Digital Patents (Class 342/115)
  • Patent number: 10989582
    Abstract: A method for determining a remaining filling or draining time of a container comprising the steps: determining a current fill level, calculating the expected remaining filling or draining time from the determined fill level and a rate of change, and issuing the expected remaining filling or draining time.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: April 27, 2021
    Assignee: VEGA GRIESHABER KG
    Inventor: Robert Laun
  • Patent number: 10921425
    Abstract: There is provided a radar device. A transmitting unit transmits a transmitted wave based on a transmitted signal which is frequency modulated. A receiving unit acquires a received signal based on a reflected wave which is the transmitted wave reflected by a target. An instruction unit matches a predetermined timing at which a frequency of the transmitted signal becomes a predetermined frequency to an output timing at which a beat signal based on the transmitted signal and the received signal is output from the receiving unit and outputs the beat signal from the receiving unit.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 16, 2021
    Assignee: DENSO TEN LIMITED
    Inventors: Masayoshi Shono, Chiyo Hirata, Daisuke Ikeda
  • Patent number: 10892544
    Abstract: A dielectric structure of an electromagnetic device includes: a first dielectric portion, FDP, having a proximal end, a distal end, and a three-dimensional, 3D, shape having a direction of protuberance from the proximal end to the distal end oriented parallel with a z-axis of an orthogonal x, y, z coordinate system; and a second dielectric portion, SDP, having a proximal end and a distal end, the proximal end of the SDP being disposed proximate the distal end of the FDP, the FDP and the SDP having a dielectric material other than air; wherein the SDP has a 3D shape having a first x-y plane cross-section area proximate the proximal end of the SDP, and a second x-y plane cross-section area between the proximal end and the distal end of the SDP, the second x-y plane cross section area being greater than the first x-y plane cross-section area.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: January 12, 2021
    Assignee: ROGERS CORPORATION
    Inventors: Kristi Pance, Gianni Taraschi
  • Patent number: 10838057
    Abstract: A Doppler radar system includes a Doppler radar processor, a memory in communication with radar processor and a transmit/receive controller. The memory includes computer readable instructions that cause the Doppler radar processor to transmit a radar signal toward the airborne object at a frequency; receive reflected radar signals off of the airborne object, including frequencies produced as a result of Doppler effect due to relative motion between features of the airborne object and the radar system; and Fourier transform the received signals into the frequency domain. Peak frequencies and their harmonic frequency families are sorted and identified. The logarithm of the Fourier transform is calculated to generate a quefrency cepstrum. To identify features producing cyclic, periodic Doppler frequency patterns, peak quefrencies and rahmonic families associated with a quefrency peak are sorted and identified. The rotational state of the airborne object based on the identified quefrency families is determined.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 17, 2020
    Assignee: Lockheed Martin Corporation
    Inventors: Tod M. Schuck, David B. Reese, Mark A. Friesel
  • Patent number: 10768279
    Abstract: An electronic device for gesture recognition comprises at least one transmission antenna port, at least reception antenna port, an analog-to-digital converter connected to the at least one reception antenna port, and first and second buffer memories connected to the analog-to-digital converter. The first and second buffer memories are configured to store data received from the analog-to-digital converter and configured to output the stored data in an alternating manner.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 8, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Reinhard Wolfgang Jungmaier, Saverio Trotta
  • Patent number: 10746865
    Abstract: A frequency domain transforming unit (231-1) performs a transform into a frequency domain in such a way that a Doppler velocity bin is the same for each of different transmission frequencies. A correlation unit (232-1) generates signals based on a velocity and a range after correlation, the signals being separate for each of the transmission frequencies. An integrating unit (233-1) generates band-synthesized signals based on a velocity and a range after correlation. A target candidate detecting unit (241) performs detection of a target candidate on output signals of the integrating unit (233-1) on the basis of signal strength. A target's relative-velocity/relative-range/arrival-angle calculating unit (242) calculates a relative velocity, a relative range, and an arrival angle of the target candidate.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 18, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Satoshi Kageme, Teruyuki Hara
  • Patent number: 10663580
    Abstract: A highly accurate object identification is performed. A first feature quantity related to a relative distance and a relative speed to an object, the direction and the reflection intensity of the object, which are extracted by a first feature quantity extraction block, is made identical in time series in a data storage processing block; a second feature quantity is extracted in a second feature quantity extraction block; and a category of the object is determined by an object determination block on the basis of an attribution degree to the distribution of the second feature quantity related to a predetermined category calculated by an attribution degree calculation block.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 26, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroshi Sakamaki, Masashi Mitsumoto, Nobuhiro Suzuki
  • Patent number: 10563879
    Abstract: An air conditioner includes a first Doppler sensor that transmits a first electric wave of first power, a second Doppler sensor that transmits a second electric wave of second power less than the first power, and a controller that controls an operation of the air conditioner on the basis of a detection signal of the first Doppler sensor and a detection signal of the second Doppler sensor.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: February 18, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Takayuki Yamaji
  • Patent number: 10432446
    Abstract: A decoder decodes a set of data streams received at a receiver based on a tree search that employs a subset of decoding constellation points. The decoder can form a tree wherein each level of the tree corresponds to one of the set of data streams. Each level of the tree includes a plurality of nodes corresponding to a set of candidate constellation points, wherein the set of candidate constellation points indicating possible values of data received via the set of data streams. For tree levels beyond an initial tree level, the decoder expands each node (that is, calculates the metrics for nodes of the next tree level) for only a subset of candidate constellation points, wherein the subset of candidate constellation points is based on a sign value of the node.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 1, 2019
    Assignee: NXP USA, Inc.
    Inventors: Andrei Alexandru Enescu, Marius Octavian Arvinte
  • Patent number: 10222472
    Abstract: A system for characterizing a moving object performs a cluster trajectory orientation process associated with clusters of detected points in each of a set of scans to estimate the heading of a non-point target. The cluster trajectory orientation process performs a principal component analysis on a corresponding position data matrix representing coordinates of the clusters of points for each of a set of scans and compares resulting eigenvectors to a heading of the cluster averages to generate a heading estimate. The heading estimate is combined with velocity estimates from a point target based tracking process and a Doppler-azimuth profile process in a weighted combination based on target attributes to improve the accuracy and performance of the system.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 5, 2019
    Assignee: Veoneer US, Inc.
    Inventor: Xu Cuichun
  • Patent number: 10107606
    Abstract: A device determines velocity of a bullet. The device includes two electro-acoustic sensors arranged with a predetermined distance for determining velocity of a bullet. Each of the electro-acoustic sensors are configured to detect acoustic energy of a shock wave generated by the bullet travelling at supersonic speed from a point of fire to a target and configured to transduce the acoustic energy into an electrical signal. The device includes a processing unit configured to receive electrical signals from the electro-acoustic sensors as the bullet travels and to determine a time frame between the two second electrical signals. The velocity of the bullet can be determined based on the time frame. The device also includes a sighting unit attached to a housing of the device for aligning the electro-acoustic sensors parallel to the direction from the point of fire to the target.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: October 23, 2018
    Assignee: STEINERT SENSING SYSTEMS AS
    Inventors: Mikael Sundberg, Jonas Genchel
  • Patent number: 9928737
    Abstract: The invention which is mobile number plate recognition and speed detection apparatus (1) placed on the vehicles, i.e., police vehicle, with the aim of security, characterized in comprising camera (1.3) which is placed at two sides of the base—front right and front left—and enables the apparatus to capture image; LED lightings (1.4) which are disposed around the cameras (1.3) and face the direction of vision and provide capturing recognizable image at nights; police lights (1.5) which are placed to the front and rear surfaces of said base (1.2) and flash when necessary; alarm control device (1.8) adjusting the alarm; Ethernet connection (1.9) constituting the network; cooling device (1.10) eliminating the heat inside the apparatus; control card (1.11) controlling the police lights; 3G modem (1.12) providing wireless connection constantly; and upper cover (1.1) covering the entire apparatus by surrounding it.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 27, 2018
    Assignee: EKIN TEKNOLOJI SANAYI VE TICARET ANONIM SIRKETI
    Inventor: Akif Ekin
  • Patent number: 9910149
    Abstract: A method for mapping surroundings of a vehicle, objects in the surroundings of the vehicle being detected with the aid of sensors and particular detected objects being described by two coordinate points and also by a position fuzziness assigned to the particular coordinate point, the coordinate points and the position fuzziness values being stored in an interface in the form of data which may be accessed by driver assistance systems of the vehicle. A method is also described for ascertaining the collision probability of a vehicle with an object, in which the surroundings of the vehicle are initially mapped using the method for mapping the surroundings of a vehicle, a travel path to be traveled by the vehicle is ascertained in a subsequent step, and the degree of overlap between the object and the travel path and also the collision probability are finally determined, taking the position fuzziness into account.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: March 6, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christian Pampus, Dirk Schmid, Michael Scherl, Werner Urban, Meike Fehse, Uwe Zimmermann, Michael Schoenherr
  • Patent number: 9506724
    Abstract: A downrange wind measurement system includes an aerial vehicle with a global positioning system and a communication device; and a remote computer with a display for viewing access and a transceiver. A method to assist a shooter adjust for a wind speed and a wind angle of a wind prior to make a downrange shot includes creating a flight path for an aerial vehicle to fly alongside a projectile path; determining locations for a circular flight path via the flight path; measuring the wind speed and the wind angle along the circular flight path; transmitting the wind speed and the wind angle to a remote computer; and computing via the remote computer scope adjustments with the wind speed and wind angle.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: November 29, 2016
    Assignee: Lyman Robert Hazelton
    Inventor: Lyman Robert Hazelton
  • Patent number: 9024816
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 5, 2015
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 9013347
    Abstract: An embodiment of the present invention relates to a radar apparatus, wherein a distance to a target and a velocity of the target are measured by transmitting a digitally modulated transmitting signal using a digital code and receiving and demodulating an echo signal returned due to reflection of the transmitting signal from the target.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Pil Jae Park, Cheon Soo Kim, Hyun Kyu Yu, Min Park, Ik Soo Eo
  • Patent number: 8963766
    Abstract: According to one embodiment, a target tracking apparatus calculates N-dimensional predicted values from a respective stored (N+1)-dimensional tracks for each of the targets, determines whether or not the N-dimensional predicted value for each of the targets is correlated with the received N-dimensional angle observed value for the target, if the N-dimensional predicted value is not correlated, generates a new (N+1)-dimensional track for the target based on the N-dimensional track corresponding to the N-dimensional angle observed value and if the N-dimensional predicted value is correlated, updates and stores the (N+1)-dimensional track using the N-dimensional angle observed value.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Furukawa
  • Patent number: 8912945
    Abstract: In a method of determining a deviation of a path of a projectile from a predetermined path, the method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or real path is determined and the deviation is determined.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 8884814
    Abstract: A processing method for radar signal with dual pulse repetition frequency, comprising: generating a first transmission signal and a second transmission signal, and perform a transmission process; reflecting a first echo signal and a second echo signal from an object, and converting the first transmission signal and the second transmission signal to a frequency domain information by using 2D (Two Dimension) fast Fourier transform (FFT); and filtering noise in the frequency domain information, and performing a calculation program by using a algorithm to obtain Doppler shift of the object. Thereby, the processing method of the present invention can overcome the bad operation ability of the lower hardware and advance the radar target detection speed restrictions.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 11, 2014
    Assignee: Chung Shan Institute of Science and Technology, Armaments Bureau, M. N.D.
    Inventors: Yao-Hwa Wen, Min-Fang Lo
  • Patent number: 8866668
    Abstract: In a radar apparatus, a peak extractor performs frequency analysis on a beat signal to obtain a frequency spectrum for each of first and second detection modes based on the beat signal for a corresponding one of the first and second detection modes. The peak extractor extracts a plurality of first peak-signal components from the frequency spectrum obtained for the first detection mode, and a plurality of second peak-signal components from the frequency spectrum obtained for the second detection mode. A determiner compares each of the plurality of first peak-signal components with a corresponding one of the plurality of second peak-signal components to deter mine whether a noise is included in the beat signal according to a result of the comparison.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: October 21, 2014
    Assignee: Denso Corporation
    Inventor: Hideki Kitagawa
  • Patent number: 8860605
    Abstract: A method for estimating the position and the speed of a target with a radar is provided. The radar emits a waveform including a train of pulses, each pulse having an OFDM chip constructed from subcarriers, the subcarriers covering the whole bandwidth of the radar. Upon receipt of the echoed pulses, some of the subcarriers are used in a step of Doppler processing, each of the subcarriers being fixed over the pulses. Upon receipt of the echoed pulses, other subcarriers, which are not used for Doppler processing, are used in a step of High Range Resolution processing, the subcarriers being randomly distributed over the pulses.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: October 14, 2014
    Assignee: Thales Nederland B.V.
    Inventors: Gabriel Lellouch, Radmila Erkocevic-Pribic
  • Patent number: 8830116
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Patent number: 8823579
    Abstract: There is provided a sensor for use generally within the signal processing unit of a radar system. The sensor enables entity returns to be classified according to the velocity of the entity and thus allows returns to be processed according to classification. In particular, the sensor comprises a first processing means that filters an input signal using a narrow-band notch filter to output a wideband output. In particular, the sensor comprises a second processing means that filters an input signal using a wide-band notch filter to output a narrowband output. The invention provides for the comparison of the outputs to determine how the entity return is to be classified.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 2, 2014
    Assignee: BAE Systems PLC
    Inventor: Philip Trevelyan Edwards
  • Patent number: 8816902
    Abstract: There is provided a radar apparatus for detecting a target. A detection signal generating unit generates detection signals of the target based on transmission and reception waves of antennas. A detection signal processing unit performs frequency analysis on the detection signals to extract signal components of the target, and performs a predetermined process on the signal components to calculate at least one of a distance to the target, a relative speed to the target, and an orientation of the target. The detection signal generating unit includes a filter unit for giving changes to the detection signals in a frequency bandwidth higher than Nyquist frequency which is a half a sampling frequency. The detection signal processing unit acquires the signal components from the detection signals to which the filter unit gives the changes to determine whether the signal components are generated by replication due to the Nyquist frequency.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Ten Limited
    Inventor: Hiroshi Itoh
  • Patent number: 8805005
    Abstract: The present invention relates to a system and method for processing imagery, such as may be derived from a coherent imaging system e.g. a synthetic aperture radar (SAR). The system processes sequences of SAR images of a region taken in at least two different passes and generates Coherent Change Detection (CCD) base images from corresponding images of each pass. A reference image is formed from one or more of the CCD base images images, and an incoherent change detection image formed by comparison between a given CCD base image and the reference image. The technique is able to detect targets from tracks left in soft ground, or from shadow areas caused by vehicles, and so does not rely on a reflection directly from the target itself. The technique may be implemented on data recorded in real time, or may be done in post-processing on a suitable computer system.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 12, 2014
    Assignee: Qinetiq Limited
    Inventors: Mohammed Jahangir, Paul Graham Kealey, Christopher Paul Moate, Robert David Hill
  • Patent number: 8721554
    Abstract: A method and system for cancelling body movement effect for non-contact vital sign detection is described. The method begins with sending on a first electromagnetic wave transceiver a first electromagnetic signal with a first frequency to a first side of a body, such as a person or animal. Simultaneously using a second electromagnetic wave transceiver a second electromagnetic signal is sent with a second frequency to a second side of a body, wherein the first frequency and the second frequency are different frequencies. A first reflected electromagnetic signal reflected back in response to the first electromagnetic wave on the first transceiver is received and a first baseband complex signal is extracted. Likewise a second reflected electromagnetic signal reflected back in response to the second electromagnetic wave on the second transceiver is received and a second baseband complex signal is extracted.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 13, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jenshan Lin, Changzhi Li, Ya-Chi Liu
  • Patent number: 8704704
    Abstract: Presented is a method for determining speeds (vr14, vr16) and distances (r14, r16) of objects (14, 16) relative to a radar system (12) of a motor vehicle (10), wherein a coverage area (EB) of the radar system (12) is divided into at least two part-areas (TB1, TB2, TB3), the coverage area (EB) is examined for reflecting objects (14, 16) in successive measuring cycles (MZ1, MZ2; MZi, MZi+1), wherein radar signals received in a measuring cycle (MZ1, MZ2; MZi, MZi+1) are processed separated in accordance with part-areas (TB1, TB2, TB3) and processed signals are assembled to form a total result differentiated in accordance with spatial directions. The method is characterized in that from signals received in a first measuring cycle (MZ1; MZi), hypotheses for the distance (r14, r16) and speed (vr14, vr16) of reflecting objects (14, 16) are formed and the hypotheses are validated in dependence on signals received in at least one further measuring cycle (MZ2; MZi+2).
    Type: Grant
    Filed: June 16, 2007
    Date of Patent: April 22, 2014
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventors: Urs Luebbert, Udo Haberland
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8630795
    Abstract: Method and arrangement for setting a speed limit for vehicle travelling on a road includes monitoring conditions of the road, determining a speed limit for travel of vehicles on the road based on the monitored conditions, and transmitting the determined speed limit to the vehicles to thereby notify operators of the vehicles of the determined speed limit. Monitoring conditions of the road may entail monitoring weather conditions around the road, monitoring visibility for operators of the vehicles on the roads, monitoring traffic on the road, monitoring accidents on the road or emergency situations of vehicles on the road and/or monitoring the speed of vehicles travelling on the road and a distance between adjacent vehicles.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: January 14, 2014
    Assignee: American Vehicular Sciences LLC
    Inventors: David S. Breed, Wendell C. Johnson, Wilbur E. DuVall
  • Patent number: 8624775
    Abstract: Four rows on one side of linear arrays arranged at equal intervals in the vertical direction and arranged at a predetermined interval in the horizontal direction form transmission channels and remaining twelve rows form a reception channel group. Among the remaining twelve rows, linear arrays of four rows in the center form a reception-first-array with each row set as a channel unit. Linear arrays of eight rows on both sides form a reception-second-array with two rows set as a channel unit. In wide-angle-middle-detection-processing, signals are combined using the reception-first-array. In long-detection-processing, signals are combined using the reception-second-array. Second null of a radiation pattern by a transmission array and first null of the reception-second-array are matched. The first null of the transmission array is filled such that a gain difference between the first null and a first side lobe of the transmission array is within a predetermined value.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 7, 2014
    Assignees: Mitsubishi Electric Corporation, Denso Corporation
    Inventors: Kazuyoshi Inami, Takamasa Ando
  • Patent number: 8624776
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 8552865
    Abstract: A method and apparatus are provided for automatically testing microwave instruction detection modules of a security system. The method includes the steps of detecting intruders within a protected space by monitoring a Doppler output of a signal extraction circuit coupled to a microwave transceiver module, varying a frequency of direct current power pulses applied to the microwave transceiver module, detecting a difference in magnitude of the Doppler output of the signal extraction circuit over the varied frequency and comparing the detected difference with a fault threshold level.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: October 8, 2013
    Assignee: Honeywell International Inc.
    Inventors: Tianfeng Zhao, Mingzhi Xzao, Lei Qin, Hansen Gu
  • Patent number: 8547273
    Abstract: The invention provides a pulse radar apparatus, and a control method thereof, that permits to readily downsize and to lower its cost and allows information on an object to be detected in high precision by removing an influence of noise when a gain of a variable gain amplifier is discontinuously changed corresponding to detected distance, with a simple configuration. A variable gain amplifier 135 configured to adjust a gain corresponding to a distance gate is used to be able to detect weak reflected wave from a distant object and to amplify a reflected wave from a short distance with a low gain. An offset noise from the variable gain amplifier 135 is prepared together with interference noise and self-mixing noise in advance as a replica signal of unwanted wave and the replica signal is removed from a baseband signal in detecting the object T.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 1, 2013
    Assignees: Furukawa Electric Co., Ltd., Furukawa Automotive Systems Inc.
    Inventors: Yasushi Aoyagi, Kazutaka Kamimura, Yoshihito Ishida
  • Patent number: 8454528
    Abstract: A radar-based physiological motion sensor is disclosed. Doppler-shifted signals can be extracted from the signals received by the sensor. The Doppler-shifted signals can be digitized and processed subsequently to extract information related to the cardiopulmonary motion in one or more subjects. The information can include respiratory rates, heart rates, waveforms due to respiratory and cardiac activity, direction of arrival, abnormal or paradoxical breathing, etc. In various embodiments, the extracted information can be displayed on a display.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 4, 2013
    Assignee: Kai Medical, Inc.
    Inventors: Andrea Yuen, Amy Droitcour, Anders Host Madsen, Byung Kwon Park, Charles El Hourani, Tommy Shing
  • Patent number: 8446467
    Abstract: A combination speed-detection, video-recording, and timing device that can be hand-held. The device contains one or more speed detection means, including, but not limited to, a radar detection or laser detection device. The device includes a camera able to capture video in digital form, and a timing device, similar in function to a stopwatch. The device is pointed at the object whose speed is to be measured, or the events to be recorded, and can be operated by means of a trigger on a handle. The device may further include a display, along with display controls. Storage means is used to store the speed, video and timer data. The device may contain its own power supply, or may be externally powered.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: May 21, 2013
    Inventors: Scott K. Tilton, William Clifford Robinson, Jr.
  • Patent number: 8344944
    Abstract: A System and Method for CW interference suppression in pulsed signal processing having a front-end, an A/D converter, a data store, and a suppressor module coupled to both the A/D converter and the data store. The front-end is operable to receive a waveform and communicate such to the A/D converter to digitize for processing by the suppressor module. The suppressor module being operable to further process the digitized waveform by way of applying a FFT to obtain a corresponding amplitude spectrum of the digitized waveform, clipping the amplitude spectrum to obtain a clipped amplitude spectrum, performing successive piece-wise IFFTs on the positive frequency points of the clipped amplitude spectrum to obtain multiple amplitude-time series, each having a frequency value assigned, and then stacking such amplitude-time series successively in the data store to form a time-frequency spectrogram array to thereby facilitate suppression of interference signals and detection of data pulses.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: January 1, 2013
    Assignee: Raytheon Company
    Inventor: Vernon R Goodman
  • Patent number: 8314733
    Abstract: A radar system tracks targets, and for each target determines the maximum acceleration of the target which can be tracked. The target acceleration is compared with the maximum acceleration that the radar can maintain in track, and if the decision is that the radar cannot maintain track, the radar data rate is increased, at least for that target. In at least some cases in which the target acceleration is such that the target can be maintained in track, the data rate for that target is decreased.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 20, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Stephen J. Salvatore
  • Patent number: 8299957
    Abstract: A method for detecting a vehicle type, a vehicle speed and width of a detecting area by a vehicle radar sensor is disclosed. A radio wave is transmitted to a tracked vehicle. Subsequently, the reflective radio wave from the vehicle is received. The Doppler frequency versus time distribution is generated from the reflective radio wave. Because the reflective radio wave is influenced by the Doppler Effect, a parallelogram or a shape close to a parallelogram of a consecutive motion diagram is shown in the Doppler frequency versus time distribution of the vehicle. According to the consecutive motion diagram, certain information, such as the length and speed of the tracked vehicle and the width of the detecting area, can be acquired.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 30, 2012
    Assignees: Chien Cheng Technology Co., Ltd.
    Inventor: Ming-Te Tseng
  • Patent number: 8259006
    Abstract: A method for interleaved pulsed-Doppler processing. Radar energy management and associated processing techniques take advantage of spatial degrees of freedom available on modern, short range, wide angle, volume search ESA radar systems. The method creates an advantage in Doppler resolution when compared to currently utilized Doppler processing techniques. An Electronically Scanned Array (ESA) radar system includes one or more processors that may be programmed to read and execute instructional commands including transmit a plurality of synchronized, coherent pulsed transmit beams having substantially repeatable gain and phase pattern characteristics; electronically steer the plurality of transmit beams in a respective, sequential plurality of spatially diverse directions in a temporally-interleaved manner; sequentially collect a respective plurality of receive beams in a respective plurality of time vs.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 4, 2012
    Assignee: SRC Inc.
    Inventor: Daniel R. Culkin
  • Patent number: 8237606
    Abstract: A system includes a pulsed UHF radar for integrating the signal received over a given integration time. The integration time for the received signal and the size of the distance bin are defined in such a way that, taking into account the range of speeds of the targets of interest, a moving target of interest travels only a distance shorter than the size of the distance bin from one integration period to another. Furthermore, the UHF radar implements a method of forming radar blips from the received signal to form elementary blips from the signals received over the chosen integration time and to store them from one burst to another. The method also confirms that the elementary blips formed probably correspond to targets of interest and then forms, from the confirmed elementary blips, aggregate blips, the attributes of an aggregate blip depending on the attributes of the confirmed elementary blips from which the aggregate blip stems.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 7, 2012
    Assignee: Thales Deutschland GmbH
    Inventors: Paul Molin, Yves Ricci
  • Patent number: 8179303
    Abstract: A signal processing apparatus for a radar transceiver, which receives a reflected signal generated by a target object in response to a frequency modulated transmission signal, and generates a beat signal having a frequency difference between the transmission signal and a reception signal, includes: an azimuth angle detection unit that detects an azimuth angle of the target object on the basis of a peak signal in a frequency spectrum of the beat signal; a peak signal extraction unit that prioritizes extraction of a peak signal corresponding to a predetermined azimuth angle range and a predetermined relative distance range of the target object; and a target object detection unit that detects the target object from the extracted peak signal.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 15, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Kishida, Hisateru Asanuma, Tomoya Kawasaki
  • Patent number: 8115669
    Abstract: Provided is a vehicular radar device which is capable of reducing an operation resource quantity necessary for a process of estimating an axis deviation angle in a radar measurement coordinate system, to thereby reduce a device size. The vehicular radar device includes: a measurement unit that measures an azimuth angle and a relative Doppler velocity; an extraction/accumulation unit that extracts target information satisfying conditions related to the relative Doppler velocity, a travel speed and a turning velocity, and accumulates the azimuth angle and a velocity ratio obtained by dividing the relative Doppler velocity by the travel speed of the subject vehicle among the extracted target information; and an axis deviation angle estimate unit that reads the target information accumulated in the extraction/accumulation unit, and estimates an axis deviation angle of the measurement coordinate system of a radar based on a second-order polynomial expression of the azimuth angle of the target.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 14, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masashi Mitsumoto
  • Patent number: 8106814
    Abstract: The present invention relates to a method enabling precise determination of the elevation of a projectile following a ballistic trajectory by use of a conventional Doppler surveillance radar. The method includes calculating first the estimate {circumflex over (?)}? of the value of the radial component ?? of the acceleration of the projectile from the quantities {dot over (d)} and {umlaut over (d)}, respectively representing the first derivative and the second derivative with respect to time of the Doppler velocity d of the projectile, then calculating the estimate {circumflex over (V)} of the speed V of the projectile from d, {dot over (d)} and {circumflex over (?)}?, and finally calculating the estimate Ê of its angle of elevation E from d and {circumflex over (V)}. The method according to the invention may apply to the protection of sensitive areas against the firing of ballistic projectiles.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Thales
    Inventors: Bernard Durand, Christian Cavallari, Odile Adrian
  • Patent number: 8089394
    Abstract: A field disturbance sensing system has an antenna, an oscillator producing a high-frequency signal, a first detector circuit, a second detector circuit, a combining network configured to couple the high-frequency signal to the antenna, and to couple the high-frequency signal and a reflected high-frequency signal to the first detector and to the second detector. An algebraic combining network sums a first detected signal having first detected high-frequency signal and a first detected reflected signal from the first detector circuit and a second detected signal having second detected high-frequency signal and a second detected reflected signal from the second detector circuit to produce a detected output signal. The first detected reflected signal is added to the second detected reflected signal and the first detected high-frequency signal is subtracted from the second detected high-frequency signal. A controller configured to convert the detected output signal to a speed between the antenna and a target.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 3, 2012
    Assignee: Invention Planet, LLC
    Inventors: Christopher E. Stewart, Grant E. Moulton, Steven H. Goody
  • Patent number: 8031106
    Abstract: A method for determining at least one of the distance to and the speed of an object is discussed. The method comprises determining an indication of whether the object is approaching or moving away and generating an interrogation signal comprising a sequence consisting of segments at constant frequency and segments of varying frequency, wherein if the determining step indicates the object is approaching then the varying frequency segments have decreasing frequency and if the determining step indicates that the object is moving away then the varying frequency segments have increasing frequency. The interrogation signal is transmitted and a version of the interrogation signal reflected from the object is detected. At least one of the distance to and speed of the object is then determined using a combination of the interrogation signal and the reflected version of the interrogation signal.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 4, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Wieslaw Jerzy Szajnowski
  • Publication number: 20110227782
    Abstract: A method for detecting a vehicle type, a vehicle speed and width of a detecting area by a vehicle radar sensor is disclosed. A radio wave is transmitted to a tracked vehicle. Subsequently, the reflective radio wave from the vehicle is received. The Doppler frequency versus time distribution is generated from the reflective radio wave. Because the reflective radio wave is influenced by the Doppler Effect, a parallelogram or a shape close to a parallelogram of a consecutive motion diagram is shown in the Doppler frequency versus time distribution of the vehicle. According to the consecutive motion diagram, certain information, such as the length and speed of the tracked vehicle and the width of the detecting area, can be acquired.
    Type: Application
    Filed: July 15, 2010
    Publication date: September 22, 2011
    Inventor: Ming-Te TSENG
  • Patent number: 8022862
    Abstract: Pulse echo signals containing false echoes are processed by forming tracks of multiple received echoes and monitoring these tracks by a recursive filter such as a Kalman filter. A track velocity is estimated for each track, and the position of each the next echo on the track is predicted.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: September 20, 2011
    Assignee: Siemens Milltronics Process Instruments, Inc.
    Inventors: Jean-René Larocque, Derek Yee
  • Patent number: 7928897
    Abstract: A radar device includes a transmission antenna and a reception antenna having a plurality of antenna elements. The radar device switches the antenna elements in synchronization with a modulation cycle, thereby obtaining a reception signal. At this time, the radar device obtains the reception signal by switching the antenna elements using a first measurement phase and a second measurement phase having different switching cycles as one set. The radar device calculates an azimuth sine value sin ?1 from the reception signal in the first measurement phase and also calculates an azimuth sinusoidal value sin ?2 from the reception signal in the second measurement phase. Then, the radar device calculates a relative velocity V from the azimuth sine value sin ?1, the azimuth sine value sin ?2, an interval time difference ?t between switching cycles, and an inter-antenna element spacing d.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: April 19, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toru Ishii, Tetsu Nishimura
  • Patent number: 7924213
    Abstract: A method of tracking an object including the steps of: collecting N measurements of range Ri and Doppler velocity Di associated with the object from a plurality M of radar sensors Si each measurement being assigned a time stamp ti; time aligning each Range Ri measurement to a common time stamp tN to provide a corresponding time aligned range Pi for each of the N measurements; using each time aligned Range measurement Pi to define a corresponding spherical equation such that N spherical equations are defined; and deriving analytical solutions from three of the N spherical equations to determine the position vector of the object.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: April 12, 2011
    Assignee: Thales Nederland B.V.
    Inventors: Huub De Waard, Piet Griffioen, Henk Regtop, Gert Van De Brug