Altimeter Patents (Class 342/120)
  • Patent number: 8952841
    Abstract: A traffic collision avoidance system (TCAS) based navigation system including a TCAS equipped with a directional antenna, the TCAS configured to generate a RF transmission pattern at a selected frequency, the transmission pattern including a plurality of directional beams, receive a plurality of RF signals reflected from the ground across a selected frequency band, the selected frequency band including the selected frequency, and measure frequency differences between one or more beams of the plurality of RF beams and one or more beams of the plurality of RF signals reflected from the ground, and a computing systems in communication with the TCAS, the computing system configured to calculate a ground speed of the aircraft utilizing the measured frequency differences, calculate a drift angle of the aircraft utilizing the measured plurality of frequency differences, receive a heading reference of the aircraft, and determine an aircraft navigation parameter of the aircraft.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: February 10, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: Phillip L. Ellery, Mark A. Billsberry
  • Patent number: 8952842
    Abstract: An altimetry system for a satellite, including an altimeter transmitting and receiving signals on at least one first frequency band; a radiometer receiving signals on at least one second frequency band, the altimeter and the radiometer being connected to one and the same antenna; reception means common to the altimeter and to the radiometer, and capable of amplifying and filtering the signals received from the antenna on a frequency band including the first frequency band and the second frequency band; means for separating the signals on the first frequency band from the signals on the second frequency band; the signals on the first frequency band being exploited to estimate an altimetric distance of the satellite, and radiometric measurements being exploited in order to correct the estimate.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Thales
    Inventors: Richard Jacques, Nicolas Taveneau
  • Patent number: 8866667
    Abstract: One embodiment is directed towards a FMCW radar having a single antenna. The radar includes a transmit path having a voltage controlled oscillator controlled by a phase-locked loop, and the phase-locked loop includes a fractional-n synthesizer configured to implement a FMCW ramp waveform that ramps from a starting frequency to an ending frequency and upon reaching the ending frequency returns to the starting frequency to ramp again. The radar also includes a delay path coupled between a coupler on the transmit path and a mixer in a receive path. The delay path is configured to delay a local oscillator reference signal from the transmit path such that the propagation time of the local oscillator reference signal from the coupler to the mixer through the delay path is between the propagation time of signal reflected off the antenna and the propagation time of a leakage signal through a circulator.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: October 21, 2014
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Patent number: 8803727
    Abstract: A method for producing a sensor-supported, synthetic view for landing support of helicopters under brown-out or white-out conditions is provided. A virtual 3-D representation of the landing zone is continuously created from 3-D data of the intended landing zone recorded during the landing approach and a monitoring routine is available to ensure that no 3-D data that was produced under brown-out or white-out conditions is considered in the representation. As soon as the monitoring routine detects that 3-D data has been recorded under brown-out or white-out conditions, an additional radar sensor is activated to continuously produce distance and/or Doppler data of potential objects entering the landing zone, the objects being displayed to a pilot of the landing helicopter in the synthetic view.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 12, 2014
    Assignee: EADS Deutschland GmbH
    Inventors: Thomas Muensterer, Matthias Wegner, Peter Kielhorn
  • Patent number: 8788128
    Abstract: In the examples described the forward-looking radar generated real-time terrain model (or in an alternative example in combination with a terrain database), can allow the use of a radio altimeter to compute aircraft vertical position relative to the runway threshold. Such a system typically provides improved accuracy for precision landings.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 22, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Patrick D. McCusker
  • Patent number: 8773301
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8698669
    Abstract: Another embodiment of the disclosure relates to an altitude system for an aircraft. The aircraft radar system includes a processor configured to determine an altitude of the aircraft using runway position information, and an angle to the runway associated with a radar beam to the runway. The angle to the runway is being determined using a pointing angle of the antenna adjusted with an angular offset. The angular offset is determined from phase processing.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 15, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8629799
    Abstract: A radar system (22) includes a transmitter (45), a receiver (59), and a software defined radio (SDR) peripheral (40). Methodology (80) for investigating a target zone (26) utilizing the system (22) entails generating (106) a direct sequence spread spectrum (DSSS) code (120) having a code length (122) corresponding to a time duration of radio wave travel between the transmitter (45), the target zone (26), and the receiver (59) at a carrier frequency (112). A beacon signal (34), modulated (108) by the DSSS code (120), is transmitted (152) from the transmitter (45) toward the target zone (26) and a return signal (38) is received (156) at the receiver (56). The return signal (38) is compared (170) to a replica signal (168) characterized by the DSSS code (120), and presence of an object (32) in the target zone (26) is ascertained (178) when the return signal (38) matches the replica signal (168).
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 14, 2014
    Assignee: Sandia Research Corporation
    Inventor: Steven M. Shope
  • Patent number: 8604970
    Abstract: Present novel and non-trivial systems and methods for generating data in a digital radio altimeter system and detecting transient radio altitude (“RA”) information are disclosed. Preliminary RA data is generated by a preliminary spectrum analyzer by analyzing spectrum data (e.g., frequency spectrum data) within a first range, where the spectrum data is representative of RA information. Final RA data is generated by a final spectrum analyzer by analyzing the spectrum data within a second range, where the second range is based upon the preliminary RA data and final RA data previously-generated and fed through a feedback data generator. The final RA data may be provided as source data to one or more user units. One user unit may be a transient RA detector which detects transient RA information based upon the preliminary RA data and the final RA data.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 10, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Trevor R. Trinkaus
  • Patent number: 8558731
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 15, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Publication number: 20130214964
    Abstract: Embodiments described herein are directed towards a radar altimeter for mounting onto an aircraft. The radar altimeter includes a base configured to mount to an external surface of an aircraft, the base having an inner portion and a flange disposed around the inner portion, wherein the inner portion has a generally rectangular geometry defining a long dimension and a short dimension. A chassis is mounted to the base and has a planar portion that is disposed perpendicular to a plane formed by the base. A plurality of circuit boards are mounted to the planar portion of the chassis and disposed parallel to the planar portion of the chassis. The base is configured to mount over a second aperture in the external surface of the aircraft such that the chassis and the plurality of circuit boards are placed through the aperture and are disposed inside of the aircraft.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 22, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Publication number: 20130214963
    Abstract: One embodiment is directed towards a FMCW radar having a single antenna. The radar includes a transmit path having a voltage controlled oscillator controlled by a phase-locked loop, and the phase-locked loop includes a fractional-n synthesizer configured to implement a FMCW ramp waveform that ramps from a starting frequency to an ending frequency and upon reaching the ending frequency returns to the starting frequency to ramp again. The radar also includes a delay path coupled between a coupler on the transmit path and a mixer in a receive path. The delay path is configured to delay a local oscillator reference signal from the transmit path such that the propagation time of the local oscillator reference signal from the coupler to the mixer through the delay path is between the propagation time of signal reflected off the antenna and the propagation time of a leakage signal through a circulator.
    Type: Application
    Filed: October 29, 2012
    Publication date: August 22, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Publication number: 20130169472
    Abstract: An altimetry system for a satellite, including an altimeter transmitting and receiving signals on at least one first frequency band; a radiometer receiving signals on at least one second frequency band, the altimeter and the radiometer being connected to one and the same antenna; reception means common to the altimeter and to the radiometer, and capable of amplifying and filtering the signals received from the antenna on a frequency band including the first frequency band and the second frequency band; means for separating the signals on the first frequency band from the signals on the second frequency band; the signals on the first frequency band being exploited to estimate an altimetric distance of the satellite, and radiometric measurements being exploited in order to correct the estimate.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 4, 2013
    Applicant: THALES
    Inventors: Richard Jacques, Nicolas TAVENEAU
  • Patent number: 8432308
    Abstract: A method and device for monitoring radioaltimetric heights of an aircraft, the device including an auxiliary height generation device that generates an auxiliary reliability height of an aircraft. The device also includes a determination device that determines with the aid of this auxiliary height, an error in incoherent data which are received from two radioaltimeters. To this end, the most reliable reading from the radioaltimeters is determined and sent to a user device.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 30, 2013
    Assignee: Airbus Operations (SAS)
    Inventors: Philippe Delga, Nour-Ed-Din Houberdon
  • Patent number: 8427360
    Abstract: According to one aspect of the present invention, there is provided a radar altimeter which utilizes a downward looking MIMO phased array to form multiple beams, covering a relatively wide sector, e.g., +/?60 degrees or thereabouts. The distance to the ground is then measured in each beam allowing the ground profile to be formed. The beams may be tilted forward to cover from about +90 degrees forward (horizontal) to about 30 degrees behind nadir. The provision of such a forward tilt gives a greater degree of coverage in the direction of approach vector to the ground. This additional cover enables the altimeter to more accurately detect other vehicles in the proximity to the current approach vector of the vehicle to the desired landing zone.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 23, 2013
    Inventor: Dennis Longstaff
  • Patent number: 8410975
    Abstract: Present novel and non-trivial systems and methods for altitude data from a radar system and employing such data to verify altitude data from another source. A processor receives reflection point data generated by an aircraft radar system and reference point data from an applicable data source. Based upon the reflection point data and reference point data, first altitude data representative of a first measurement of aircraft altitude is generated. Then, the processor receives second altitude data representative of a second measurement of aircraft altitude from another source. Validity of the second altitude data may be determined by comparing it with the first data, after which validity advisory data may be generated that, is responsive to the validity determination. Then, the processor may provide the validity advisory data to a presentation system, whereby validity information of the second altitude data is presented to the pilot.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Douglas A. Bell, Richard D. Jinkins, Sarah Barber, Felix B. Turcios
  • Patent number: 8354951
    Abstract: A method for determining position and orientation of a rotating wing aircraft (e.g. helicopter) with respect to a ground station includes transmitting an electromagnetic signal from the aircraft. The signal includes a plurality of electromagnetic signals, each signal having a different selected frequency. The signal is detected at an array of sensors disposed on the ground surface in a selected pattern. The array includes at least one reference sensor and at least three spaced apart time difference determination sensors. A difference in arrival time of the signals between the reference sensor and each of the time difference determination sensors is determined and a spatial position of the aircraft is determined from the time differences.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: January 15, 2013
    Assignee: Intelligent Sciences, Ltd.
    Inventors: Jacques Y. Guigné, James A. Stacey, Nicholas G. Pace
  • Patent number: 8332137
    Abstract: A navigation system includes a pressure sensor, a calibration module in communication with the pressure sensor, and an altitude module in communication with the calibration module. The calibration module is configured to determine a dynamic pressure proportionality coefficient based at least in part on a static pressure proportionality coefficient, a measured pressure value from the pressure sensor, and a velocity value. The altitude module is configured to calculate a sensor-based altitude value based at least in part on the determined dynamic pressure proportionality coefficient.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: SaiPradeep Venkatraman, Quanwei Liu, Lionel Garin
  • Patent number: 8321074
    Abstract: Present novel and non-trivial system, device, and method for generating altitude data and/or height data are disclosed. A processor receives navigation data from an external source such as a global positioning system (“GPS”); receives navigation data from multiple internal sources; receives object data representative of terrain or surface feature elevation; determines an instant measurement of aircraft altitude as a function of these inputs; and generates aircraft altitude data responsive to such determination. In an additional embodiment, the processor receives reference point data representative of the elevation of the stationary reference point (e.g., a landing threshold point); determines an instant measurement of aircraft height as a function of this input and the instant measurement of aircraft altitude; and generates aircraft height data responsive to such determination.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 27, 2012
    Inventors: Douglas A. Bell, James H. Doty
  • Publication number: 20120256781
    Abstract: Systems and methods for automatically determining a noise threshold are provided. In one implementation, a system comprises: an antenna configured to gather data about a surrounding environment; a processing unit configured to remove samples representing target data from the gathered data; to estimate the noise floor from the gathered data with the removed target data; and to determine a noise threshold from the estimated noise floor; and a memory device configured to store the estimated noise floor.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David C. Vacanti, Radde Majeed, Anthony H. Luk
  • Patent number: 8275495
    Abstract: Disclosed is a method and device, which provide an enhanced ability to monitor the navigation of an aircraft during a phase of flight in which the aircraft is close to the ground in which the aircraft uses positional information supplied by a satellite positioning system for the navigation. A display screen is used to display a first characteristic sign representing a selected setpoint value for a height parameter of the aircraft. The display screen also displays a second characteristic sign representing a current auxiliary value expressed in the form of an achievable height parameter. An alert is emitted when the second characteristic sign is determined to be within a predetermined height value of the first characteristic sign, and the alert is shown in visual format on the display screen. An alarm is also emitted following a predetermined time after the alert is emitted, if the setpoint value is not replaced by a new setpoint value.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: September 25, 2012
    Assignees: Airbus Operations SAS, Airbus
    Inventors: Fabien Joyeux, Adrien Ott, Melanie Morel, Romain Merat, Stephane Dattler, Francois Barre, Armelle Seillier
  • Patent number: 8259002
    Abstract: Systems and methods for radar altimeter antenna performance monitoring via reflected power measurements are provided. In one embodiment, a single antenna radar altimeter comprises: an antenna; a circulator coupled to the antenna; a transmitter coupled to the circulator; a receiver coupled to the circulator; wherein the circulator provides coupling of the transmitter and the receiver to the antenna while providing isolation between the transmitter and the receiver; a reflected power monitor positioned between the circulator and receiver; and a processor coupled to the reflected power monitor via a first analog-to-digital converter, the processor configured to compute and track reflected power measurement statistics from data generated by the reflected power monitor and provide a performance output indicating when one or more of the reflected power measurement statistics exceed a predetermined deviation threshold.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Anthony H. Luk
  • Patent number: 8248298
    Abstract: A radar system having orthogonal antenna apertures is disclosed. The invention further relates to an antenna system wherein the orthogonal apertures comprise at least one transmit aperture and at least one receive aperture. The cross-product of the transmit and receive apertures provides a narrow spot beam and resulting high resolution image. An embodiment of the invention discloses orthogonal linear arrays, comprising at least one electronically scanned transmit linear array and at least one electronically scanned receive linear array. The design of this orthogonal linear array system produces comparable performance, clutter and sidelobe structure at a fraction of the cost of conventional 2D filled array antenna systems.
    Type: Grant
    Filed: October 31, 2009
    Date of Patent: August 21, 2012
    Assignee: First RF Corporation
    Inventor: Farzin Lalezari
  • Patent number: 8244424
    Abstract: The invention relates to a database and a method of generating a database containing topographical information on obstacles distributed over a geographic area subdivided into cells. The method includes reading topographical data obtained from heterogeneous sources. Topographical data are generated which relate to pointlike obstacles from the information collected from the topographical data. Topographical data are generated which relate to linear obstacles from the information collected from the topographical data. The obstacle database is created. Each cell contains a link to the obstacles whose coordinates in the geographic area covered by the cell are recorded with an uncertainty value. In particular, the invention applies to the generation of a database on board an aircraft.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 14, 2012
    Assignee: Thales
    Inventors: Michel Subelet, Sylvain Fontaine
  • Publication number: 20120146837
    Abstract: Systems and methods for radar altimeter antenna performance monitoring via reflected power measurements are provided. In one embodiment, a single antenna radar altimeter comprises: an antenna; a circulator coupled to the antenna; a transmitter coupled to the circulator; a receiver coupled to the circulator; wherein the circulator provides coupling of the transmitter and the receiver to the antenna while providing isolation between the transmitter and the receiver; a reflected power monitor positioned between the circulator and receiver; and a processor coupled to the reflected power monitor via a first analog-to-digital converter, the processor configured to compute and track reflected power measurement statistics from data generated by the reflected power monitor and provide a performance output indicating when one or more of the reflected power measurement statistics exceed a predetermined deviation threshold.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David C. Vacanti, Anthony H. Luk
  • Patent number: 8193968
    Abstract: Systems and methods for detecting objects and weather in space are disclosed. A system for detecting an object in space and space weather includes at least one spacecraft, at least one radiation source, at least one detector, and a controller. The at least one radiation source and the at least one detector are coupled to the at least one spacecraft. The at least one radiation source is configured to transmit a signal. The at least one detector is configured to detect the signal. The signal may be reflected from an object in space. The controller is coupled to the spacecraft and is in communication with the plurality of detectors. The controller is programmed to calculate either a relative position of the object based or a plasma parameter in a region traversed by the signal based on the detected signal.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: June 5, 2012
    Assignee: Exelis, Inc.
    Inventors: Omid Ebrahimi Kia, Christopher Rodgers, Brian Bradford
  • Patent number: 8153943
    Abstract: A tornado disarming network includes a command center, tornado detection systems, and tornado busting missile launch sites in communications with the command center. Tornado busting missiles are at the tornado busting missile launch sites. Each tornado busting missile includes a radar, a guidance system and a solid rocket motor for propelling the missile toward the tornado. A thruster control system causes the tornado busting missile to travel upward within the tornado upon reaching the tornado. An explosive discharge system explodes within the tornado to generate heat for causing the air within the tornado to expand, thereby weakening the tornado.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 10, 2012
    Inventor: Riley H. Nelson
  • Publication number: 20120075138
    Abstract: Systems and methods can provide alternatives to a global positioning system (GPS). For example, certain systems can operate on 1090 MHz and provide for methods of estimating location that can be used in place of GPS. Thus, a method can include obtaining an estimate of position of an own aircraft based on time of arrival of signals from a plurality of ground stations. The calculation of the estimate can be performed in the own aircraft. The method can also include using the estimate of position instead of a position from a global positioning system.
    Type: Application
    Filed: September 29, 2011
    Publication date: March 29, 2012
    Inventors: Gregory T. Stayton, James R. Troxel
  • Patent number: 8077078
    Abstract: A method of and system for determining the altitude of an aircraft can use a relative altitude estimate using information from an onboard radar. The altitude can be referenced to a runway for landing operations. The radar can produce relative altitude information from the range to the landing point and a precision estimation of the vertical angle to the landing point. The vertical angle estimate can be made with a phase processing antenna/radar system.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 13, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8059025
    Abstract: An altimetry method comprising: providing a signal receiver (RX) on a first platform (S1) flying above a portion of the Earth surface (ES), for receiving a temporal series of signals emitted by a second flying platform (S2) and scattered by said portion of the Earth surface; and computing altimetry waveforms, indicative of an elevation profile of said portion of the Earth surface, by processing the received signals; characterized in that said step of computing altimetry waveforms comprises: cross-correlating the received signals with a plurality of locally-generated frequency-shifted replicas of the emitted signals; introducing a frequency-dependent temporal shift to the correlation waveforms in order to compensate for range delay curvature; and incoherently summing the temporally shifted correlation waveforms (CXC) corresponding to signals scattered by a same region of the Earth surface at different times during motion of said first platform.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 15, 2011
    Assignee: Agence Spatiale Europeenne
    Inventor: Salvatore D'Addio
  • Patent number: 8044842
    Abstract: A method of compensating for component errors within a radar altimeter is described. The method includes periodically switching transmit pulses from a transmit antenna to a programmable delay device, calculating an altitude based on a transmit pulse received from the programmable delay device, comparing the calculated altitude to an expected altitude, the expected altitude based on a pre-set delay through the programmable delay device, and compensating an altitude measured by the radar altimeter, based on transmit pulses output through the transmit antenna, by an error correction amount based on a difference between the calculated altitude and expected altitudes.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 25, 2011
    Assignee: Honeywell International Inc.
    Inventors: Steven H. Thomas, Timothy J. Reilly, Glen B. Backes
  • Publication number: 20110199253
    Abstract: The device comprises means for generating an auxiliary height (HA) of an aircraft (AC) and for determining, with the aid of this auxiliary height (HA), an error in incoherent data which are received from two radioaltimeters.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: AIRBUS OPERATIONS (S.A.S.)
    Inventors: Philippe Delga, Nour-Ed-Din Houberdon
  • Patent number: 7911375
    Abstract: Systems and methods for Doppler beam sharpening in a radar altimeter are provided. In one embodiment, a method comprises receiving a return signal at a radar altimeter receiver and applying a first gate to the return signal to select at least a first component of the return signal. Spectral analysis is performed on the first component of the return signal to generate a plurality of frequency bins, wherein each frequency bin is centered around a different frequency across a Doppler shift frequency spectrum for the first component of the return signal. The method further comprises tracking the first component of the return signal, selecting a first frequency bin of the plurality of frequency bins based on the Doppler shift frequency of the first component of the return signal, and outputting a portion of the first component of the return signal falling within the first frequency bin for further processing.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Honeywell International Inc.
    Inventors: Benjamin J. Winstead, Thomas W. Heidemann
  • Publication number: 20110001659
    Abstract: 1. A device and a method for the improved directional estimation and decoding by means of secondary radar signals. 2.1 Radio-based positioning systems on the basis of secondary radar signals are known. For this purpose special receiver systems are utilized for estimating the direction, and special receiver systems are utilized for decoding secondary radar signals. In particular, a secondary radar system is absent, which, among others, takes into consideration any shortcomings of the hardware used, such as coupled antenna elements, different low-end impedances, deviating distances between the antenna elements, manufacturing and installation tolerances, and the like. 2.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 6, 2011
    Applicant: iAD Gesellschaft Fur Informatik Automatisierung und Datenverabetung
    Inventors: Hermann Hampel, Ulrich Berold, Christoph Reck, Lorenz-Peter Schmidt, Jochen Weinzierl
  • Publication number: 20100302088
    Abstract: Systems and methods for Doppler beam sharpening in a radar altimeter are provided. In one embodiment, a method comprises receiving a return signal at a radar altimeter receiver and applying a first gate to the return signal to select at least a first component of the return signal. Spectral analysis is performed on the first component of the return signal to generate a plurality of frequency bins, wherein each frequency bin is centered around a different frequency across a Doppler shift frequency spectrum for the first component of the return signal. The method further comprises tracking the first component of the return signal, selecting a first frequency bin of the plurality of frequency bins based on the Doppler shift frequency of the first component of the return signal, and outputting a portion of the first component of the return signal falling within the first frequency bin for further processing.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Benjamin J. Winstead, Thomas W. Heidemann
  • Patent number: 7843380
    Abstract: A system and method for sensing elevation terrain using an airborne weather radar. Method techniques include sampling first and second radar returns from a weather radar at two portions of an antenna. First radar returns are removed from second radar returns to generate third radar returns for a third portion of the antenna. The third portion of the antenna is included in the second portion but not the first portion. Changes in the third radar return are analyzed to sense elevation of the terrain.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 30, 2010
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 7839321
    Abstract: Ground clutter is effectively separated from true signals echoed by a cable in the flight path of an aircraft, by encoding a transmitted pulse wave in a radar system with at least one transmit (TX) coding sequence, so that received signals echoed by the cable on which the pulse is incident and associated ground clutter are orthogonal or separable from one another. The TX coding sequence is altered into two receive (RX) coding sequences one of which corresponds to the cable and the other to the ground clutter. The two RX coding sequences are then correlated with the received signals, thereby separating the true signals echoed by the cable from the associated ground clutter.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: November 23, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Tom T. Huang, Samson Chu, Yongsu B. Choe, Ronnie H. Kanagawa
  • Patent number: 7839322
    Abstract: A method of detecting obstacles on board an aircraft while in the vicinity (44) of a touchdown point (27, 42), includes the following operations: selecting/determining a path (41) to be followed by the aircraft overflying the touchdown point; the aircraft overflying the touchdown point following the overflight path, and during the overflight recording signals/data delivered by an on-board rangefinder observing a portion of space extending below the aircraft; analyzing the rangefinder data to detect the presence of obstacles and to determine their positions in a terrestrial frame of reference, where appropriate to determine their dimensions; and recording the detected obstacle position data, and dimensions, if any, in a memory.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Eurocopter
    Inventors: François-Xavier Filias, Jean Sequeira
  • Patent number: 7825851
    Abstract: Methods and apparatus for determining an altitude with an altimeter is provided. One method includes transmitting a signal having a fixed modulation period towards a ground target and then detecting reflected signals off the ground target. The method then implements a single Fast Fourier Transform (FFT) on the detected signals for each modulation period that computes all possible altitudes in real time. A short history of the real time altitude calculations is collected and then the altitude based on the short history of the real time altitude calculations is determined.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 2, 2010
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Patent number: 7821446
    Abstract: An ultra low power, long range, robust radar system, for applications such as ionospheric sounding. The HF transmit signal and the received (reflected) signal are both unswitched and high frequency and share a path to a common loop antenna. The transmit signal originates at a local oscillator (LO), and is sufficiently low power to not saturate the receive signal path. A balun divides the local oscillator signal between the transmit path forward to the antenna and a mixer path, and also divides the received signal between the mixer path and the LO path. A mixer converts the mixed LO and received signal to baseband.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 26, 2010
    Assignee: Southwest Research Institute
    Inventors: Rodney V. Landreth, William D. Davis, Robert W. Robison
  • Patent number: 7818115
    Abstract: A navigation solution of a navigation system with a Terrain Navigation Module is determined by a procedure including determining a supported position solution and the relative covered path between two height measurements, ascertaining a quality of each active supported position from each active supported position by way of a first quality function, and creating a search area and predetermined positions for each position inside the search area and each relatively stored covered path. The procedure further includes ascertaining a quality of each relatively stored terrain height measurement, and a quality of each reference height, and determining the quality of the position support by a function of all minimum probabilities of all used positions in the search area and supporting the navigation solution ascertained in the Strap Down Module by the navigation filter with the aid of the determined position support and the determined quality of the position support.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: October 19, 2010
    Assignee: EADS Deutschland GmbH
    Inventors: Peter Kreutz, Juergen Metzger, Bernd Taddiken
  • Patent number: 7808425
    Abstract: The present invention is directed to a space-borne altimetry apparatus having a first receiving antenna, pointing to outer space, for receiving at least one signal emitted by a remote satellite emitter via a direct path; a second receiving antenna, pointing to the Earth, for receiving said signal via an indirect path including a reflection from the Earth surface; and a signal processing means for computing a distance of the apparatus from a specular reflection point of the signal on the Earth surface by cross-correlating the signals received by said first and second antennas; wherein both the first and second receiving antennas are high-gain steerable antennas; and wherein the apparatus may also include antenna control means for steering at least one receiving lobe of the first antenna toward the remote satellite emitter, and at least one receiving lobe of the second antenna toward a specular reflection point on the Earth surface.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 5, 2010
    Assignee: Agence Spatiale Europeenne
    Inventors: Manuel Martin Neira, Salvatore D'Addio
  • Patent number: 7808423
    Abstract: A method for acquiring targets within a search area using an electronic device is disclosed. The method involves partitioning a first acquisition time period into a plurality of range gates, simultaneously positioning one or more of the range gates within the search area during a search mode, and transmitting an energy pulse train. Upon receipt of a reflection of the transmitted pulse train, the method records a signal level of the reflected energy pulse train within the first acquisition time period. Based on the recorded signal level, the method advances one or more of the range gates by a prescribed outbound movement increment until the signal level within at least one of the range gates is above a prescribed acquisition signal level threshold.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 5, 2010
    Assignee: Honeywell International Inc.
    Inventors: Benjamin J. Winstead, Jason I. Formo
  • Patent number: 7791529
    Abstract: The invention relates to a method of determining an estimated speed of an aircraft relative to ground being overflown by the aircraft, in which use is made of the sum of an acceleration measurement of the aircraft plus a difference value, the difference value being obtained from observation data or signals relating to a region of the ground.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 7, 2010
    Assignee: Eurocopter
    Inventors: François Xavier Filias, Jean-Paul Petillon, Richard Pire
  • Publication number: 20100214152
    Abstract: Ground clutter is effectively separated from true signals echoed by a cable in the flight path of an aircraft, by encoding a transmitted pulse wave in a radar system with at least one transmit (TX) coding sequence, so that received signals echoed by the cable on which the pulse is incident and associated ground clutter are orthogonal or separable from one another. The TX coding sequence is altered into two receive (RX) coding sequences one of which corresponds to the cable and the other to the ground clutter. The two RX coding sequences are then correlated with the received signals, thereby separating the true signals echoed by the cable from the associated ground clutter.
    Type: Application
    Filed: May 29, 2008
    Publication date: August 26, 2010
    Inventors: Tom T. Huang, Samson Chu, Yongsu B. Choe, Ronnie H. Kanagawa
  • Patent number: 7777668
    Abstract: A navigation system having a radar altimeter is disclosed. The navigation system comprises a signal processing unit and one or more antennas in operative communication with the radar altimeter and the signal processing unit. The system further comprises a forward looking radar communicatively coupled to the radar altimeter. The forward looking radar and the signal processing unit are configured to provide forward looking radar measurements, radar altitude measurements from the radar altimeter, and datalink communications within a single forward looking radar scanning sequence.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 17, 2010
    Assignee: Honeywell International Inc.
    Inventors: Robert C. Becker, Alan G. Cornett, David W. Meyers
  • Patent number: 7761197
    Abstract: A device and method for detecting air turbulence determine a theoretical height corresponding to the difference between an extrapolated height of an isentropic trajectory and the current height of an aircraft. This theoretical height is compared with a height threshold indicating a risk of turbulence.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: July 20, 2010
    Assignee: Airbus France
    Inventor: Stephane Puig
  • Publication number: 20100109935
    Abstract: A method for processing signals of an airborne radar includes a correction of the erroneous angle of pointing of the radar beam, comprising an evaluation of the error in the pointing angle for a constant height of the aerial transporter. For a given angle of scan, the method carrys out at least two series of measurements of the power of the echoes returned following the emission of radar signals, each series being associated with a given distance-bin, the measurements being dependent on the angle of pointing of the radar antenna, formulates a vertical profile of the power of the echoes returned for each series of measurements, and then on the basis of each vertical profile, measures the pointing angle corresponding to a power of the echoes returned by the ground alone, and calculates the error in the pointing angle on the basis of the measured pointing angles.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: Thales
    Inventors: Nicolas Bon, Jean-Paul Artis
  • Patent number: 7701384
    Abstract: An antenna for a micro air vehicle (MAV) takes the form of a wrap-around antenna (e.g., wrapped around a portion of the MAV) that selectively emits radio signals in different directions depending on a frequency selected by a radio altimeter in the MAV. The radar altimeter may be a pulsed or a frequency modulated continuous wave (FMCW) radar altimeter. The wrap-around antenna includes groups of radiating elements in which at least each group includes an average height that is different from an average height of an adjacent group. Further, the average height of the group determines which group will emit the signals most efficiently so that a desired sector of space may be covered by the signals emitted from the antenna. In one example, the center frequency of the radar altimeter may be controlled in a deterministic manner to cause the radiating elements to successively cover desired sectors of space.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Robert C. Becker, Alan Cornett
  • Patent number: 7688253
    Abstract: A method and processor for resolving a processing radar return data to determine a mechanical angle to a target relative to a radar array having a right antenna, an ambiguous antenna, and a left antenna. An LA linear relationship determining, based upon a characteristic number of LA wraps relative to the mechanical angle. Likewise, determining a RA linear relationship determines a characteristic number of RA wraps and a RL linear relationship determines a characteristic number of RL wraps relative to the mechanical angle. All permutations of LA wraps, RA wraps, and RL wraps are listed, and for each permutation, a truth relationship is determined. A look up table is populated with permutations where the truth relationship is true.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 30, 2010
    Assignee: Honeywell International Inc.
    Inventor: Todd R. Burlet