Digital (e.g., With Counter) Patents (Class 342/135)
  • Patent number: 10185036
    Abstract: Data bandwidth reduction in positioning system signals. Specifically, a first, relatively easily acquired signal may be analyzed to determine if and/or to what extent to decimate a second signal. The second signal may comprise a higher encoded data rate (e.g., a chip rate). In turn, decimation of the second signal based on characteristics of the first signal may allow for more efficient processing of the second signal.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: January 22, 2019
    Assignee: iPosi, Inc.
    Inventors: Richard M. Lee, Eric Derbez, Christopher Neil Kurby
  • Patent number: 9692472
    Abstract: An antenna subsystem receives an analog desired signal, noise, and interference via a communication channel. The desired signal includes modulated encoded digital information. A local oscillator (LO) modulation subsystem generates a modulated LO. The LO modulation subsystem generates a modulated LO to maximize the symbol signal-to-noise ratio of the decoded digital information based on a plurality of: the desired signal, the interference and the noise expected in the communication channel, the characteristics of the converter, and the ability of the DSP to remove the Modulated LO from the converted signal. A mixer mixes the received signal and the modulated LO. A converter converts the mixed signal from analog to digital. A digital signal processor (DSP) removes the modulated LO and desired signal modulation, and decodes the desired signal encoded digital information.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: June 27, 2017
    Assignee: GOOGLE INC.
    Inventors: Mark Rich, Paul Kolodzy
  • Patent number: 9035824
    Abstract: A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 19, 2015
    Assignee: Thales
    Inventors: Stéphane Kemkemian, Jean-Paul Artis, Jean-Michel Quellec
  • Patent number: 9024816
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 5, 2015
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 9013347
    Abstract: An embodiment of the present invention relates to a radar apparatus, wherein a distance to a target and a velocity of the target are measured by transmitting a digitally modulated transmitting signal using a digital code and receiving and demodulating an echo signal returned due to reflection of the transmitting signal from the target.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Pil Jae Park, Cheon Soo Kim, Hyun Kyu Yu, Min Park, Ik Soo Eo
  • Patent number: 8982831
    Abstract: Data packets are transmitted from a terminal of a broadband radio communication system. For each transmission cycle in a transmission period data is received at a data interface of the terminal and buffered, and transmission of radio signals comprising the received data is enabled on expiry of a repetition interval from the start of a previous transmission. The repetition intervals are controlled to reduce a proportion of the transmission period for which transmission may occur at an allowed pulse repetition interval of a radar with which the terminal may interfere. The presence of radar pulses is checked during a wait period for each cycle while the terminal is not transmitting. If radar pulses are present, the transmission of radio signals which may interfere with the radar pulses is inhibited.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 17, 2015
    Assignee: Cambium Networks Limited
    Inventors: Martin Richard Crowle, Jan Jerzy Cynk
  • Patent number: 8976060
    Abstract: Distance between two radio frequency devices is estimated by receiving a plurality of spread spectrum chirp signals frequency offset from one another, and evaluating the received plurality of spread spectrum chirp signals for relative phase shifts between the plurality of spread spectrum chirp signals. A fine propagation time is derived using the phase shifts between the spread spectrum chirp signals. A frequency domain despreading window is shifted to reduce the influence of time-delayed near multipath signals in receiving the plurality of spread spectrum chirp signals.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 10, 2015
    Assignee: Digi International Inc.
    Inventor: Terry M. Schaffner
  • Publication number: 20150009049
    Abstract: A method of using a directional sensor for the purposes of detecting the presence of a vehicle or an object within a zone of interest on a roadway or in a parking space. The method comprises the following steps: transmitting a microwave transmit pulse of less than 5 feet; radiating the transmitted pulse by a directional antenna system; receiving received pulses by an adjustable receive window; integrating or combining signals from multiple received pulses; amplifying and filtering the integrated receive signal; digitizing the combined signal; comparing the digitized signal to at least one preset or dynamically computed threshold values to determine the presence or absence of an object in the field of view of the sensor; and providing at least one pulse generator with rise and fall times of less than 3 ns each and capable of generating pulses less than 10 ns in duration.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventor: Balu SUBRAMANYA
  • Patent number: 8830116
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Publication number: 20140168005
    Abstract: A pulse radar ranging apparatus and a ranging algorithm thereof are provided. The pulse radar ranging apparatus includes a radio frequency pulse generator, a radio frequency filter, a radio frequency switch and a transceiver aerial. The radio frequency pulse generator generates a pulse signal. The radio frequency filter receives the pulse signal and generates a high-pass filter signal, wherein the high-pass filter signal includes a radio frequency pulse reference signal. The radio frequency switch controls an output of the radio frequency pulse reference signal. The transceiver aerial transmits the radio frequency pulse reference signal. The radio frequency pulse reference signal contacts an object and generates a return signal, and the transceiver aerial receives the return signal. The ranging algorithm processes and analyzes the signals obtained by the pulse radar ranging apparatus, and calculates a distance between pulse radar ranging apparatus and the object by using polynomial interpolation.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 19, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: INDUSTRIAL TECHNOLOGY RESEARC INSTITUTE
  • Patent number: 8754806
    Abstract: A pulse radar receiver includes a power splitter configured to split a transmit (TX) trigger signal for generating a TX pulse, a phase-locked loop (PLL) configured to receive a division ratio and the TX trigger signal split by the power splitter, and generate a sampling frequency, and a sampler configured to sample a reflected wave received through an RX antenna, according to the sampling frequency generated by the PLL. Accordingly, it is possible to provide a high distance resolution by generating a sampling frequency with a difference from a TX pulse to sample a reflected wave received through an RX antenna. Thus, it is possible to overcome a limitation in the distance resolution due to the pulse width and to measure a minute movement at a short distance. Therefore, the pulse radar receiver is applicable to high range resolution radar applications such as a living body measuring radar.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 17, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Pil Jae Park, Seong Do Kim, Sung Chul Woo, Hyun Kyu Yu
  • Patent number: 8755037
    Abstract: An optical device is disclosed that may be employed in distance measuring devices. In at least one embodiment, the optical device includes a control unit that is adapted to cause at least one control signal generator unit to generate at least one control signal according to a predetermined temporal function on the basis of an elapsed time from a predetermined point in time. On the basis of the generated at least one control signal, at least one parameter of a receiver unit may be adjusted during the travel time of the optical pulse, wherein the at least one parameter affects the dynamic range of the receiver unit. In this way, the dynamic range of the receiver unit may be increased. A method is further disclosed for operating such an optical device, along with a distance measuring device including such an optical device and a surveying instrument including such a distance measuring device.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 17, 2014
    Assignee: Trimble AB
    Inventor: Yuri P. Gusev
  • Patent number: 8742979
    Abstract: This disclosure provides a range side lobe removal device, which includes a pulse compressor for acquiring a reception signal from a radar antenna and generating a pulse-compressed signal by performing a pulse compression of the reception signal, a pseudorange side lobe generator for generating a pseudo signal of range side lobes of the pulse-compressed signal based on the reception signal, and a signal remover for removing a component corresponding to the pseudo signal from the pulse-compressed signal.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 3, 2014
    Assignee: Furuno Electric Company Limited
    Inventor: Yoshifumi Ohnishi
  • Patent number: 8724677
    Abstract: Provided are a method and apparatus (receiver) of receiving and processing a radio signal in a transmitter-receiver environment. The radio signals are transmitted across a wireless interface using Ultra Wideband (UWB) pulses. A transmitted reference approach is utilized. The radio signal include pairs of UWB pulses with each pair of pulses separated by a fixed time delay. The two pulses are then combined to provide for improved noise immunity.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 13, 2014
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8723721
    Abstract: A multistatic radar surveillance system includes transmitter elements and receiver elements arranged according to a zone to be monitored, and a command and control unit that configures the elements and collects information relating to objects detected by the receiver elements. Each transmitter element transmits a signal, the bandwidth of which is substantially equal to the totality of a frequency band B allocated to the system. Each transmitter element transmits a common waveform to all of the transmitter elements, and the waveform is modulated by a binary signal specific to the element in question, this signal allowing each of the receiver elements receiving a signal to identify the transmitter element at the source of this signal. The coding applied to the waveform is defined so that the spread spectrum caused to the signal transmitted by the latter does not exceed the frequency band B allocated to the system.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 13, 2014
    Assignee: Thales
    Inventors: Michel Moruzzis, Daniel Muller, Jean-Marie Ferrier
  • Patent number: 8624776
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 8588270
    Abstract: The invention includes a method for transmitting and detecting high speed Ultra Wideband pulses across a wireless interface. The transmitter includes a serializer and pulse generator. The receiver comprises a fixed delay line, multiplier, local serializer (with a sequence matching the transmitter), digital delay lines, low noise amplifier and logic fan-out buffer along with an array of D flip-flop pairs. Each flip-flop pair is enabled, at fixed time increments, to detect signals at a precise time; the timing is controlled by the pseudo-random sequence generated by the local serializer. A local tunable oscillator is controlled by detecting the phase change of the incoming signal and applying compensation to maintain the phase alignment and clock synchronization of the receiver to the clock reference of the transmitter. The invention uses a pair of pulses with a fixed delay and then relies on mixing the two to provide better noise immunity.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 19, 2013
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8531330
    Abstract: A method and device for recognizing a pulse repetition interval (PRI) modulation type of a radar signal are provided. The method for recognizing a pulse repetition interval (PRI) modulation type includes: extracting time of arrival (TOA) information of pulses aligned in time order from a received radar signal; generating a PRI sequence based on a difference of adjacent TOAs in the TOA information of pulses; generating a difference of PRIs (DPRI) sequence by using a difference of the adjacent PRIs in the PRI sequence; generating respective symbol sequences by using specific partition rules from the PRI sequence and the DPRI sequence; and calculating characteristic factors from the symbol sequences, and comparing the characteristic factors with threshold values for discriminating a PRI modulation type to determine the PRI modulation type. Thus, the PRI modulation type, a promising feature for radar signal identification, can be precisely derived.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 10, 2013
    Assignee: Agency For Defense Development
    Inventors: Kyu-Ha Song, Jin-Woo Han, Byung-Koo Park, Je-Il Jo
  • Publication number: 20130147655
    Abstract: A radar apparatus transmits a high-frequency transmission signal, and receives a signal of a reflective wave reflected by a target. Given a first code sequence of a first code length, a second code sequence of a second code length which is longer than the first code sequence, and a third code sequence obtained by inverting each code of the first code sequence, a first transmission signal obtained by modulating the first code sequence, a second transmission signal obtained by modulating the second code sequence, a third transmission signal obtained by modulating the third code sequence and a fourth transmission signal obtained by modulating the second code sequence are generated in a first transmission period, a second transmission period, a third transmission period and a fourth transmission period respectively.
    Type: Application
    Filed: August 16, 2011
    Publication date: June 13, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Takaaki Kishigami, Yoichi Nakagawa, Hirohito Mukai
  • Patent number: 8410978
    Abstract: A shape measurement instrument includes a plurality of transmitters 1 to 4 which radiate signals having different waveforms or phases, receivers 31 to 34 which receive signals reflected from an object O, correlation units 41 to 44 which obtain correlation waveforms between waveforms of the signals received by the receivers 31 to 34, and the signal radiated by a transmitter radiating the received signal of the transmitters 1 to 4, and a shape estimation unit 5 which extracts a quasi-wavefront based on the correlation waveforms obtained by the correlation units 41 to 44 and estimates a shape of the object O based on a relationship between the quasi-wavefront and the object O. As a result, a period of time required to measure an object shape can be significantly reduced.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Sakai, Takeshi Fukuda, Takuya Sakamoto, Toru Sato
  • Patent number: 8362944
    Abstract: A radar system is disclosed for forming a scanning receive beam from signals received by a phased array having a plurality of sub arrays. An exemplary radar system includes a plurality of phase units each configured to receive a signal from one or more sub arrays. Each phase unit includes a waveform generator configured to generate an analog waveform having a frequency corresponding to a time-varying phase shift. Each waveform generator is arranged to digitally generate the analog waveform, and output a comparison of the received signal with the waveform, incorporating the time-varying phase shift. The system further includes a combining unit configured to combine the outputs from the plurality of phase units to form a scanning receive beam.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 29, 2013
    Assignee: Astrium Limited
    Inventor: David Charles Lancashire
  • Publication number: 20120262332
    Abstract: This disclosure provides a range side lobe removal device, which includes a pulse compressor for acquiring a reception signal from a radar antenna and generating a pulse-compressed signal by performing a pulse compression of the reception signal, a pseudorange side lobe generator for generating a pseudo signal of range side lobes of the pulse-compressed signal based on the reception signal, and a signal remover for removing a component corresponding to the pseudo signal from the pulse-compressed signal.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 18, 2012
    Inventor: Yoshifumi OHNISHI
  • Patent number: 8289201
    Abstract: A method and apparatus for detecting objects located underground. In one advantageous embodiment, a detection system detects objects having electrical non-linear characteristics located underground. The detection system comprises a transmitter unit, a receiver, and a processor. The transmitter transmits a plurality of pulsed radio frequency signals having a first frequency and a second frequency into a ground. The receiver monitors for a response radio frequency signal having a frequency equal to a difference between the first frequency and a second frequency, wherein the response radio frequency signal is generated by an object having the non-linear conductive characteristics in response to receiving the plurality of electromagnetic signals. The processor is connected to the transmitter unit and the receiver, wherein the processor controls an operation of the transmitter unit and the receiver, wherein the object is detected when the response radio frequency signal is detected by the receiver.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: October 16, 2012
    Assignee: The Boeing Company
    Inventors: Sandor Holly, Nicholas Koumvakalis, Robert Alan Smith
  • Patent number: 8212715
    Abstract: A radar system includes at least two modules, each having a phase detector and a first high-frequency source and each having an antenna output and/or each having one or more antennas. At least two modules include a device for synchronization between the first high-frequency source of a first module of the at least two modules and the first high-frequency source of a second module of the at least two modules of the radar system. The phase detector has a first input for a first reference signal. The phase detector also has a second input for a first loop signal. A module for a radar system has the design of one of the modules of the radar system described above.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: July 3, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Armin Himmelstoss, Joachim Hauk, Elisabeth Hauk, legal representative, Rahel Hauk, legal representative, Manuel Hauk, legal representative, Dirk Steinbuch
  • Patent number: 8184040
    Abstract: This disclosure provides a radar device including a transmission module for sequentially transmitting two or more kinds of pulse signals having different pulse widths by a predetermined transmitting pattern, a memory module for storing a predetermined number of pulse reply data corresponding to each kind of the pulse signals, the predetermined number being number of transmissions of the kind of the pulse signals, a pulse integrating module for performing pulse integration of the pulse reply data stored in the memory module for each kind of the pulse signal, and an image generating module for generating a radar image using the results of the pulse integration.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: May 22, 2012
    Assignee: Furuno Electric Company Limited
    Inventors: Masaya Takase, Hitoshi Maeno
  • Patent number: 8169359
    Abstract: A judging and controlling part 110 comprises an operation mode judging unit 111, a pulse width selecting unit 112, and a band limiting width selecting unit 113, wherein the operation mode judging unit 111 receives a signal of a gear state from a predetermined controlling device in a vehicle, and then judges the operation mode thereof. Based on a result of the judgment at the operation mode judging unit 111, the pulse width selecting unit 112 and the band limiting width selecting unit 113 control a wide band impulse generating part 120 and a band width limiting part 150, respectively.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: May 1, 2012
    Assignee: The Furukawa Electric Co., Ltd
    Inventor: Yasushi Aoyagi
  • Patent number: 8077074
    Abstract: Certain embodiments provide a network waveform system that can include multiple radars disposed at different geographical positions within an environment. The multiple radars may be configured to transmit a network waveform. The network waveform may include multiple radar waveforms. Each radar waveform of the multiple waveforms may be transmitted by a specific radar of the multiple radars. The system can also include a computer system coupled with the multiple radars that can include a processor and a memory. The memory may be configured to store information including data received from the multiple radars, data processed by the processor, and processing code executable by the processor. The processing code may include instructions to receive output data from the multiple radars resulting from the transmitted network waveform instructions to jointly process the output data from the multiple radars to determine a measurement of the environment based on the network waveform.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: December 13, 2011
    Assignee: Colorado State University Research Foundation
    Inventors: Chandrasekaran Venkatachalam, Nitin Bharadwaj
  • Publication number: 20110279307
    Abstract: In conventional pulse compression processing, sidelobes from strong return signals may hide correlation peaks associated with weaker return signals. Example embodiments include methods of mitigating this near/far interference by weighting a received return signal or corresponding reference signal based the return signal's time of arrival, then performing pulse compression using the weighted signal to produce a correlation peak that is not hidden by sidelobes from another return. Multi-frequency processing can also be used to reduce the pulse width of the transmitted pulses and received return signals, thereby mitigating near/far interference by decreasing the overlap between signals from nearby targets. Weighting can be combined with multi-frequency pulse transmission and reception to further enhance the fidelity of the processed correlation peak. Weighting and multi-frequency processing also enable higher duty cycles than are possible with conventional pulse compression radars.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Applicant: Massachusetts Institute of Technology
    Inventor: William S. Song
  • Patent number: 8044846
    Abstract: A method for displaying information relating to the range and Doppler of a remote target includes transmitting electromagnetic energy toward the target, and receiving reflected signals defining a two-dimensional (range-Doppler) radar image. The reflected signals are matched-filtered, which tends to blur the image. The image is deblurred while the features of thermal noise enhancement and irregularity of the deconvolved output are constrained to produce a single point deblurring output.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: October 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Harry Urkowitz, Jeff D. Cammerata
  • Patent number: 8035551
    Abstract: A pulsed compression noise correlation radar uses noise modulation and pulse compression technology to scramble recognizable transmit signal characteristics and reduce transmit energy. The pulsed noise correlation radar advantageously uses pulse compression technology, a pulsed linear frequency modulated noise correlation mixer, and a new and innovative noise fused waveform to automatically correlate the pulsed linear frequency modulated (LFM) noise waveform with the received signal. The pulsed noise correlation radar apparatus and system now make it possible to effectively reduce transmitting power, preserve high band widths through oversampling in the receiver, and achieve multi-channel array frequency diversity. A secure pulsed compression noise correlation radar system and methods for undetected target detection with pulsed noise correlation radar and a pulsed LFM fused noise waveform are also provided.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 11, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Mark A. Govoni
  • Patent number: 8026840
    Abstract: A biometric radar system and method for identifying a person's positional state are generally described herein. The biometric radar may phase adjust a sequence of radar return signals received through two or more receive antennas to remove at least some phase noise due to the stationary objects. The biometric radar may also segment the phase adjusted radar return signals into a plurality of multi-resolutional Doppler components. Each multi-resolutional Doppler component may be associated with one of a plurality of biometric features. The biometric radar system may also combine and weight the segmented radar returns for each biometric feature to generate weighted classifications for a feature extraction process.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 27, 2011
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Patent number: 8022863
    Abstract: A method includes correlating a plurality of samples of a waveform into a correlation domain to provide a mainlobe defined by a first subset of a plurality of pulse-compressed samples and a plurality of sidelobes defined by a second subset of the plurality of pulse-compressed samples. A weight is calculated for at least one of the pulse-compressed samples, and one of a plurality of SVA filter values is selected to apply to the at least one pulse-compressed sample based on the calculated weight of the at least one pulse-compressed sample. The SVA filter values include one, one minus a quotient of one-half divided by the calculated weight of the at least one sample, and a scale factor having a value greater than zero and less than or equal to one. The selected SVA filter values are applied to the at least one pulse-compressed sample.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Rao Nuthalapati
  • Patent number: 8018374
    Abstract: A radar having a high time and high spatial resolution and being capable of performing volume scanning with an inexpensive and simple structure, while enabling reduction is size and weight. A radar (50) is provided with an antenna unit (51) including a radio wave lens antenna device, which has a spherical transmission radio wave lens (2), a spherical reception radio wave lens (3), a primary radiator (4) arranged at a focal point of the radio wave lens (2), and a primary radiator (5) arranged at a focal point of the radio wave lens (3). The primary radiators (4, 5) pivot in an elevation direction about an axis connecting center points of the radio wave lenses (2, 3) and pivot in an azimuthal direction about an axis orthogonal to the axis connecting the center points of the radio wave lenses (2, 3).
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 13, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyuki Imai, Tomoo Ushio
  • Patent number: 7995190
    Abstract: Disclosed is a method for measuring a distance between a distance sensor (5), which is carried on a vehicle, and an object (2). The method includes emitting electromagnetic impulse signals (6) and receiving signals (7), which are reflected by the object. Subsequently the signal propagation time is determined. Pulses (10) received after having been reflected by the object (2) are separated and added together, after which the mean value is formed, and the received pulses are superimposed with a modulation signal (18). Also disclosed is a device suited for carrying out the method.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: August 9, 2011
    Assignee: Conti Temic Microelectronic, GmbH
    Inventors: Michael Beuschel, Gerhard Zörkler
  • Patent number: 7944390
    Abstract: The transmission antenna (10) of the high-resolution synthetic aperture side view radar system comprises a plurality of sub-apertures (7, 8, 9). In each individual transmission pulse, said sub-apertures are controlled in such a manner that a spatiotemporally non-separable multi-dimensional high-frequency waveform is produced as an transmission signal pulse form, such that the modulation of each transmission pulse has a spatiotemporal diversity which is not described by the product having functions which are independent from each other and which are dependent on, respectively, only one spatial dimension. The thus produced transmission pulse form is combined to a capture-sided spatial filtering by means of digital beamforming adapted to said transmission signal pulse form.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 17, 2011
    Assignee: Deutsches Zentrum für Luft- und Raumfahrt e.V.
    Inventors: Gerhard Krieger, Nicolas Gebert, Alberto Moreira
  • Publication number: 20110102244
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Application
    Filed: August 29, 2008
    Publication date: May 5, 2011
    Applicant: Raymarine UK Limited
    Inventors: Richard Jales, Adrew Lawrence, Matthieu Maindrou
  • Patent number: 7933308
    Abstract: A signal transmission and reception device is disclosed that can be made compact and has wide-band band-pass characteristics. The signal transmission and reception device includes a first filtering unit that is composed of a distributed constant circuit and is capable of eliminating a first frequency component or a second frequency component. The second frequency is higher than the first frequency, and a second filtering unit that attenuates components of frequencies lower than the first frequency or components of frequencies higher than the second frequency.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: April 26, 2011
    Assignee: Fujitsu Component Limited
    Inventors: Shigemi Kurashima, Masahiro Yanagi, Satoshi Sakurai, Takuya Uchiyama, Takashi Yuba, Takashi Arita
  • Patent number: 7920088
    Abstract: The present invention is a method and apparatus that provides detection, characterization, and intuitive dissemination of targets. This disclosure combines improvements to ultra-wideband (UWB) sensing and machine target characterization with a means to convey data in a format that is quickly and readily understood by practitioners of the technology. The invention is well suited for Situational Awareness (SA) support in areas that are occluded by rain, fog, dust, darkness, distance, foliage, building walls, and any material that can be penetrated by ultra-wideband RF signals. Sense Through The Wall (STTW) performance parameters including target range, stand-off distance, and probability of detection are improved herein by combining a dynamically positioned sliding windowing function with orthogonal feature vectors that include but are not limited to time amplitude decay, spectral composition, and propagation time position in the return signal data.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 5, 2011
    Inventors: Scott Randall Thompson, Bernt A Askildsen, Anthony Gervasi
  • Patent number: 7898469
    Abstract: Provided is a receiving device that is used for a spread spectrum radar apparatus, receives a spectrum-spread signal, and obtains a precise radar spectrum, and includes: a despreading unit that (i) generates first and second despread signals that are generated by despreading a reception signal using a pseudo-noise code, the second despread signal passing through a transmission line carrying a current having a current value identical to a current value of a current carried by a transmission line through which the first despread signal passes, and (ii) includes a first transistor pair including first and second transistors having an identical characteristic, the first transistor outputting the first despread signal, and the second transistor outputting the second despread signal; and a quadrature demodulating unit that generates an in-phase signal and a quadrature signal by quadrature-demodulating the first despread signal and the second despread signal, respectively.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: March 1, 2011
    Assignee: Panasonic Corporation
    Inventors: Shinji Ujita, Takeshi Fukuda
  • Patent number: 7864106
    Abstract: A method and system for SNR enhancement in pulse-Doppler coherent target detection for applications in the fields of radar and ultrasound. In accordance with the method of the invention, complex signals are obtained for each of two or more sub-intervals of the time-on-target interval, allowing simultaneous range and Doppler measurements. A coherent integration is the performed on the signals to generate complex-valued folded matrices. The folded matrices are unfolded and target detection is then performed in a process involving one or more of the unfolded matrices. A pulse-Doppler coherent system is also provided configured for target detection by the method of the invention.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: January 4, 2011
    Assignee: Elta Systems Ltd.
    Inventors: Ella Beilin, Jehezkel Grizim, Yacov Vagman, Alexander Lomes
  • Patent number: 7864103
    Abstract: A height-finding 3D avian radar comprises an azimuthally scanning radar system with means of varying the elevation pointing angle of the antenna. The elevation angle can be varied by employing either an antenna with multiple beams, or an elevation scanner, or two radars pointed at different elevations. Heights of birds are determined by analyzing the received echo returns from detected bird targets illuminated with the different elevation pointing angles.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 4, 2011
    Assignee: Accipiter Radar Technologies, Inc.
    Inventors: Peter T. Weber, Timothy J. Nohara
  • Patent number: 7855674
    Abstract: The present invention provides a coherent radar system based on a modification of standard non-coherent radar without Moving Target Indication. Typical radars in this class are Navigation radars which are mass produced with low cost components. These radars utilize a magnetron in the transmitter which is a random phase device. In the present invention, the received signal is extracted just prior to amplitude detection process (where phase information is lost), and digitized using an analogue to digital converter providing coherent detection based on correlation between the transmitted pulse and the received signal.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: December 21, 2010
    Assignee: Telefonaktiebolaget L M Ericsson (Public)
    Inventor: Per Atle Våland
  • Publication number: 20100265121
    Abstract: Pulsed radar detects the presence and range of very short-range objects via small perturbations in phase and/or amplitude of relatively long duration coherently related transmit pulses. In one embodiment, echoes forming a received signal waveform from a sampling baseband radar receiver are processed at audio frequency to look for perturbations of the phase of the time-stretched received radar signal while the radar is still transmitting a long-duration pulse. In a second embodiment, the time-stretched received signal is processed to look for perturbations in the amplitude of the received radar signal. Small amplitude perturbations due to constructive and destructive interference of the transmitted and reflected signals occur in the receiver when objects are very close to the radar if the receiver is not heavily saturated. These same techniques can also be used to achieve highly accurate ranging of long-distance objects and detection of overlapping echoes from multiple objects.
    Type: Application
    Filed: August 28, 2009
    Publication date: October 21, 2010
    Applicant: Preco Electronics, Inc.
    Inventors: Brian Bandhauer, Jonathan Cole, Douglas Todd Hayden, John Fadgen
  • Patent number: 7817080
    Abstract: A ranging and communication multifunction system including a transmission unit and a receiving unit, and integrates two functions of ranging and communication in which the transmission unit includes a transmission circuit, a carrier wave modification device, and a transmission antenna. The receiving unit includes a receiving circuit, a wave detector, a low noise amplifier, and a receiving antenna, and a data modulation performed in the transmission circuit uses a PPM system. Thus, the receiving circuit provides a ranging circuit and a communication separately, so that the demodulation processing of ranging and communication can be performed in parallel.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 19, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yasushi Aoyagi, Kazutaka Kamimura
  • Patent number: 7817082
    Abstract: Techniques to image life forms through obstructions and at long standoff ranges employ a radar system that simultaneously transmits a plurality of RF pulse trains having different transmission frequencies and receives returns of the RF pulse trains reflected from a life form target. The returns are processed to generate digital radar data associated with the transmission frequency of each RF pulse train. The digital radar data is segmented and averaged to generate a Doppler spectrum response associated with the transmission frequency of each RF pulse train. Target classification is performed using the Doppler spectrum responses to extract biometric data describing the life form target.
    Type: Grant
    Filed: March 11, 2007
    Date of Patent: October 19, 2010
    Assignee: VAWD Applied Science and Technology Corporation
    Inventors: Wesley Howard Dwelly, Vinh Nguyen Adams
  • Patent number: 7812760
    Abstract: A transmitting unit of a short-range radar includes a first pulse generating unit, a second pulse generating unit, an oscillator and a switch, and while complying with the spectrum mask specified for a UWB short-range radar, emits a predetermined short pulse wave not interfering with the RR prohibited band or the SRD band into the space. The first pulse generating unit outputs a first pulse having the width larger than the width of the short pulse wave in a predetermined period. The second pulse generating unit outputs a second pulse having the width corresponding to the width of the short pulse wave during the period when the first pulse generating unit outputs the first pulse.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 12, 2010
    Assignees: Anritsu Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Tasuku Teshirogi, Masanori Ejima
  • Patent number: 7808424
    Abstract: A device measures distance using a wireless signal that has two simultaneously transmitted components. Each of the two components includes a respective repeated code, the two codes having different durations. On receipt of the signal, the propagation distance is calculated separately for each code and compared. The calculated distance is considered to be valid only if the two calculations yield the same result. The durations of the two codes may be proportional to numbers having a relative prime relationship. The signal is generated and transmitted by the same device that performs the distance calculation, with the signal being retransmitted back to the device by a remote device, or may be generated and transmitted by the remote device.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 5, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Martin S. Wilcox
  • Patent number: 7760130
    Abstract: A method for presence detection using a microwave transmitter and a microwave receiver, the method including generating a sequence of clock pulses by means of a pulse generator, feeding the clock pulses to a clocked circuit arranged to generate a sequence of first pulses of a first pulse length and a sequence of second pulses of a second pulse length, each one of the first and second pulse lengths being related to a predetermined number of the clock pulses, periodically actuating the microwave transmitter by means of the sequence of first pulses, periodically actuating the microwave receiver by means of the sequence of second pulses; and determining whether an object is present in the detection volume based on microwave radiation being received by the microwave receiver. A system for such presence detection is also disclosed.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 20, 2010
    Assignee: Ford Global Technologies, LLC
    Inventor: Anders Antonsson
  • Patent number: 7750841
    Abstract: Apparatus for determining positional information relating to an object, comprising: means for receiving, comprising a plurality of receiving elements; detection means for detecting signals received at the receiving elements and for generating output signals representative of the received signals; and processing means operable to apply, for each receiving element, a process to the output signal generated from the signal received at that receiving element separately from any output signal generated from a signal received at any other receiving element, so as to obtain a respective value of a parameter representative of the signal received at that receiving element, the processing means being further operable to compare the values of the parameter thus obtained so as to, obtain positional information relating to the object.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: July 6, 2010
    Assignee: Cambridge Consultants Limited
    Inventors: Gordon Kenneth Andrew Oswald, Alexandra Joanna Geoghegan, Charles Peter Bell, Nicholas Simon Russ, Mario Del Mistro, Michael Hugh Burchett, Desmond Keith Phillips, Vincent Arne Utsi