With Plural Receiver Frequency Band Separation Patents (Class 342/111)
  • Publication number: 20040150552
    Abstract: A method for processing pulsed-Doppler radar signals to detect a target includes transmitting radar signals from a radar system according to a predetermined frequency technique including signals having frequency diversity, receiving signals within a frequency band, including a target return signal having a frequency indicative of the velocity of the target, and transforming the target return signal using a Fourier Transform having a variable frequency scale.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventors: Peter F. Barbella, Tamara L. Franz, Barbara E. Pauplis
  • Publication number: 20040140927
    Abstract: In a method for determination of the length of objects in traffic, especially passenger cars, trucks, buses, motorbikes, bicycles and pedestrians, radar signals are transmitted by a vehicle, the radar signals are reflected by an object being measured, the reflected radar signals are received in the vehicle, the frequency spectra of the reflected radar signals are evaluated, and the reflection peaks contained in the frequency spectra are determined. Length measurement, by means of known radar sensors, from a vehicle is made possible by the fact that the width of the reflection peaks is determined, and that the length of the object being measured is determined by means of the determined width.
    Type: Application
    Filed: December 12, 2003
    Publication date: July 22, 2004
    Inventors: Marc-Michael Meinecke, Ralph Mende, Marc Behrens
  • Publication number: 20040125011
    Abstract: Provided is a radar apparatus capable of continuously and stably making a detection of a target even if a reflected wave from a target already detected falls into obscurity due to the presence of low-frequency noises or reflected waves from other targets. An estimated value of information on a target to be obtained when the target is detected in the present cycle are acquired from the target detected in a previous cycle. When a peak compatible with the estimated value is detected in only one of a frequency-rising section and a frequency falling section of a radar wave, if the frequency of the non-detected peak pertains a low-frequency noise domain or if a side-by-side travel flag is set with respect to the target detected in the previous cycle, the non-detected peak is considered as buried by low-frequency noises or peaks of other targets, and a peak pair corresponding to the detected target is extrapolated.
    Type: Application
    Filed: December 18, 2003
    Publication date: July 1, 2004
    Applicant: DENSO CORPORATION
    Inventors: Hiroaki Kumon, Yukimasa Tamatsu
  • Patent number: 6756933
    Abstract: A radar system and a characteristic adjustment method for the radar system are provided, in which a control voltage waveform of a voltage controlled oscillator for frequency-modulating a sending signal can be set in a short time without increasing the required amount of memory. In adjusting time-varying characteristics of a voltage signal for frequency modulation on a voltage controlled oscillator determining a sending frequency, the time-varying characteristics of the voltage signal for frequency modulation are adjusted to optimize a form of a protrusion in signal intensity included in a frequency spectrum of a beat signal.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: June 29, 2004
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toru Ishii, Motoi Nakanishi, Tetsu Nishimura
  • Publication number: 20040108952
    Abstract: A signal from CW radar is received, and the received power detected by the CW radar's swinging in all directions is averaged in each direction. Then, the maximum value and the minimum value of the received power are detected for each direction, and the difference between the maximum value and the minimum value is computed. An average power value of obtained power is also computed. On a 2-dimensional plane on which the difference between the maximum value and the minimum value and the average power value are used for coordinate axes, slice processing is performed using a threshold indicated by a line graph or a curve.
    Type: Application
    Filed: November 20, 2003
    Publication date: June 10, 2004
    Applicant: FUJITSU LIMITED
    Inventors: Satoshi Ishii, Yoshikazu Dooi, Sadanori Matsui
  • Publication number: 20040066322
    Abstract: An in-vehicle pulse radar device includes: an oscillator that generates an electromagnetic wave; a transmission amplifier that transmits the electromagnetic wave generated by the oscillator toward a target substance; an antenna that receives the reception electromagnetic wave reflected by the target substance to output data; reception amplifiers; a reception antenna; an A/D converter; and a signal processing device that pre-sums data which is sampled on the basis of the data from the A/D converter for each of distance gates, subjects the pre-summed data which is a result of the pre-summing process to an FFT process, and obtains a distance between a subject vehicle and the target substance and a relative speed therebetween in accordance with the spectrum frequency and the amplitude information which are a result of the FFT process.
    Type: Application
    Filed: May 8, 2003
    Publication date: April 8, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Naohisa Uehara
  • Publication number: 20040066331
    Abstract: The invention concerns a passive radar receiver for a received orthogonal frequency division multiplex-type signal consisting of symbol frames each emitted on coded orthogonal carriers. After formatting the received signals into digital symbols (S1 S1), a filtering circuit (2) eliminates by subtraction or using a covariance matrix, in the symbol signal at least unwanted signals with null Doppler effect so as to apply a filtered signal (X′) including essentially signals backscattered by mobile targets to a Doppler-distance correlator (4).
    Type: Application
    Filed: July 30, 2003
    Publication date: April 8, 2004
    Inventor: Dominique Poullin
  • Publication number: 20040051660
    Abstract: A radar device includes a mixer that mixes an output of a transmit antenna 4 and an input of a receive antenna 6, an LPF 8, an A/D converter 9 that samples an output signal of the LPF 8 and subjects the sampled signal to A/D conversion, an FFT processing device 10 that subjects the converted signal to high-speed Fourier transformation, an aliasing discriminating/correcting device that discriminates a signal having a frequency component where aliasing occurs from a result by the FFT processing device 10 and corrects the signal to a signal of a normal frequency component where no aliasing occurs to obtain a distance and relative velocity data of the object, and a target object selecting device that selects necessary data from the distance and relative velocity data of the object which are obtained from the aliasing discriminating/correcting means.
    Type: Application
    Filed: April 8, 2003
    Publication date: March 18, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Koichi Kai
  • Patent number: 6703966
    Abstract: To measure the absolute speed of a body 100 moving relative to the ground 33 using an onboard speed sensor 1, a radar wave is transmitted towards the ground by an antenna with a wide aperture angle. The wave reflected by a reflecting obstacle on the ground and the transmitted wave are mixed and the frequency content of the low frequency signal obtained is determined. The speed of the moving object and the height of the transmitter and receiver antennas above the ground can then be measured by adjusting a theoretical curve to the time-varying evolution of the Doppler frequency corresponding to the reflecting obstacle.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: March 9, 2004
    Inventors: CĂ©line Corbrion, Jacques Lewiner, Thierry Ditchi, Eric Carreel
  • Patent number: 6703967
    Abstract: From a transmitter (18) and a transmission antenna (10), a first frequency signal having a fixed frequency is transmitted for a predetermined time or more, a second frequency signal having a certain frequency difference from the first frequency signal is transmitted for a predetermined time or more, and a third frequency signal having a frequency difference twice the frequency distance from the first frequency signal is transmitted for a predetermined time or more. Reflected waves from objects under measurement at the respective transmission frequencies are supplied to a reception antenna (11), a mixer (12), an analog circuit unit (13), an A/D converter (14), an FFT (15) and a signal processing unit (16).
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: March 9, 2004
    Assignee: Hitachi Ltd.
    Inventors: Hiroshi Kuroda, Kazuaki Takano, Mitsuru Nakamura
  • Publication number: 20040041727
    Abstract: The crossover detection method of a radar apparatus according to the present invention calculates distance/relative velocity information at a multitude of different clock times, using a beat signal; calculates predicted distance/relative velocity information indicating distance/relative velocity, respectively, of a target after a prescribed time has elapsed; calculates predicted distance/relative velocity errors by subtracting the calculated distance/relative velocity information from the calculated predicted distance/relative velocity information, respectively; calculates degree of similarity information, based on the predetermined average predicted distance/relative velocity errors and the calculated predicted distance/relative velocity errors; and determines whether there is crossover, based on the above information.
    Type: Application
    Filed: March 31, 2003
    Publication date: March 4, 2004
    Applicants: FUJITSU LIMITED, FUJITSU TEN LIMITED
    Inventors: Satoshi Ishii, Yoshikazu Dooi, Masayuki Kishida
  • Publication number: 20040027273
    Abstract: The invention relates to a method for adaptive target processing in a vehicle radar, the targets in the surroundings being detected by speed and place in the standard mode of the radar sensor, after detection of the targets in the standard mode it is being changed over to a precision mode, in which the distance measuring range of the radar sensor is adapted to the target surroundings detected in the standard mode. In accordance with the present invention the measuring accuracy and/or resolution regarding speed is increased by increasing the time of observation within the distance measuring range adapted to the target surroundings.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 12, 2004
    Inventors: Joachim Flacke, Bruno Kaiser, Kuno Heckel, Ralph Speck
  • Publication number: 20030218564
    Abstract: A vehicle-mounted radar apparatus which periodically derives and registers successive momentary position values for a target object such as a preceding vehicle based on received reflected radio waves and derives final lateral position data by smoothing the momentary position data, judges when a degree of scattering of the registered momentary position values exceeds a first predetermined level and in that case derives corrected position data based on differences between envelope curve line values which are generated based on local extreme values of the momentary position data, and performs smoothing of the corrected position data instead of the momentary position data, to obtain the final lateral position data. If the target object is not estimated to be located directly ahead of the host vehicle along a straight route, the corrected position data are adjusted in accordance with relative positions and orientations of the target object and host vehicle.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 27, 2003
    Inventors: Yukimasa Tamatsu, Hiroaki Kumon, Akira Isogai
  • Patent number: 6650272
    Abstract: A method for exciting an antenna with a waveform having a burst width and pulse width scaled proportionately with a selected range scale and a temporal filter to address any ambiguities in range resulting from the transmission of a signal in accordance with the novel waveform. The inventive filtering method includes the step of scanning a beam including a plurality of pulses of electromagnetic energy. The step of scanning the beam includes the step of outputting a beam excited by a waveform having a burst width and pulse width scaled proportionately with a selected range scale. Reflections of these pulses are received as return signals. The returns are processed to extract range in range rate measurements. The range and range rate measurements are compressed to form a plurality of range bins. The pulses are selectively weighted to reduce sidelobes resulting from a subsequent Fast Fourier transform (FFT) operation.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: November 18, 2003
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Publication number: 20030184470
    Abstract: A radar system achieves adjustment of a time-change characteristic of a frequency-modulating voltage signal to a voltage-controlled oscillator for determining a transmitting signal such that the time-change characteristic of the frequency-modulating voltage signal is changed by a minute amount and the frequency spectrum of a beat signal is determined. The adjustment is performed so that the shape of a bulge in signal intensity included in the frequency spectrum is the sharpest.
    Type: Application
    Filed: March 17, 2003
    Publication date: October 2, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Toru Ishii, Motoi Nakanishi, Tetsu Nishimura
  • Patent number: 6614388
    Abstract: A sensor array with a pulse echo radar system with which a carrier signal of a microwave transmitter oscillator is transmitted in the form of pulses with a specified pulse repetition frequency in a transmission window. This radar signal is reflected from a target object and the position of the target object is calculated in a mixer from the times of transmission of the pulse to the arrival of the reflected radiation. An array of several transmitter and receiver units with switches are constructed in which the stochastic pulse sequences of each transmission window in each receiver branch are known and the transmitter and receiver units are linked to one another so that in each of the receiver branches the stochastic pulse sequences of each transmission window are detected separately and thereby the cross echoes may also be analyzed.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: September 2, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Roland Klinnert, Klaus Voigtlaender, Hauke Schmidt
  • Patent number: 6611225
    Abstract: A radar signal processing apparatus has a range gate for extracting range gate data sequences from a memory, a first frequency extraction section which extracts a beat frequency corresponding to a target by performing frequency analysis by FFT at a low computation load and with low frequency measurement accuracy on all range gate data sequences extracted by the range gate, a second frequency extraction section which extracts a beat frequency corresponding to the target by performing frequency analysis by FFT at a high computation load and with high frequency measurement accuracy only on the range gate data sequence from which a beat frequency has been extracted by the first frequency extraction section, and a distance and speed derivation section which obtains the relative distance and the relative speed of the target on the basis of the beat frequency extracted by the second frequency extraction section.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: August 26, 2003
    Assignee: Mitsubish Denki Kabushiki Kaisha
    Inventors: Masashi Mitsumoto, Takahiko Fujisaka, Koichi Kai
  • Publication number: 20030156055
    Abstract: An inventive frequency modulated continuous wave (FMCW) radar system realizes both of a quick detection of higher relative speed provisional target and a sure detection of smaller relative speed provisional target. The number of detection cycles used for a paring validity check (a test to see if a detected target or a pair of frequencies is an actual target or a pair for an actual target) is set in response to the relative velocity.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 21, 2003
    Inventors: Yukimasa Tamatsu, Hiroaki Kumon
  • Publication number: 20030156054
    Abstract: A radar system is capable of transmitting necessary information through a very small amount of data from a radar device to a host device via a bus with a limited bandwidth. A radar sensor generates a beat signal between a transmission signal and a reflected signal from a target. A signal processor determines a spectrum of the beat signal and compresses the data indicating the spectrum. The resultant compressed data is transmitted to the host device via a bus. The host device decompresses the received data thereby reproducing the spectrum data. The host device then detects the target on the basis of the reproduced spectrum data.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 21, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Toru Ishii, Tetsu Nishimura, Motoi Nakanishi
  • Publication number: 20030156057
    Abstract: In a method for HPRF-radar measurement of the range and Doppler frequency of at least one target, a transmit signal is generated which consists of two pulse sequences that are interleaved on a pulse to pulse basis, and have the same pulse repetition frequency PRF and the same transmit frequency. The pulses of a first one of the two pulse sequences have a linearly increasing phase value with a fixed phase difference &phgr;1n (greater than zero) from pulse to pulse with &phgr;1n≧0, while the pulses of the second pulse sequence have a linear increasing phase value with a fixed phase difference &phgr;2n which differs from &phgr;1n. The two received base band signals of each individual pulse sequence are Fourier transformed, and the amplitude peaks of the resulting two Fourier spectra are determined.
    Type: Application
    Filed: November 25, 2002
    Publication date: August 21, 2003
    Inventors: Hermann Rohling, Wilhelm Guener, Hans Hommel, Dieter Nagel
  • Publication number: 20030151544
    Abstract: A radar device precisely detects a target in short time intervals by detecting a true peak frequency with high accuracy via a calculation which does not require a large amount of computation. A discrete frequency spectrum of a beat signal multiplied by a window function is determined, and values of signal strength at two discrete frequencies which are, respectively, higher and lower than a peak frequency of the discrete frequency spectrum of the beat signal and which are adjacent to the peak frequency. The frequency difference between the discrete peak frequency of the beat signal and the peak frequency of the window function is then determined from the ratio between the values of signal strength at those two discrete frequencies adjacent to the peak frequency. Thus, the true peak frequency of the beat signal is determined with a high frequency resolution.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 14, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Tetsu Nishimura, Motoi Nakanishi, Toru Ishii
  • Publication number: 20030151543
    Abstract: A radar system includes a transmitting/receiving unit, having a voltage controlled oscillator, for repeatedly transmitting a triangular transmission signal including a frequency-gradually-rising up-modulation interval and a frequency-gradually-dropping down-modulation interval and for receiving a reception signal including a reflected signal from a target, a frequency analysis unit, a data storing unit for storing time-varying characteristics of input values to a D/A converter that monotonically change an oscillation frequency of the voltage controlled oscillator with time, in the form of data concerning an expression representing the time-varying characteristics, and a data processing unit for determining the input values to the D/A converter with reference to the data. At least one of the relative distance to the target and the relative speed of the target is detected based on a beat signal during the up-modulation interval and the beat signal during the down-modulation interval.
    Type: Application
    Filed: January 17, 2003
    Publication date: August 14, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Motoi Nakanishi, Toru Ishii, Tetsu Nishimura
  • Publication number: 20030128154
    Abstract: A radar performs accurate and appropriate pairing even if peaks of approximately identical signal intensities or even if a plurality of peak groups having identical representative beam bearings exist in the frequency spectrum. First, the peak frequency of a peak which appears in the frequency spectrum is determined for each of an up-modulating interval and a down-modulating interval in predetermined beam bearings, and signal-intensity profiles in the beam bearings are extracted with regard to a plurality of beam portions which are adjacent to the beam bearings. Next, the correlation level between the signal-intensity profiles at the up-modulating interval and the down-modulating interval is determined, and pairing is performed in sequence starting from the profiles having a higher correlation level.
    Type: Application
    Filed: January 2, 2003
    Publication date: July 10, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Motoi Nakanishi, Toru Ishii, Tetsu Nishimura
  • Publication number: 20030122703
    Abstract: The invention detects a ghost occurring due to mispairing, reflections from a wall, or the like, and improves the ability of a radar to track targets when actual relative velocity changes by more than a certain value. If a stationary target is present within a prescribed region centered about a moving target, the stationary target is excluded from output data by determining it as being a target resulting from mispairing due to the detection of guardrail posts or similar structures. Further, a moving target that is expected to collide with an eligible target is also excluded from the output data by determining it as being a target resulting from mispairing due to the detection of a target having many reflecting points. For a moving target showing an unlikely relative velocity, pairing with some other peak is attempted by determining the moving target as being a target resulting from mispairing due to the detection of a plurality of moving targets moving in the same direction.
    Type: Application
    Filed: December 9, 2002
    Publication date: July 3, 2003
    Inventors: Masayuki Kishida, Sadanori Matsui, Yasuhiro Sekiguchi, Tokio Shinagawa, Daisaku Ono
  • Publication number: 20030102998
    Abstract: A radar system and a characteristic adjustment method for the radar system are provided, in which a control voltage waveform of a voltage controlled oscillator for frequency-modulating a sending signal can be set in a short time without increasing the required amount of memory. In adjusting time-varying characteristics of a voltage signal for frequency modulation on a voltage controlled oscillator determining a sending frequency, the time-varying characteristics of the voltage signal for frequency modulation are adjusted to optimize a form of a protrusion in signal intensity included in a frequency spectrum of a beat signal.
    Type: Application
    Filed: November 21, 2002
    Publication date: June 5, 2003
    Inventors: Toru Ishii, Motoi Nakanishi, Tetsu Nishimura
  • Publication number: 20030085835
    Abstract: A scan type radar device capable of detecting a lateral position of a target even if a peak showing the lateral position of the target irregularly fluctuates in the lateral direction as well as reducing the mis-pairing. The former is achievable by changing a reference value of the lateral fluctuation of the target when all the past and present target data fluctuate to an extent exceeding the reference value. The latter is achievable by forecasting a representative peak position at this time in both of up-beat and down-beat from the peak position data at the preceding time and carrying out the past-correspondence grouping of the up-beat and the down-beat at this time in the vicinity of the position of the representative peak forecast this time; the pairing being carried out by using the representative peak calculated by the past-correspondence grouping.
    Type: Application
    Filed: November 7, 2002
    Publication date: May 8, 2003
    Applicant: Fujitsu Ten Limited
    Inventors: Sadanori Matsui, Tokio Shinagawa, Masayuki Kishida, Daisaku Ono
  • Publication number: 20030048216
    Abstract: An FM-CW radar system comprises a modulating signal generating means for changing a modulating signal to be applied to a FM-CW wave, a calculating means for calculating a distance or relative velocity with respect to a target object by performing processing for detection by fast-Fourier transforming a beat signal occurring between a transmitted signal and a received signal, and a control means for determining a detection range based on the calculated distance, and for performing control to change the modulating signal, wherein the modulating signal is changed by changing one parameter selected from among a modulation frequency, a triangular wave frequency, and a transmit wave center frequency. The detection range is set to a distance obtained by adding a prescribed distance to the shortest distance detected, or to a distance obtained by subtracting a prescribed distance from the distance of a fixed object.
    Type: Application
    Filed: October 22, 2002
    Publication date: March 13, 2003
    Inventor: Masayuki Kishida
  • Publication number: 20030016163
    Abstract: A modulation signal generation circuit performs frequency modulation of a VCO with a triangular wave for operation as an FM-CW radar. A signal processing circuit gives a modulation signal for detection generated from the modulation signal generation circuit to the VCO. A high-frequency signal subjected to frequency modulation in the VCO is transmitted as a radio wave from a transmission antenna and is reflected on a target and the reflected radio wave is received at a reception antenna. The reception signal and the high-frequency signal are mixed by a mixer to provide a beat signal and frequency shift corresponding to a voltage V1 is detected from the frequency of the beat signal. If the voltage V1 of the modulation signal for detection is switched, the frequency shift corresponding to different voltage V1 can be provided and the frequency modulation characteristic can be detected.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 23, 2003
    Applicant: FUJITSU TEN LIMITED
    Inventor: Osamu Isaji
  • Publication number: 20020190894
    Abstract: A radar signal processing apparatus has a range gate for extracting range gate data sequences from a memory, a first frequency extraction section which extracts a beat frequency corresponding to a target by performing frequency analysis by FFT at a low computation load and with low frequency measurement accuracy on all range gate data sequences extracted by the range gate, a second frequency extraction section which extracts a beat frequency corresponding to the target by performing frequency analysis by FFT at a high computation load and with high frequency measurement accuracy only on the range gate data sequence from which a beat frequency has been extracted by the first frequency extraction section, and a distance and speed derivation section which obtains the relative distance and the relative speed of the target on the basis of the beat frequency extracted by the second frequency extraction section.
    Type: Application
    Filed: May 3, 2002
    Publication date: December 19, 2002
    Inventors: Masashi Mitsumoto, Takahiko Fujisaka, Koichi Kai
  • Publication number: 20020190893
    Abstract: In an FM-CW radar apparatus, while a distance and velocity of a target are measured by simultaneously transmitting an FM modulation wave along a frequency-up direction and an FM modulation wave along a frequency-down direction toward this target, physically-required radar signal measuring time thereof can be reduced by ½.
    Type: Application
    Filed: December 4, 2001
    Publication date: December 19, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Masahira Akasu
  • Publication number: 20020186161
    Abstract: A transmitted signal and a received signal are combined and the combination is expected to determine whether or not a target signal is present. Either the transmitted signal or the received signal is combined with an auxiliary signal containing a range of frequencies corresponding to an anticipated Doppler shift, so that an output of the combined transmitted and received signal will be present only if a target signal exhibiting a Doppler shift within the anticipated range is present. The auxiliary signal preferably comprises finite-duration signal portions of different types so as to provide a substantially uniform frequency response throughout the selected range.
    Type: Application
    Filed: April 2, 2002
    Publication date: December 12, 2002
    Inventor: Wieslaw Jerzy Szajnowski
  • Publication number: 20020180633
    Abstract: In a radar, a coupler extracts a part of a transmission signal as a local signal and a mixer mixes a reception signal from a circulator and the local signal so as to output an intermediate frequency signal which is the frequency difference between the transmission signal and the reception signal. An IF-amplifying circuit amplifies the intermediate frequency signal and an AD converter converts the signal to digital data. A DC-removing unit removes a DC component by subtracting the average from the data and an FFT operation unit performs fast Fourier transform so that the distance to a target and the relative velocity of the target are calculated based on a peak included in the frequency spectrum.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 5, 2002
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Motoi Nakanishi, Toru Ishii, Tetsu Nishimura
  • Publication number: 20020030623
    Abstract: System and method for detection and tracking of targets, which in a preferred embodiment is based on the use of fractional Fourier transformation of time-domain signals to compute projections of the auto and cross ambiguity functions along arbitrary line segments. The efficient computational algorithms of the preferred embodiment are used to detect the position and estimate the velocity of signals, such as those encountered by active or passive sensor systems. Various applications of the proposed algorithm in the analysis of time-frequency domain signals are also disclosed.
    Type: Application
    Filed: June 6, 2001
    Publication date: March 14, 2002
    Inventors: Orhan Arikan, Ahmet Kemal Ozdemir
  • Patent number: 6320531
    Abstract: An FM-CW radar is provided which may be employed in anti-collision systems or cruise control systems installed in moving objects such as automotive vehicles. The radar analyzes a beat signal in frequency to produce peak frequency components in a modulated frequency-rising range wherein the frequency of a frequency-modulated radar wave transmitted from the radar increases and a modulated frequency-falling range wherein the frequency of the radar wave decreases. If one of peak frequency pairs, each of which is made up of each of the peak frequency components in the modulated frequency-rising range and one of the peak frequency components in the modulated frequency-falling range, lies within a given lower frequency range, the radar identifies the one of the peak frequency pairs as radar data arising from a moving object appearing suddenly in a radar detection zone.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: November 20, 2001
    Assignee: Denso Corporation
    Inventor: Yukimasa Tamatsu
  • Publication number: 20010035838
    Abstract: A radar device in which a much more precise demodulation can be made with an inexpensive circuit, free of the output variation of the frequency-modulated transmission signal. The radar device includes an oscillator which produces and outputs a frequency-modulated electromagnetic wave to a switching circuit by way of a directional coupler. The switching circuit uses switching modulation to radiate the electromagnetic wave from a transmitting antenna. The radiated electromagnetic wave after being reflected from an obstacle is received at a reception antenna. A mixer mixes this reception signal and a local signal fed from the directional coupler to produce a mixing signal which is to be fed to a high pass filter. The high pass filter deletes a low frequency output variation noise which is contained in the mixing signal and which occurs in the frequency modulation in the oscillator. The resulting mixing signal is, with the noise deleted, fed by way of an AC amplifier, to a switching demodulating circuit.
    Type: Application
    Filed: February 28, 2001
    Publication date: November 1, 2001
    Inventors: Kunihiko Soshi, Shoji Kawata, Mitsuyoshi Saiki
  • Patent number: 6292129
    Abstract: A radar apparatus is provided which includes a transmitter, a receiver, and a signal processor. The transmitter produces a transmit signal which is so modulated in frequency as to change with time cyclically and transmits the transmit signal as a radar wave. The receiver selectively establishes communication with one of receiving antennas and changes the communications with the receiving antennas in sequence in a cycle shorter than a cycle of a change in the frequency of the transmit signal to supply a series of signal components of input signals produced by the receiving antennas. The receiver mixes the series of signal components with a local signal having the same frequency as that of the transmit signal to produce a beat signal. The signal processor samples the beat signal to analyze frequency components thereof to determine the distance to, relative speed and azimuth of a target.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: September 18, 2001
    Assignee: Denso Corporation
    Inventors: Kazuoki Matsugatani, Hiroshi Hazumi
  • Publication number: 20010015698
    Abstract: A radar apparatus of the present invention is provided with a reception array antenna having a plurality of antenna elements, a first bearing detector for detecting a bearing of a target by carrying out signal processing on individual element signals received on an element-by-element basis through the respective antenna elements, and a second bearing detector for detecting a bearing of a target by carrying out signal processing different from that of the first bearing detector, on the individual element signals received through the respective antenna elements. Since the radar apparatus is provided with the two detectors of the first bearing detector and second bearing detector as means for acquiring the target bearing, both or either one of the results of detection by the two detectors can be selectively utilized as occasion demands.
    Type: Application
    Filed: January 2, 2001
    Publication date: August 23, 2001
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Setsuo Tokoro
  • Patent number: 6229474
    Abstract: A radar apparatus is comprised of; transmitting means for outputting a transmission electromagnetic wave; receiving means for IQ-phase-detecting a reception electromagnetic wave received when a transmission electromagnetic wave is reflected from a target object and returned from the target object; signal converting means for FFT-processing an output signal of the receiving means; and signal processing means in which if there are one pair of spectrums having positive and negative peak values of amplitude levels, while absolute values of frequencies thereof are identical to each other, among the data converted by this signal converting means, then it is so judged that such a spectrum having a large peak value of an amplitude level is a true spectrum, and both a distance and a relative speed between the target object and the radar apparatus are calculated by employing the frequency of the judged true spectrum.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: May 8, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Naohisa Uehara
  • Patent number: 6204803
    Abstract: A radar apparatus is comprised of: receiving means for IQ-phase-detecting a reception electromagnetic wave received when a transmission electromagnetic wave is reflected from a target object and returned from the target object; signal converting means for FFT-processing an output signal of the receiving means; and amplitude level correcting means in which if there are one pair of spectrums having positive and negative peak values of amplitude levels, while absolute values of frequencies thereof are identical to each other, among the data converted by this signal converting means, then the amplitude level having the larger peak value is corrected so as to acquire a peak value of a true amplitude level.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 20, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Naohisa Uehara
  • Patent number: 6072422
    Abstract: An FM-CW radar apparatus permits proper pairing between beat frequencies in an up interval and beat frequencies in a down interval and comprises a peak extracting section for extracting level peaks at each scanning angle of beat frequencies, each beat frequency being a frequency difference between a received wave and a transmitted wave, in each of a modulation frequency increasing interval and a modulation frequency decreasing interval; a grouping section for grouping level peaks of approximately equal beat frequencies adjacent in a scanning direction to create level peak groups having respective typical scanning angles, for either of the increasing-interval level peaks and decreasing-interval level peaks thus extracted; a pairing section for pairing a level peak group in the increasing interval with a level peak group in the decreasing interval where the level peak groups have an equal typical scanning angle; and a calculating section for calculating target information from beat frequencies of the increasing
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: June 6, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yukinori Yamada
  • Patent number: 6040796
    Abstract: A modulation signal generating section produces a modulation signal for controlling an oscillation frequency of a voltage-controlled oscillator. The modulation signal generating section comprises a triangular wave oscillator producing a linear modulation component of a triangular waveform which varies the modulation frequency linearly, a sine wave oscillator producing a cyclic modulation component of a sine waveform which varies the modulation frequency cyclically, and a signal adder producing the modulation signal by adding the linear modulation component and the cyclic modulation component. A transmitting signal frequency modulated by the modulation signal is mixed with a received signal and produces a beat signal comprising a fundamental wave component of a beat frequency and harmonic components.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: March 21, 2000
    Assignee: Denso Corporation
    Inventors: Kazuoki Matsugatani, Masanobu Yukumatsu
  • Patent number: 6018309
    Abstract: A radar data processing method of switching a continuous wave consisting of up phase and down phase into a transmission signal and a local signal in an interrupted manner and using a beat signal between the local signal and a reception signal. The method comprises the steps of setting a range of beat frequencies in up phase used for making a search for a combination and a range of beat frequencies in down phase used for making a search for a combination from beat frequencies corresponding to a distance range to be measured and a predetermined measurement speed range, and making a search for a combination for the same target for the beat frequencies in the up phase and the beat frequencies in the down phase only in the range.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: January 25, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masashi Mitsumoto, Takahiko Fujisaka
  • Patent number: 5963163
    Abstract: In a method and device for frequency-modulated continuous-wave radar detection with removal of ambiguity between the distance and the speed, the radar sends out at least alternately two parallel and discontinuous frequency modulation ramps that are slightly offset by a frequency variation (.DELTA.F), the frequency switching from one ramp to the other at the end of a given duration (Tf), the distance from a detected target being estimated as a function of the difference in phase (.DELTA..phi.) between a received signal (S.sub.1 (t)) corresponding to the first ramp and a received signal (S.sub.2 (t)) corresponding to the second ramp, the speed of the target being obtained from the estimated distance and the ambiguity straight line associated with the target. The disclosed method and device can be applied especially to radars for automobiles.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: October 5, 1999
    Assignee: Thomson-CSF
    Inventors: Stephane Kemkemian, Philippe Lacomme
  • Patent number: 5905458
    Abstract: An FM radar apparatus detects a distance to and/or a speed of a target not only from peak frequencies of beat signals in respective frequency rise and fall regions but also by reusing the peak frequency in the preceding frequency rise or fall region. As a result, it becomes possible to obtain target data at twice the conventional pitch and hence to detect the target more finely and minutely.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: May 18, 1999
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Jun Ashihara
  • Patent number: 5757308
    Abstract: In the particular embodiment disclosed in the specification, a CW radar process for measurement of distances and relative speeds between a vehicle and one or more obstructions including transmitting a sequence of constant-frequency radar signal bursts which follow one another without any time interval during four successive measurements. In the first measurement, the radar signal bursts are of sequentially increasing frequency and in the second measurement they are of sequentially decreasing frequency while in the third measurement they have the same frequency and in the fourth measurement the burst frequencies follow a coded pattern. Demodulation of the signals which are reflected by obstructions is carried out by mixing them with the transmitted signals using only one single-channel mixer providing an output signal which is not the signal of a phase curve but of an amplitude curve.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: May 26, 1998
    Assignee: Volkswagen AG
    Inventors: Ernst Lissel, Ralf Mende, Hermann Rohling
  • Patent number: 5751241
    Abstract: To measure the speed of a body (1) moving relative to the ground (2) by means of a broad-band Doppler radar (3) fixed to the moving body, two incident radar waves are transmitted successively towards the ground at instants that are close together, and the corresponding reflected waves are picked up, the frequency of at least the first incident wave being time-varying, the signals representative of the first incident and reflected waves are multiplied together, a spectrum is determined for the low frequency component of the product of said two signals, the same operations are performed for second incident and reflected waves, then two peaks that correspond with a certain amount of frequency shift in the two spectra are identified, and the speed of the moving body is determined as a function of the frequencies of these two singular points and as a function of the height of the radar relative to the ground.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: May 12, 1998
    Inventors: Jacques Lewiner, Eric Carreel
  • Patent number: 5731778
    Abstract: An FM-CW radar which is suitable for automotive anti-collision systems, for example, is provided. This radar outputs a radar signal in the form of a triangular wave whose frequency is increased at a given rate and decreased at a given rate. A receiver receives a wave reflected from a target to produce a beat signal and takes the Fourier transform of the beat signal to determine peak frequency components thereof showing peaks in a frequency spectrum. The receiver also determines phases of the peak frequency components and selects at least one from the peak frequency components in a frequency-rising range wherein the frequency of the radar signal is increased and at least one from the peak frequency components in a frequency-falling range wherein the frequency of the radar signal is decreased which show substantially the same phase to pair them for determining the distance to and relative speed of the target based on the frequency of the paired peak frequency components.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: March 24, 1998
    Assignee: Denso Corporation
    Inventors: Hiroto Nakatani, Hiroshi Hazumi, Hiroshi Mizuno, Akihisa Fujita, Hiroshi Naganawa
  • Patent number: 5696515
    Abstract: A system and method for determining absolute vehicle height and ground speed. As disclosed, a millimeter wave radar system for determining selected boundary distances is implemented based upon a generation of a modulated millimeter wave signal which is envelope detected and thereafter phase detected to determine the selected boundary distance on a continuous real-time basis. To similarly determine absolute vehicle speed on a continuous real-time basis, a method is disclosed for use in cooperation with an on-board microcomputer, the height sensing system described above, and a passive speed sensor aperture which is affixed to the chassis and directed toward the ground at some angle theta. In operation, a portion of the RF signal radiated by the height sensor is backscattered toward the passive speed sensor aperture. The Doppler Shift of this signal caused by vehicle motion is determined.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: December 9, 1997
    Assignee: Ford Motor Company
    Inventors: James Gerard Zyren, Robbin Edwin Roddewig
  • Patent number: 5483242
    Abstract: In a method for measuring the distance and the velocity of objects employing electromagnetic waves, the frequency of an emitted signal is modulated. The signals received during one rise and one drop in the frequency of the emitted signal are mixed with the emitted signal. The intermediate-frequency signals resulting from the mixing are then spectrally analyzed. The distance and the velocity of at least one object are calculated from the frequency of the spectral lines of the intermediate-frequency signals during at least one rise and at least one drop in the frequency of the emitted signal.
    Type: Grant
    Filed: December 14, 1993
    Date of Patent: January 9, 1996
    Assignee: Robert Bosch GmbH
    Inventors: Nicolas Grein, Hermann Winner
  • Patent number: 5481268
    Abstract: A continuous wave Doppler radar system having a transmitter module and a receiver module is provided for automotive vehicles. Each module includes an antenna system, including a horn, a lens, and a waveguide system, which is attached to a monolithic microwave integrated circuit (MMIC) chip that provides all necessary electronic functions. Each MMIC chip may be attached to a metal base heat sink, which may be conveniently connected to a base plate heat sink that holds the entire radar assembly. The transmitter module includes a voltage controlled oscillator (VCO) that generates a VCO frequency signal which is amplified and switched sequentially to three multiplier chains for transmission in three different directions. Each transmit signal is taken off the MMIC chip by a dielectric waveguide and directed to the antenna system. The receiver module includes three receivers that are selected sequentially to provide a beam azimuth scanning function.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: January 2, 1996
    Assignee: Rockwell International Corporation
    Inventor: J. Aiden Higgins