Digital (e.g., With Counter) Patents (Class 342/135)
-
Patent number: 12035133Abstract: A communication device and method are provided for communicating data, such as a cryptographic key, wirelessly to another communication device. The communication device and the other device each include an oscillator circuit portion, an inverter, a non-inverting buffer, and a switch for switching between the inverter and non-inverting buffer. A circular loop is formed wirelessly between the oscillator circuit portions of both devices by placing both communication devices near each other. A control circuit in each device measures a parameter such as frequency or waveform pattern of the circulating signal to determine how to position the switches. The oscillator circuit portions may be portions of the same oscillator distributed between the devices, such as a delay line-controlled oscillator or a chaotic oscillator. Inverting and not inverting the circulated signal changes the parameter of the signal so that it is difficult for an eavesdropper to learn the communication.Type: GrantFiled: April 1, 2021Date of Patent: July 9, 2024Assignee: NXP B.V.Inventor: Jan-Peter Schat
-
Patent number: 11860263Abstract: A system for detecting and estimating a property of an object based on radar includes a signal generator configured to generate a code sequence for a plurality of transmitters configured to emit radar signals over a selected time frame, the code sequence including a plurality of codes, each code of the plurality of codes having a different code length, each code repeated in the code sequence according to a repetition frequency, and each transmitter configured to emit a radar signal based on the code sequence. The system also includes a receiver configured to detect return signals from reflections of the emitted radar signal, and a processing device configured to estimate a property of an object based on the detected return signals.Type: GrantFiled: December 29, 2020Date of Patent: January 2, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Oded Bialer, Amnon Jonas
-
Patent number: 11789141Abstract: The present disclosure relates to an omnidirectional sensor fusion system and method and a vehicle including the same. The omnidirectional sensor fusion system includes a sensor track processing unit configured to receive recognition information from one or more sensors to generate a sensor track, a sensor track association determination unit configured to determine, based on the generated sensor track being located at an overlapping point of sensing regions of the one or more sensors, an association between a previous sensor fusion track and the sensor track, the sensor track association determination unit further configured to change sensor track information in response to the determined association and output a sensor fusion track, a sensor fusion track tracing unit configured to trace the output sensor fusion track, and a sensor fusion track maintenance unit configured to maintain the traced sensor fusion track.Type: GrantFiled: July 16, 2019Date of Patent: October 17, 2023Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATIONInventors: Hoon Lee, Sang Bok Won, Hyung Sun Jang, Bo Young Yun, Seul Ki Han, Ji Eun Won, Uk Il Yang
-
Patent number: 11700005Abstract: A phased locked loop includes; a load circuit that generates an output signal in response to a driving voltage, a frequency calibration circuit that generates a calibration signal in response to an output frequency of the output signal and a target frequency, and a regulator that generates the driving voltage in response to the calibration signal.Type: GrantFiled: October 25, 2021Date of Patent: July 11, 2023Assignee: Samsung Electronics Co., Ltd.Inventors: Kangyeop Choo, Insung Kim, Wooseok Kim, Taeik Kim, Sunghyuck Lee, Chanyoung Jeong
-
Patent number: 11526813Abstract: Embodiments of the present invention proposes a method to automatically identify the flying targets by physical information (coordinates, heading, speed), time, and identification information (3/A code). This method includes two steps: features extraction and building machine learning model. In the features extraction step, features which are extracted include: cell indexes corresponding to coordinates, information of flight path, time in day/night format, heading, speed, and 3/A code, constructing n-dimensional vector. This vector is used as input for training a Random Forest model, to automatically identify class label of flying targets.Type: GrantFiled: October 30, 2019Date of Patent: December 13, 2022Assignee: VIETTEL GROUPInventors: Anh Tuan Nguyen, Quang Bang Nguyen, Thanh Binh Nguyen
-
Patent number: 11521027Abstract: The invention relates to a method and a device for fusion of measurements from various information sources (I 1, I 2, . . . , I m) in conjunction with filtering of a filter vector, wherein the information sources (I 1, I 2, . . . , I m) comprise one or more environment detection sensor(s) of an ego vehicle, wherein in each case at least one measured quantity derived from the measurements is contained in the filter vector, wherein the measurements from at least one individual information source (I 1; I 2; . . . , I m) are mapped nonlinearly to the respective measured quantity, wherein at least one of these mapping operations depends on at least one indeterminate parameter, wherein the value to be determined of the at least one indeterminate parameter is estimated from the measurements of the different information sources (I 1, I 2, . . . , I m) and wherein the filter vector is not needed for estimating the at least one indeterminate parameter.Type: GrantFiled: December 7, 2018Date of Patent: December 6, 2022Assignee: CONTI TEMIC MICROELECTRONIC GMBHInventor: Robert Stueck
-
Patent number: 11181611Abstract: The present disclosure relates to an antenna return loss compensation apparatus and method of a radar and a radar apparatus using the same. The antenna return loss compensation apparatus may include a compensation information calculator configured to calculate return loss compensation information for compensating for a frequency-band based antenna return loss, and a return loss compensator configured to apply return loss compensation information to a reception signal that is reflected from an object and is received, so as to generate a final reception signal, may calculate and store, in advance, compensation information for a return loss occurring in the antenna, may perform compensation associated with the magnitude of a reception signal when measurement is performed using the radar, so that the reception signal has the same magnitude, whereby a radar's performance deterioration attributable to the return loss of the antenna may be minimized.Type: GrantFiled: January 26, 2019Date of Patent: November 23, 2021Assignee: MANDO CORPORATIONInventors: Hae Sueng Lim, Seong Hee Jeong, Jae Eun Lee
-
Precision agricultural-device control system and wireless agricultural-device communication protocol
Patent number: 11134603Abstract: The present invention provides a precision agricultural-device control system for controlling agricultural implements (such as seed feeders and fertilizer sprayers) or on a line planter. More particularly, a command and control module is provided that is in communication with an interface module and provides commands in accordance with a field prescription. The interface module wirelessly transmits command messages to the agricultural implements or and receives monitoring messages from the agricultural implements. In certain embodiments, a novel, low latency and high reliability wireless protocol or using repeats is used to communicate wirelessly with the agricultural implements.Type: GrantFiled: March 5, 2019Date of Patent: October 5, 2021Assignee: Graham Equipment, LLCInventors: Jerry Graham, Paul Zoric, John Videtich, Warren Guthrie -
Patent number: 10921434Abstract: A method of detecting an object is disclosed, comprising generating a transmission signal by generating a carrier signal and digitally modulating the carrier signal with a transmission modulation signal, and transmitting the transmission signal. A reflected signal is received, the reflected signal having been reflected from the object, and demodulated to extract a received modulation signal. The received modulation signal is correlated with the transmission modulation signal and a range of the object is determined from the correlation of the received modulation signal and the transmission modulation signal.Type: GrantFiled: June 21, 2018Date of Patent: February 16, 2021Assignee: NXP B.V.Inventors: Gustavo Guarin Aristizabal, Ralf Reuter, Maik Brett
-
Patent number: 10725163Abstract: [OBJECT] To surely remove a multi-order echo or interference from another radar apparatus [ORGANIZATION] A radar apparatus transmitting pulse signals at predetermined repetition cycles and receiving and analyzing the pulse signals reflected by a target object to thereby detect the target object has: a setting means (control unit 11) setting so that at least a part of the repetition cycles of the pulse signals is different; a detection means (speed detection/object detection unit 16) detecting a distance to the target object specified by the pulse signal; and a removal means (clutter removal unit 17) removing the target object as clutter when the distance to the target object detected in the different repetition cycle or in a period subsequent to the different repetition cycle by the detection means and the distance to the target object detected in the period other than that by the detection means are different.Type: GrantFiled: February 24, 2016Date of Patent: July 28, 2020Assignee: FURUKAWA ELECTRIC CO., LTD.Inventors: Hiroyasu Yano, Yasushi Aoyagi, Kodai Kukita
-
Patent number: 10616520Abstract: Conventional methods for imaging transient targets are constrained by a trade-off between resolution and frame rate, and transient targets moving faster than the detector frame typically result in image blurring. Imagers using digital-pixel focal plane arrays (“DFPAs”) have on-chip global pixel operation capability for extracting a single transient-feature (i.e., single-frequency discrimination) in a snapshot that depends on the number of counters implemented per pixel. However, these DFPA systems are not capable of multi-target and multi-frequency discrimination. Imagers described herein achieve multi-target transient signature discrimination orders of magnitude faster than the readout frame rate using in-pixel electronic shuttering with a known time-encoded modulation. Three-dimensional (x,y,t) data cube reconstruction is performed using compressive sensing algorithms.Type: GrantFiled: February 25, 2019Date of Patent: April 7, 2020Assignee: Massachusetts Institute of TechnologyInventors: Brian M. Tyrrell, Christy Fernandez Cull, Andrew K. Bolstad
-
Patent number: 10578748Abstract: The basic concept of satellite-free time transfer using time reversal (T3R) has been invented and successfully demonstrated over long distance (about 4,000 km) with an accuracy of approximately 200 ns rms. The current invention describes new methods to drastically improve performance up to <10 ns rms—better than the current differential GPS, without satellites. The new method employs the Vernier concept utilizing the unique p-independence property of T3R irrespective of carrier frequencies. Also, a histogram method to automatically filter out extraneous data and allow high accuracy and a new method to extend the timing range of T3R beyond the pulse repetition period by removing ambiguity are proposed. A systematic way to obviate the signal blockage caused by transmit/receive window mismatch, is also proposed.Type: GrantFiled: October 14, 2017Date of Patent: March 3, 2020Inventor: Eung Gi Paek
-
Precision agricultural-device control system and wireless agricultural-device communication protocol
Patent number: 10548256Abstract: The present invention provides a precision agricultural-device control system for controlling agricultural implements (such as seed feeders and fertilizer sprayers) or on a line planter. More particularly, a command and control module is provided that is in communication with an interface module and provides commands in accordance with a field prescription. The interface module wirelessly transmits command messages to the agricultural implements or and receives monitoring messages from the agricultural implements. In certain embodiments, a novel, low latency and high reliability wireless protocol or using repeats is used to communicate wirelessly with the agricultural implements.Type: GrantFiled: August 29, 2016Date of Patent: February 4, 2020Assignee: Graham Equipment, LLCInventors: Jerry Graham, Paul Zoric, John Videtich, Warren Guthrie -
Patent number: 10185036Abstract: Data bandwidth reduction in positioning system signals. Specifically, a first, relatively easily acquired signal may be analyzed to determine if and/or to what extent to decimate a second signal. The second signal may comprise a higher encoded data rate (e.g., a chip rate). In turn, decimation of the second signal based on characteristics of the first signal may allow for more efficient processing of the second signal.Type: GrantFiled: February 16, 2018Date of Patent: January 22, 2019Assignee: iPosi, Inc.Inventors: Richard M. Lee, Eric Derbez, Christopher Neil Kurby
-
Patent number: 9692472Abstract: An antenna subsystem receives an analog desired signal, noise, and interference via a communication channel. The desired signal includes modulated encoded digital information. A local oscillator (LO) modulation subsystem generates a modulated LO. The LO modulation subsystem generates a modulated LO to maximize the symbol signal-to-noise ratio of the decoded digital information based on a plurality of: the desired signal, the interference and the noise expected in the communication channel, the characteristics of the converter, and the ability of the DSP to remove the Modulated LO from the converted signal. A mixer mixes the received signal and the modulated LO. A converter converts the mixed signal from analog to digital. A digital signal processor (DSP) removes the modulated LO and desired signal modulation, and decodes the desired signal encoded digital information.Type: GrantFiled: February 4, 2016Date of Patent: June 27, 2017Assignee: GOOGLE INC.Inventors: Mark Rich, Paul Kolodzy
-
Patent number: 9035824Abstract: A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).Type: GrantFiled: February 22, 2013Date of Patent: May 19, 2015Assignee: ThalesInventors: Stéphane Kemkemian, Jean-Paul Artis, Jean-Michel Quellec
-
Patent number: 9024816Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.Type: GrantFiled: December 30, 2013Date of Patent: May 5, 2015Assignee: Raymarine UK LimitedInventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
-
Patent number: 9013347Abstract: An embodiment of the present invention relates to a radar apparatus, wherein a distance to a target and a velocity of the target are measured by transmitting a digitally modulated transmitting signal using a digital code and receiving and demodulating an echo signal returned due to reflection of the transmitting signal from the target.Type: GrantFiled: April 12, 2012Date of Patent: April 21, 2015Assignee: Electronics and Telecommunications Research InstituteInventors: Pil Jae Park, Cheon Soo Kim, Hyun Kyu Yu, Min Park, Ik Soo Eo
-
Patent number: 8982831Abstract: Data packets are transmitted from a terminal of a broadband radio communication system. For each transmission cycle in a transmission period data is received at a data interface of the terminal and buffered, and transmission of radio signals comprising the received data is enabled on expiry of a repetition interval from the start of a previous transmission. The repetition intervals are controlled to reduce a proportion of the transmission period for which transmission may occur at an allowed pulse repetition interval of a radar with which the terminal may interfere. The presence of radar pulses is checked during a wait period for each cycle while the terminal is not transmitting. If radar pulses are present, the transmission of radio signals which may interfere with the radar pulses is inhibited.Type: GrantFiled: July 18, 2014Date of Patent: March 17, 2015Assignee: Cambium Networks LimitedInventors: Martin Richard Crowle, Jan Jerzy Cynk
-
Patent number: 8976060Abstract: Distance between two radio frequency devices is estimated by receiving a plurality of spread spectrum chirp signals frequency offset from one another, and evaluating the received plurality of spread spectrum chirp signals for relative phase shifts between the plurality of spread spectrum chirp signals. A fine propagation time is derived using the phase shifts between the spread spectrum chirp signals. A frequency domain despreading window is shifted to reduce the influence of time-delayed near multipath signals in receiving the plurality of spread spectrum chirp signals.Type: GrantFiled: August 12, 2011Date of Patent: March 10, 2015Assignee: Digi International Inc.Inventor: Terry M. Schaffner
-
Publication number: 20150009049Abstract: A method of using a directional sensor for the purposes of detecting the presence of a vehicle or an object within a zone of interest on a roadway or in a parking space. The method comprises the following steps: transmitting a microwave transmit pulse of less than 5 feet; radiating the transmitted pulse by a directional antenna system; receiving received pulses by an adjustable receive window; integrating or combining signals from multiple received pulses; amplifying and filtering the integrated receive signal; digitizing the combined signal; comparing the digitized signal to at least one preset or dynamically computed threshold values to determine the presence or absence of an object in the field of view of the sensor; and providing at least one pulse generator with rise and fall times of less than 3 ns each and capable of generating pulses less than 10 ns in duration.Type: ApplicationFiled: September 24, 2014Publication date: January 8, 2015Inventor: Balu SUBRAMANYA
-
Patent number: 8830116Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.Type: GrantFiled: June 8, 2012Date of Patent: September 9, 2014Assignee: Industrial Technology Research InstituteInventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
-
Patent number: 8823578Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.Type: GrantFiled: March 13, 2012Date of Patent: September 2, 2014Assignees: Denso Corporation, Nippon Soken, Inc.Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
-
Publication number: 20140168005Abstract: A pulse radar ranging apparatus and a ranging algorithm thereof are provided. The pulse radar ranging apparatus includes a radio frequency pulse generator, a radio frequency filter, a radio frequency switch and a transceiver aerial. The radio frequency pulse generator generates a pulse signal. The radio frequency filter receives the pulse signal and generates a high-pass filter signal, wherein the high-pass filter signal includes a radio frequency pulse reference signal. The radio frequency switch controls an output of the radio frequency pulse reference signal. The transceiver aerial transmits the radio frequency pulse reference signal. The radio frequency pulse reference signal contacts an object and generates a return signal, and the transceiver aerial receives the return signal. The ranging algorithm processes and analyzes the signals obtained by the pulse radar ranging apparatus, and calculates a distance between pulse radar ranging apparatus and the object by using polynomial interpolation.Type: ApplicationFiled: March 15, 2013Publication date: June 19, 2014Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventor: INDUSTRIAL TECHNOLOGY RESEARC INSTITUTE
-
Patent number: 8755037Abstract: An optical device is disclosed that may be employed in distance measuring devices. In at least one embodiment, the optical device includes a control unit that is adapted to cause at least one control signal generator unit to generate at least one control signal according to a predetermined temporal function on the basis of an elapsed time from a predetermined point in time. On the basis of the generated at least one control signal, at least one parameter of a receiver unit may be adjusted during the travel time of the optical pulse, wherein the at least one parameter affects the dynamic range of the receiver unit. In this way, the dynamic range of the receiver unit may be increased. A method is further disclosed for operating such an optical device, along with a distance measuring device including such an optical device and a surveying instrument including such a distance measuring device.Type: GrantFiled: June 26, 2009Date of Patent: June 17, 2014Assignee: Trimble ABInventor: Yuri P. Gusev
-
Patent number: 8754806Abstract: A pulse radar receiver includes a power splitter configured to split a transmit (TX) trigger signal for generating a TX pulse, a phase-locked loop (PLL) configured to receive a division ratio and the TX trigger signal split by the power splitter, and generate a sampling frequency, and a sampler configured to sample a reflected wave received through an RX antenna, according to the sampling frequency generated by the PLL. Accordingly, it is possible to provide a high distance resolution by generating a sampling frequency with a difference from a TX pulse to sample a reflected wave received through an RX antenna. Thus, it is possible to overcome a limitation in the distance resolution due to the pulse width and to measure a minute movement at a short distance. Therefore, the pulse radar receiver is applicable to high range resolution radar applications such as a living body measuring radar.Type: GrantFiled: December 9, 2011Date of Patent: June 17, 2014Assignee: Electronics and Telecommunications Research InstituteInventors: Pil Jae Park, Seong Do Kim, Sung Chul Woo, Hyun Kyu Yu
-
Patent number: 8742979Abstract: This disclosure provides a range side lobe removal device, which includes a pulse compressor for acquiring a reception signal from a radar antenna and generating a pulse-compressed signal by performing a pulse compression of the reception signal, a pseudorange side lobe generator for generating a pseudo signal of range side lobes of the pulse-compressed signal based on the reception signal, and a signal remover for removing a component corresponding to the pseudo signal from the pulse-compressed signal.Type: GrantFiled: April 11, 2012Date of Patent: June 3, 2014Assignee: Furuno Electric Company LimitedInventor: Yoshifumi Ohnishi
-
Patent number: 8723721Abstract: A multistatic radar surveillance system includes transmitter elements and receiver elements arranged according to a zone to be monitored, and a command and control unit that configures the elements and collects information relating to objects detected by the receiver elements. Each transmitter element transmits a signal, the bandwidth of which is substantially equal to the totality of a frequency band B allocated to the system. Each transmitter element transmits a common waveform to all of the transmitter elements, and the waveform is modulated by a binary signal specific to the element in question, this signal allowing each of the receiver elements receiving a signal to identify the transmitter element at the source of this signal. The coding applied to the waveform is defined so that the spread spectrum caused to the signal transmitted by the latter does not exceed the frequency band B allocated to the system.Type: GrantFiled: December 28, 2010Date of Patent: May 13, 2014Assignee: ThalesInventors: Michel Moruzzis, Daniel Muller, Jean-Marie Ferrier
-
Patent number: 8724677Abstract: Provided are a method and apparatus (receiver) of receiving and processing a radio signal in a transmitter-receiver environment. The radio signals are transmitted across a wireless interface using Ultra Wideband (UWB) pulses. A transmitted reference approach is utilized. The radio signal include pairs of UWB pulses with each pair of pulses separated by a fixed time delay. The two pulses are then combined to provide for improved noise immunity.Type: GrantFiled: October 17, 2013Date of Patent: May 13, 2014Assignee: University of South FloridaInventor: James L. Tucker
-
Patent number: 8624776Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.Type: GrantFiled: August 29, 2008Date of Patent: January 7, 2014Assignee: Raymarine UK LimitedInventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
-
Patent number: 8588270Abstract: The invention includes a method for transmitting and detecting high speed Ultra Wideband pulses across a wireless interface. The transmitter includes a serializer and pulse generator. The receiver comprises a fixed delay line, multiplier, local serializer (with a sequence matching the transmitter), digital delay lines, low noise amplifier and logic fan-out buffer along with an array of D flip-flop pairs. Each flip-flop pair is enabled, at fixed time increments, to detect signals at a precise time; the timing is controlled by the pseudo-random sequence generated by the local serializer. A local tunable oscillator is controlled by detecting the phase change of the incoming signal and applying compensation to maintain the phase alignment and clock synchronization of the receiver to the clock reference of the transmitter. The invention uses a pair of pulses with a fixed delay and then relies on mixing the two to provide better noise immunity.Type: GrantFiled: December 4, 2012Date of Patent: November 19, 2013Assignee: University of South FloridaInventor: James L. Tucker
-
Patent number: 8531330Abstract: A method and device for recognizing a pulse repetition interval (PRI) modulation type of a radar signal are provided. The method for recognizing a pulse repetition interval (PRI) modulation type includes: extracting time of arrival (TOA) information of pulses aligned in time order from a received radar signal; generating a PRI sequence based on a difference of adjacent TOAs in the TOA information of pulses; generating a difference of PRIs (DPRI) sequence by using a difference of the adjacent PRIs in the PRI sequence; generating respective symbol sequences by using specific partition rules from the PRI sequence and the DPRI sequence; and calculating characteristic factors from the symbol sequences, and comparing the characteristic factors with threshold values for discriminating a PRI modulation type to determine the PRI modulation type. Thus, the PRI modulation type, a promising feature for radar signal identification, can be precisely derived.Type: GrantFiled: September 12, 2011Date of Patent: September 10, 2013Assignee: Agency For Defense DevelopmentInventors: Kyu-Ha Song, Jin-Woo Han, Byung-Koo Park, Je-Il Jo
-
Publication number: 20130147655Abstract: A radar apparatus transmits a high-frequency transmission signal, and receives a signal of a reflective wave reflected by a target. Given a first code sequence of a first code length, a second code sequence of a second code length which is longer than the first code sequence, and a third code sequence obtained by inverting each code of the first code sequence, a first transmission signal obtained by modulating the first code sequence, a second transmission signal obtained by modulating the second code sequence, a third transmission signal obtained by modulating the third code sequence and a fourth transmission signal obtained by modulating the second code sequence are generated in a first transmission period, a second transmission period, a third transmission period and a fourth transmission period respectively.Type: ApplicationFiled: August 16, 2011Publication date: June 13, 2013Applicant: PANASONIC CORPORATIONInventors: Takaaki Kishigami, Yoichi Nakagawa, Hirohito Mukai
-
Patent number: 8410978Abstract: A shape measurement instrument includes a plurality of transmitters 1 to 4 which radiate signals having different waveforms or phases, receivers 31 to 34 which receive signals reflected from an object O, correlation units 41 to 44 which obtain correlation waveforms between waveforms of the signals received by the receivers 31 to 34, and the signal radiated by a transmitter radiating the received signal of the transmitters 1 to 4, and a shape estimation unit 5 which extracts a quasi-wavefront based on the correlation waveforms obtained by the correlation units 41 to 44 and estimates a shape of the object O based on a relationship between the quasi-wavefront and the object O. As a result, a period of time required to measure an object shape can be significantly reduced.Type: GrantFiled: April 17, 2008Date of Patent: April 2, 2013Assignee: Panasonic CorporationInventors: Hiroyuki Sakai, Takeshi Fukuda, Takuya Sakamoto, Toru Sato
-
Patent number: 8362944Abstract: A radar system is disclosed for forming a scanning receive beam from signals received by a phased array having a plurality of sub arrays. An exemplary radar system includes a plurality of phase units each configured to receive a signal from one or more sub arrays. Each phase unit includes a waveform generator configured to generate an analog waveform having a frequency corresponding to a time-varying phase shift. Each waveform generator is arranged to digitally generate the analog waveform, and output a comparison of the received signal with the waveform, incorporating the time-varying phase shift. The system further includes a combining unit configured to combine the outputs from the plurality of phase units to form a scanning receive beam.Type: GrantFiled: July 17, 2009Date of Patent: January 29, 2013Assignee: Astrium LimitedInventor: David Charles Lancashire
-
Publication number: 20120262332Abstract: This disclosure provides a range side lobe removal device, which includes a pulse compressor for acquiring a reception signal from a radar antenna and generating a pulse-compressed signal by performing a pulse compression of the reception signal, a pseudorange side lobe generator for generating a pseudo signal of range side lobes of the pulse-compressed signal based on the reception signal, and a signal remover for removing a component corresponding to the pseudo signal from the pulse-compressed signal.Type: ApplicationFiled: April 11, 2012Publication date: October 18, 2012Inventor: Yoshifumi OHNISHI
-
Patent number: 8289201Abstract: A method and apparatus for detecting objects located underground. In one advantageous embodiment, a detection system detects objects having electrical non-linear characteristics located underground. The detection system comprises a transmitter unit, a receiver, and a processor. The transmitter transmits a plurality of pulsed radio frequency signals having a first frequency and a second frequency into a ground. The receiver monitors for a response radio frequency signal having a frequency equal to a difference between the first frequency and a second frequency, wherein the response radio frequency signal is generated by an object having the non-linear conductive characteristics in response to receiving the plurality of electromagnetic signals. The processor is connected to the transmitter unit and the receiver, wherein the processor controls an operation of the transmitter unit and the receiver, wherein the object is detected when the response radio frequency signal is detected by the receiver.Type: GrantFiled: June 6, 2007Date of Patent: October 16, 2012Assignee: The Boeing CompanyInventors: Sandor Holly, Nicholas Koumvakalis, Robert Alan Smith
-
Patent number: 8212715Abstract: A radar system includes at least two modules, each having a phase detector and a first high-frequency source and each having an antenna output and/or each having one or more antennas. At least two modules include a device for synchronization between the first high-frequency source of a first module of the at least two modules and the first high-frequency source of a second module of the at least two modules of the radar system. The phase detector has a first input for a first reference signal. The phase detector also has a second input for a first loop signal. A module for a radar system has the design of one of the modules of the radar system described above.Type: GrantFiled: December 2, 2009Date of Patent: July 3, 2012Assignee: Robert Bosch GmbHInventors: Armin Himmelstoss, Joachim Hauk, Elisabeth Hauk, legal representative, Rahel Hauk, legal representative, Manuel Hauk, legal representative, Dirk Steinbuch
-
Patent number: 8184040Abstract: This disclosure provides a radar device including a transmission module for sequentially transmitting two or more kinds of pulse signals having different pulse widths by a predetermined transmitting pattern, a memory module for storing a predetermined number of pulse reply data corresponding to each kind of the pulse signals, the predetermined number being number of transmissions of the kind of the pulse signals, a pulse integrating module for performing pulse integration of the pulse reply data stored in the memory module for each kind of the pulse signal, and an image generating module for generating a radar image using the results of the pulse integration.Type: GrantFiled: March 3, 2010Date of Patent: May 22, 2012Assignee: Furuno Electric Company LimitedInventors: Masaya Takase, Hitoshi Maeno
-
Patent number: 8169359Abstract: A judging and controlling part 110 comprises an operation mode judging unit 111, a pulse width selecting unit 112, and a band limiting width selecting unit 113, wherein the operation mode judging unit 111 receives a signal of a gear state from a predetermined controlling device in a vehicle, and then judges the operation mode thereof. Based on a result of the judgment at the operation mode judging unit 111, the pulse width selecting unit 112 and the band limiting width selecting unit 113 control a wide band impulse generating part 120 and a band width limiting part 150, respectively.Type: GrantFiled: May 8, 2009Date of Patent: May 1, 2012Assignee: The Furukawa Electric Co., LtdInventor: Yasushi Aoyagi
-
Patent number: 8077074Abstract: Certain embodiments provide a network waveform system that can include multiple radars disposed at different geographical positions within an environment. The multiple radars may be configured to transmit a network waveform. The network waveform may include multiple radar waveforms. Each radar waveform of the multiple waveforms may be transmitted by a specific radar of the multiple radars. The system can also include a computer system coupled with the multiple radars that can include a processor and a memory. The memory may be configured to store information including data received from the multiple radars, data processed by the processor, and processing code executable by the processor. The processing code may include instructions to receive output data from the multiple radars resulting from the transmitted network waveform instructions to jointly process the output data from the multiple radars to determine a measurement of the environment based on the network waveform.Type: GrantFiled: May 7, 2009Date of Patent: December 13, 2011Assignee: Colorado State University Research FoundationInventors: Chandrasekaran Venkatachalam, Nitin Bharadwaj
-
Publication number: 20110279307Abstract: In conventional pulse compression processing, sidelobes from strong return signals may hide correlation peaks associated with weaker return signals. Example embodiments include methods of mitigating this near/far interference by weighting a received return signal or corresponding reference signal based the return signal's time of arrival, then performing pulse compression using the weighted signal to produce a correlation peak that is not hidden by sidelobes from another return. Multi-frequency processing can also be used to reduce the pulse width of the transmitted pulses and received return signals, thereby mitigating near/far interference by decreasing the overlap between signals from nearby targets. Weighting can be combined with multi-frequency pulse transmission and reception to further enhance the fidelity of the processed correlation peak. Weighting and multi-frequency processing also enable higher duty cycles than are possible with conventional pulse compression radars.Type: ApplicationFiled: May 14, 2010Publication date: November 17, 2011Applicant: Massachusetts Institute of TechnologyInventor: William S. Song
-
Patent number: 8044846Abstract: A method for displaying information relating to the range and Doppler of a remote target includes transmitting electromagnetic energy toward the target, and receiving reflected signals defining a two-dimensional (range-Doppler) radar image. The reflected signals are matched-filtered, which tends to blur the image. The image is deblurred while the features of thermal noise enhancement and irregularity of the deconvolved output are constrained to produce a single point deblurring output.Type: GrantFiled: November 29, 2007Date of Patent: October 25, 2011Assignee: Lockheed Martin CorporationInventors: Harry Urkowitz, Jeff D. Cammerata
-
Patent number: 8035551Abstract: A pulsed compression noise correlation radar uses noise modulation and pulse compression technology to scramble recognizable transmit signal characteristics and reduce transmit energy. The pulsed noise correlation radar advantageously uses pulse compression technology, a pulsed linear frequency modulated noise correlation mixer, and a new and innovative noise fused waveform to automatically correlate the pulsed linear frequency modulated (LFM) noise waveform with the received signal. The pulsed noise correlation radar apparatus and system now make it possible to effectively reduce transmitting power, preserve high band widths through oversampling in the receiver, and achieve multi-channel array frequency diversity. A secure pulsed compression noise correlation radar system and methods for undetected target detection with pulsed noise correlation radar and a pulsed LFM fused noise waveform are also provided.Type: GrantFiled: December 2, 2009Date of Patent: October 11, 2011Assignee: The United States of America as represented by the Secretary of the ArmyInventor: Mark A. Govoni
-
Patent number: 8026840Abstract: A biometric radar system and method for identifying a person's positional state are generally described herein. The biometric radar may phase adjust a sequence of radar return signals received through two or more receive antennas to remove at least some phase noise due to the stationary objects. The biometric radar may also segment the phase adjusted radar return signals into a plurality of multi-resolutional Doppler components. Each multi-resolutional Doppler component may be associated with one of a plurality of biometric features. The biometric radar system may also combine and weight the segmented radar returns for each biometric feature to generate weighted classifications for a feature extraction process.Type: GrantFiled: October 28, 2005Date of Patent: September 27, 2011Assignee: Raytheon CompanyInventors: Wesley H. Dwelly, Vinh N. Adams
-
Patent number: 8022863Abstract: A method includes correlating a plurality of samples of a waveform into a correlation domain to provide a mainlobe defined by a first subset of a plurality of pulse-compressed samples and a plurality of sidelobes defined by a second subset of the plurality of pulse-compressed samples. A weight is calculated for at least one of the pulse-compressed samples, and one of a plurality of SVA filter values is selected to apply to the at least one pulse-compressed sample based on the calculated weight of the at least one pulse-compressed sample. The SVA filter values include one, one minus a quotient of one-half divided by the calculated weight of the at least one sample, and a scale factor having a value greater than zero and less than or equal to one. The selected SVA filter values are applied to the at least one pulse-compressed sample.Type: GrantFiled: November 6, 2009Date of Patent: September 20, 2011Assignee: Lockheed Martin CorporationInventor: Rao Nuthalapati
-
Patent number: 8018374Abstract: A radar having a high time and high spatial resolution and being capable of performing volume scanning with an inexpensive and simple structure, while enabling reduction is size and weight. A radar (50) is provided with an antenna unit (51) including a radio wave lens antenna device, which has a spherical transmission radio wave lens (2), a spherical reception radio wave lens (3), a primary radiator (4) arranged at a focal point of the radio wave lens (2), and a primary radiator (5) arranged at a focal point of the radio wave lens (3). The primary radiators (4, 5) pivot in an elevation direction about an axis connecting center points of the radio wave lenses (2, 3) and pivot in an azimuthal direction about an axis orthogonal to the axis connecting the center points of the radio wave lenses (2, 3).Type: GrantFiled: July 31, 2007Date of Patent: September 13, 2011Assignee: Sumitomo Electric Industries, Ltd.Inventors: Katsuyuki Imai, Tomoo Ushio
-
Patent number: 7995190Abstract: Disclosed is a method for measuring a distance between a distance sensor (5), which is carried on a vehicle, and an object (2). The method includes emitting electromagnetic impulse signals (6) and receiving signals (7), which are reflected by the object. Subsequently the signal propagation time is determined. Pulses (10) received after having been reflected by the object (2) are separated and added together, after which the mean value is formed, and the received pulses are superimposed with a modulation signal (18). Also disclosed is a device suited for carrying out the method.Type: GrantFiled: July 22, 2004Date of Patent: August 9, 2011Assignee: Conti Temic Microelectronic, GmbHInventors: Michael Beuschel, Gerhard Zörkler
-
Patent number: 7944390Abstract: The transmission antenna (10) of the high-resolution synthetic aperture side view radar system comprises a plurality of sub-apertures (7, 8, 9). In each individual transmission pulse, said sub-apertures are controlled in such a manner that a spatiotemporally non-separable multi-dimensional high-frequency waveform is produced as an transmission signal pulse form, such that the modulation of each transmission pulse has a spatiotemporal diversity which is not described by the product having functions which are independent from each other and which are dependent on, respectively, only one spatial dimension. The thus produced transmission pulse form is combined to a capture-sided spatial filtering by means of digital beamforming adapted to said transmission signal pulse form.Type: GrantFiled: May 4, 2007Date of Patent: May 17, 2011Assignee: Deutsches Zentrum für Luft- und Raumfahrt e.V.Inventors: Gerhard Krieger, Nicolas Gebert, Alberto Moreira
-
Publication number: 20110102244Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.Type: ApplicationFiled: August 29, 2008Publication date: May 5, 2011Applicant: Raymarine UK LimitedInventors: Richard Jales, Adrew Lawrence, Matthieu Maindrou