2016
    Assignee: WOLF-TEK, LLC
    Inventors: John Michael Golden, U. Angus Macgreigor
  • Patent number: 9007236
    Abstract: This is an electrical system not an electronic one. The light units should be placed as close to an actual circle as possible. For a helicopter visual landing in rough seas, low visibility and darkness, the approach for landing becomes a hazardous task. Good visibility of the landing area will be possible due to this system effectiveness. The helicopter can now become a truly all-weather vehicle. No new technology is needed. The parts for the system can be purchased off a store shelf, a minor modification of an existing item, or made by relatively minor fabrication.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: April 14, 2015
    Inventor: Nathanial Henry Lewis
  • Patent number: 9008873
    Abstract: Methods and systems for a go/no-go Landing Decision Point (LDP) are disclosed. The methods and systems provide a graphical LDP on a cockpit display that pilots can use to determine whether to continue the landing or execute a go-around. The methods and systems may be implemented in embodiments having an onboard portion, an off-board portion, or both operatively coupled to provide an LDP in a preview/planning mode and real time mode.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 14, 2015
    Assignee: The Boeing Company
    Inventors: Thomas J. Phillips, Jean M. Crane
  • Patent number: 9000952
    Abstract: Present novel and non-trivial methods for presenting taxi information to a pilot are disclosed. Each method may generate an image data set from taxi information data and navigation reference and object data. A first image data set may be representative of an image in which one or more first location highlighter(s) highlighting the location(s) of one or more raised surface feature(s) appears within an egocentric or exocentric three-dimensional representation of a scene located outside the aircraft. A second image data set may be representative of an image in which one or more unconventional surface feature(s) highlighting the location(s) of one or more raised surface feature(s) appears within an egocentric or exocentric three-dimensional representation of a scene located outside the aircraft. A third image data set may be representative of an image in which one or more unconventional surface feature(s) appears within an airport surface map.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 7, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: Travis S. Vanderkamp, Christopher A. Scherer, Victor E. Villagomez, Felix B. Turcios
  • Patent number: 8933957
    Abstract: Methods and systems for visually organizing aviation or aeronautical charts with color emphasis and de-emphasis features selected by a user.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 13, 2015
    Assignee: The Boeing Company
    Inventor: Brian B. Kennedy
  • Patent number: 8917191
    Abstract: A system for controlling an image displayed on a display unit of an aircraft is shown and described. The system includes an enhanced vision system that detects elements of an approach lighting system for display on the display unit. The system also includes a synthetic vision system that uses a database of navigation information and a determined aircraft location to generate synthetic display elements representing the approach lighting system. Display electronics of the system cause the detected elements from the enhanced vision system to be simultaneously displayed on the display unit within a same scene as the generated synthetic display elements from the synthetic vision system. Advantageously, the simultaneous display allows a pilot viewing the display unit to check for whether information provided by the enhanced vision system matches information provided by the synthetic vision system.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 23, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Carlo L. Tiana, Kenneth A. Zimmerman, Robert B. Wood
  • Patent number: 8897935
    Abstract: This disclosure relates to a system for preventing collisions with a terrain. The system includes a detecting means for detecting risks of collision with the terrain after a predetermined forecasting delay. The system further includes a determining means for determining, based on a trajectory followed by the aircraft, a possible limit point for success of the vertical terrain avoidance maneuver. The system further includes indication means for giving indications on azimuth clearance sections, around the direction in which the aircraft is moving, suitable for success of the vertical terrain avoidance maneuver. The system further includes means for estimating a free-travel distance in each azimuth clearance sector on a straight distancing trajectory with constant gradient and over a distance correspond to more than one minute of flight, the free-travel distance being free of potential conflicts with the terrain.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 25, 2014
    Assignee: Thales
    Inventors: Hugues Meunier, Nicolas Marty, Julia Percier
  • Patent number: 8890718
    Abstract: An aircraft terrain awareness warning system is disclosed that includes an interface for entering flight plan details of an aircraft including at least one waypoint. The terrain awareness warning system is configured such that potential-terrain-collision alerts are suppressed in the aircraft during landing operations performed at waypoints associated with landing zones.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: November 18, 2014
    Assignee: Sandel Avionics, Inc.
    Inventor: Gerald J. Block
  • Patent number: 8880339
    Abstract: A schematic display for presenting vertical navigation (VNAV) data is disclosed. A planned route such as a flight plan is divided into a series of VNAV legs, and only a VNAV schematic that corresponds to the active VNAV leg is displayed. The VNAV schematic in accordance with the present disclosure is a profile-view schematic for the active VNAV leg, providing a visual representation indicating the locations of the upcoming Top of Climb (TOC) or Top of Descent (TOD). Additional VNAV data may also be presented to provide content context. Since the schematic display in accordance with the present disclosure only displays VNAV data relevant to the active VNAV leg at a given time, the complexities associated with displaying the VNAV schematic is reduced, making the VNAV data easy to read and understand.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Rockwell Collins Inc.
    Inventors: Seth A. Cooper, David A. Gribble, David L. Leedom, Geoffrey A. Shapiro, Daniel E. Russell, James E. Winfield
  • Patent number: 8816881
    Abstract: A runway digital wind indicator system senses wind conditions at multiple locations, aggregates this data, and communicates up-to-date, usable information to pilots. Meteorological information, including wind speed, direction, and change (i.e., gustiness) plus temperature, humidity, barometer, wind shear, etc., can be sensed by three or more sensor pods placed along a runway (at least one at each end and another in the middle of a given runway). Data from these pods is then transferred to a computer receiver that processes the information into a real-time, concise, readable format that can be displayed to air traffic control, sent to runway digital display signs placed in proximity to runways for direct pilot reference, and/or posted to websites/internet locations that can then be used to wirelessly relay the information to any of a plethora of digital devices that can be accessed directly by a pilot.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: August 26, 2014
    Inventors: Roger L. Nakata, Daniel G. Sprinkle
  • Publication number: 20140222327
    Abstract: A system and method are provided for displaying terrain altitudes on an aircraft display that are easily understood by the pilot. A plurality of bands are defined, wherein each band defines a range of altitudes of terrain in the vicinity of the aircraft. A list of altitudes representing each band is displayed in a legend. A band is highlighted when a number associated therewith is selected, and a number is highlighted when the band associated therewith is selected. The band or number may be selected, for example, by cursor, or the band may be selected by position of the aircraft.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Roger W. Burgin, Pramod Kumar Malviya, Dave Pepitone
  • Patent number: 8798819
    Abstract: A monitor on-board an aircraft which uses radio altitude measurements as the basic observable altitude during runway approach. The basic concept utilizes the aircraft's navigation system, which includes means to store and retrieve radio altitude thresholds as a function of the distance along the desired path from the runway thresholds. These threshold functions are determined in advance based on a radio altitude reference which is defined as the expected radio altimeter measurement that would be made if the airplane were exactly on the desired reference path. Vertical containment monitoring is achieved by comparing the radio altitude measurement to computed thresholds for both too high and too low. During the approach, an annunciation message can be generated if the radio altitude measurement is above or below the threshold limits.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventor: Timothy Allen Murphy
  • Patent number: 8788187
    Abstract: A method and system for providing taxiway navigational information to a crewmember of an airplane taxiing at an airport. An airport taxiway navigation system (“ATNS”) that executes on an onboard computer system that displays a map of the taxiways of an airport, receives the name of each taxiway of the taxi route specified by the taxi clearance, and highlights the taxiways on a displayed map to provide a visual indication of the cleared taxi route for the crewmembers.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Reagan Doose, Richard W. Ellerbrock, Glade L. Hulet, John M. Jauglias, Matthew T. Majka
  • Patent number: 8786467
    Abstract: A method and a system for displaying an airport or runway moving map with traffic information on a display screen in the cockpit or flight deck of an aircraft. Symbology representing surface and near-surface aircraft and surface vehicle traffic and associated traffic data are filtered to prevent or limit clutter on the display screen. Traffic symbology is automatically and manually filtered to display only relevant traffic. Traffic data is selectively displayed and displayed as/when relevant or needed. The displayed traffic information may be derived from automatic dependent surveillance-broadcast, traffic information system-broadcast, automatic dependent surveillance-rebroadcast, traffic collision avoidance system or other source.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Samuel T. Clark, Roglenda R. Bowe, Stephen Bernard Ortman, Jean Marie Crane
  • Patent number: 8773289
    Abstract: A method and apparatus are present for monitoring a runway. Data is received about the runway from a number of sensors associated with an aircraft while the aircraft performs an operation on the runway. A number of conditions are identified for the runway using the data received from the number of sensors.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 8, 2014
    Assignee: The Boeing Company
    Inventors: Jeanne C. Maggiore, Wayne R. Majkowski, Kevin L. Swearingen
  • Patent number: 8717169
    Abstract: A monitoring and alerting system for installation in an air traffic control facility. The alerting system monitors the outgoing transmissions from the control facility to secondary locations, the responsiveness of the control facility personnel to aircraft communications or both. The monitoring and alerting system utilizes multiple stages of alerts for the air traffic controllers. In a first stage, a light source is displayed within the control facility. In a second stage, an audible noise is sounded within the control facility. In a third stage, an audible noise of increased volume is sounded in or near the control facility, a notice is sent to command and control and/or an indication is sent to a Central Control Facility. The three stages of alerts are progressively activated if the personnel in the control facility fail to adequately utilize connected equipment monitored by the alerting system within predetermined time periods.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: May 6, 2014
    Assignee: Velocity Metrics, LLC
    Inventors: Bruce C. Rodger, Ross F. Aimer
  • Patent number: 8712609
    Abstract: A method is provided for displaying information on a display device of an aircraft. The method comprises determining graphics data for visual aids that represent missed approach data; incorporating the graphics data into a user interface that is in perspective view; and generating the user interface for display on the display device of the aircraft.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: April 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: Navin Kadavil, Anil Kumar Songa, Prashant Prabhu, Ravindra Jayaprakash, Sadguni Venkataswamy
  • Patent number: 8711007
    Abstract: A method, apparatus, and computer program product for displaying information about runways. A runway for an aircraft is identified when the aircraft is within a selected distance of the runway. A number of graphical indicators are displayed on a display in a flight deck. The number of graphical indicators corresponds to a number of features of the runway present in a field of view for an eye reference point in the flight deck.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: April 29, 2014
    Assignee: The Boeing Company
    Inventors: Sherwin S. Chen, Jean M. Crane, Steven L. Fleiger-Holmes, Wayne R. Jones, Bruce P. Samuels, Bechara J. Mallouk
  • Patent number: 8698669
    Abstract: Another embodiment of the disclosure relates to an altitude system for an aircraft. The aircraft radar system includes a processor configured to determine an altitude of the aircraft using runway position information, and an angle to the runway associated with a radar beam to the runway. The angle to the runway is being determined using a pointing angle of the antenna adjusted with an angular offset. The angular offset is determined from phase processing.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 15, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8692691
    Abstract: An infrared laser landing marker system provides a capability to mark a boundary line of varying lengths with near infrared lasers, e.g., of the order 8xx nm. This system can be either directly operated or remotely operated via satellite communications and is compatible with currently fielded night vision goggles. Two modules, placed at either end of boundary, self align to each other and then proceed to mark a boundary edge of a landing zone with an infrared laser line.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 8, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Yau L. Fung, Andrew J. Hill, Paul W. Bachelder, Robert B. Mayer, Blaine C. Froeschl, Alden K. Lum, Miguel P. Snyder, Kim W. D. Larsen
  • Patent number: 8681020
    Abstract: Methods and apparatus are provided for automated control of aerodrome lighting. An exemplary system includes a communication radio, an aerodrome lighting data source, and a processor. The communication radio is configured to selectively transmit radio frequency (RF) signals. The aerodrome lighting data source is configured to at least selectively supply aerodrome lighting data representative of light control characteristics of aerodrome lighting associated with individual aerodromes. The processor is in operable communication with the aerodrome lighting data source and the communication radio, and is configured to selectively retrieve, from the aerodrome lighting data source, aerodrome lighting data associated with an individual aerodrome, and selectively command the communication radio to transmit RF signals consistent with the light control characteristics associated with the individual aerodrome.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: March 25, 2014
    Assignee: Honeywell International Inc.
    Inventors: Sabu Mathew, Nithin Ambika, Wesley Peter, Swetha Balasa, Shashidhara Veerabhadraiah
  • Patent number: 8669883
    Abstract: A visual aid for the pilot of an aircraft approaching to land on an aircraft carrier comprises a series of lights (9) embedded along the landing deck and controlled in response to pitch and heave of the vessel so that the light(s) illuminated at any time indicate a visual aim point which is stabilised with respect to a specified glideslope (5) onto the vessel irrespective of such vertical excursions of the vessel. It is used in conjunction with a marker on a head up display or helmet mounted display for example so that registry of the marker with the illuminated light at any time indicates that the aircraft is on the correct glideslope.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: March 11, 2014
    Assignee: Qinetiq Limited
    Inventor: Justin David Billot Paines
  • Patent number: 8665138
    Abstract: A system for preventing light pollution includes one or more radar units that monitor for vehicles in a volume surrounding or containing one or more obstructions having one or more obstruction lights. A master radar detection processing unit receives sensed radar detection information from the one or more radar units with associated radar signal processing units and determines whether a vehicle is present within the monitored volume. A plurality of obstruction light controller units are interconnected in a network, such as a wireless network. Each obstruction light controller unit turns on an obstruction light when a vehicle enters the monitored volume or a failure condition exists, and turns off the obstruction light when the vehicle has vacated the monitored volume and no failure condition exists. The one or more radar units can transmit sensed radar detection information to a master radar detection processing unit via the network.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: March 4, 2014
    Assignee: Laufer Wind Group LLC
    Inventor: Eric David Laufer
  • Patent number: 8626435
    Abstract: A method for determining location such as vehicle location receives data at a predetermined frequency, validates the received data, stores the received data based on the validation and computes a location based on the stored data. The validation includes verifying a presence of particular data substrings within the received data, verifying a presence of a plurality of data fields within each data substring, computing a parameter based on information contained in two of the plurality of data fields and comparing the computer parameter with a pre-defined threshold.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 7, 2014
    Assignee: Volvo Group North America LLC
    Inventors: Raymond Gardea, James Gwynn, John Bate
  • Patent number: 8599046
    Abstract: Systems and methods for informing a pilot of an aircraft about a topographical condition of a runway are disclosed herein. The system includes, but is not limited to, an electronic data storage unit configured to store location information and topographical condition information for a plurality of runways, a position determining unit that is configured to determine a geographical location of the aircraft, a display unit that is configured to display a graphical image, and a processor that is operatively coupled with each of the other components. The processor is configured to obtain the geographical location of the aircraft, identify a runway that the aircraft is approaching, obtain a subset of the topographical condition information relating to the runway, and command the display unit to display a vertical profile of the runway including a graphic depiction of the subset of the topographical condition information.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: December 3, 2013
    Assignee: Honeywell International Inc.
    Inventor: Santhosh Ca
  • Patent number: 8599045
    Abstract: Systems and methods for improving pilot situational awareness in the airport vicinity. An example method determines if at least one of an aircraft or vehicle in a predefined vicinity of the airport is a conflict based on information about an installation aircraft, information received from the at least one aircraft or vehicle, and a predefined conflict envelope, when the installation aircraft is performing one of an approach to landing, a takeoff operation or a taxi operation at an airport. The method generates and outputs a conflict alert if the installation aircraft determines that the at least one aircraft or vehicle is a conflict. The method generates a clear-of-conflict advisory if the at least one aircraft or vehicle previously determined to be conflicting is determined to no longer be conflicting based on updated information received from the at least one aircraft or vehicle.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: December 3, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ratan Khatwa, Jeff Lancaster
  • Publication number: 20130314256
    Abstract: Aerospace ground maneuver light, comprises a reflector (14), the reflector (14) defining a light exit plane (18), an LED light source (26) arranged outside of the area defined by the reflector (14) and its light exit plane (18), and a mounting bar (22) which has a longitudinal extension and at which the LED light source (26) is mounted. The mounting bar (22) extends across the reflector (14) and is spaced apart from the light exit plane (18) of the reflector (14) and comprises a mounting side (24) facing towards the reflector (14) and its light exit plane (18), with the LED light source (26) arranged on the mounting side (24) for emitting light towards the reflector (14).
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Inventors: Andre Hessling, Alexander Wernicke, Anil Kumar Jha, Christian Schoen
  • Patent number: 8560150
    Abstract: Methods and systems for a go/no-go Landing Decision Point (LDP) are disclosed. The methods and systems provide a graphical LDP on a cockpit display that pilots can use to determine whether to continue the landing or execute a go-around. The methods and systems may be implemented in embodiments having an onboard portion, an off-board portion, or both operatively coupled to provide an LDP in a preview/planning mode and real time mode.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 15, 2013
    Assignee: The Boeing Company
    Inventors: Thomas J. Phillips, Jean M. Crane
  • Patent number: 8494693
    Abstract: A monitor on-board an aircraft which uses radio altitude measurements as the basic observable altitude during runway approach. The basic concept utilizes the aircraft's navigation system, which includes means to store and retrieve radio altitude thresholds as a function of the distance along the desired path from the runway thresholds. These threshold functions are determined in advance based on a radio altitude reference which is defined as the expected radio altimeter measurement that would be made if the airplane were exactly on the desired reference path. Vertical containment monitoring is achieved by comparing the radio altitude measurement to computed thresholds for both too high and too low. During the approach, an annunciation message can be generated if the radio altitude measurement is above or below the threshold limits.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 23, 2013
    Assignee: The Boeing Company
    Inventor: Timothy Allen Murphy
  • Publication number: 20130127642
    Abstract: A method and apparatus are present for monitoring a runway. Data is received about the runway from a number of sensors associated with an aircraft while the aircraft performs an operation on the runway. A number of conditions are identified for the runway using the data received from the number of sensors.
    Type: Application
    Filed: March 24, 2010
    Publication date: May 23, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Jeanne C. Maggiore, Wayne R. Majkowski, Kevin L. Swearingen
  • Patent number: 8350726
    Abstract: Methods and apparatus are provided for selecting a touchdown point for a vertical takeoff and landing aircraft. The eye movements of a user are tracked relative to an image being rendered on a display screen. An updated touchdown point location is determined from the tracked eye movements, and an updated touchdown point is rendered at the updated touchdown point location on the display screen.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 8, 2013
    Assignee: Honeywell International Inc.
    Inventors: Santosh Mathan, Patricia May Ververs
  • Patent number: 8319667
    Abstract: A system and method of conveying missed approach procedures to a pilot are provided. The system and method include rendering a graphic representation of at least one leg of the missed approach procedure on a display. A determination is made as to whether the aircraft is at least substantially flying the at least one leg of the missed approach procedure. At least one visual characteristic of the rendered graphic is selectively varied based on the determination of whether the aircraft is at least substantially flying the at least one leg of the missed approach procedure.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 27, 2012
    Assignee: Honeywell International Inc.
    Inventors: Roger W. Burgin, Blake Wilson, Sandy Wyatt
  • Patent number: 8290644
    Abstract: In a method for aiding aircraft landing using a GPS and an MLS within the context of a computed axial approach, the method uses coordinates of an azimuth antenna and/or of an elevation antenna as a reference point for the computation of a position of the aircraft in a reference frame centered on the landing runway. This position of the aircraft is thereafter used to determine an angle of azimuth between a longitudinal axis of the landing runway and the aircraft.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 16, 2012
    Assignee: Thales
    Inventor: Ludovic Bouquet
  • Publication number: 20120256767
    Abstract: Systems and methods for informing a pilot of an aircraft about a topographical condition of a runway are disclosed herein. The system includes, but is not limited to, an electronic data storage unit configured to store location information and topographical condition information for a plurality of runways, a position determining unit that is configured to determine a geographical location of the aircraft, a display unit that is configured to display a graphical image, and a processor that is operatively coupled with each of the other components. The processor is configured to obtain the geographical location of the aircraft, identify a runway that the aircraft is approaching, obtain a subset of the topographical condition information relating to the runway, and command the display unit to display a vertical profile of the runway including a graphic depiction of the subset of the topographical condition information.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Santhosh CA
  • Patent number: 8271191
    Abstract: Methods and systems for determining reliability of Global Positioning System (GPS) ground speed. An example system receives GPS track information and GPS ground speed, determines a change in GPS track information and determines reliability of the GPS ground speed based on the determined change in GPS track information relative to the GPS ground speed. The system sets a GPS ground speed based on the determined reliability. A GPS ground speed output is set to zero, if the GPS ground speed is determined unreliable and the GPS ground speed output is set to the GPS ground speed, if the GPS ground speed is determined reliable. The system sends the GPS ground speed output to a Runway Awareness and Advisory System (RAAS). Also, the system sets the GPS ground speed output to zero, if a received GPS ground speed validity signal or a received GPS track validity signal indicate invalid.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: September 18, 2012
    Assignee: Honeywell International Inc.
    Inventors: Yasuo Ishihara, Kevin J Conner, Steve C. Johnson
  • Patent number: 8224505
    Abstract: A method and device are provided for determining a target altitude for an emergency descent of an aircraft that is to be reached by the end of the emergency descent. The method includes determining an initial target altitude representative of the initial position of the aircraft and then repeatedly determining a current target altitude along a reference horizontal distance. The current target altitude is compared to the initial target altitude and is used to update the emergency descent if the current target altitude is lower than the initial target altitude. Each target altitude is selected as the larger of a predetermined threshold altitude and a security altitude that ensures any obstructions along a remaining horizontal distance are avoided.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 17, 2012
    Assignee: Airbus Operations (SAS)
    Inventors: Paule Botargues, Erwin Grandperret, Lucas Burel
  • Patent number: 8209072
    Abstract: A method and device to assist in the piloting of an aircraft in a landing phase may apply a maximum braking of the aircraft if there is a risk of longitudinal departure from a runway.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 26, 2012
    Assignees: Airbus Operations SAS, Airbus
    Inventors: Fabrice Villaume, Armand Jacob, Robert Lignee