Radar Ew (electronic Warfare) Patents (Class 342/13)
  • Patent number: 7109909
    Abstract: A system in accordance with the present invention determines signal attenuation for an electronic support measure receiver. The system includes a detection module for receiving electromagnetic signals from a surrounding environment and a processing module for chronologically segregating the electromagnetic signals into a plurality of dwells. The processing module controls the processing of the plurality of dwells. The processing module determines an analysis dwell from the plurality of dwells. The processing module computes a coarse attenuation for the analysis dwell. The processing module further computes a fine attenuation from the coarse attenuation and an offset table value.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: September 19, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 7082172
    Abstract: A digital signal gating method and apparatus of a preprocessor in a detection system wherein the detection system includes a central processing unit, a main memory and a receiver, whereby the apparatus and method bifurcate received digital signals, delays them along a first path while subjecting the digital signals along a second path to detection, delay, and thresholding and thereby generates a gating signal from the second path so that digital signals of the first path, including pre-threshold amplitudes, may be recorded.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: July 25, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Richard Charles Pringle, Joanna S. Quan
  • Patent number: 7075482
    Abstract: A Direction Finding DF Method and System Using Transmission Signature Differentiation is disclosed. Also disclosed is system that is able identify which signal is coming from which transmiitter. Futhermore, the syatem can take each respective transmitter's Line-of-Bearing (LOB) data and process them separately. The system is further capable of being fully automated in order to reduce to processing time and eliminate the necessity of human intervention. In an alternative embodiment of the present invention the system can feasibly be remotely controlled by a network such that the information can be collected from other from similar systems. In this way, a far more efficient DF System can be achieved in which multiple transmitters' positions can be determined one quickly from a centralized command facility.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 11, 2006
    Assignee: Network Fab Corporation
    Inventor: Lars Karlsson
  • Patent number: 7068209
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. In one embodiment, the scan strategy may be computed to operate in a manner cognizant of on-board active jammers, optimizing the jammer band and intercept band performance. The additional inputs for this task are a jammer band assignment table, and a blanking assignment table. The capability to generate “dry” (no jam) and “wet” (jamming) scan strategies for an emitter set is provided, with separate intercept rules for each.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 27, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 7053812
    Abstract: In a countermeasure system for an aircraft, a countermeasure module includes a chamber. Countermeasure equipment is housed in the chamber of the countermeasure module. An attachment mechanism allows for releasable attachment of the countermeasure module to an aircraft. A flight mechanism is provided on the countermeasure module for returning the countermeasure module to a location, such that when an aircraft to which the countermeasure module is attached reaches a desired airborne position, the attachment mechanism releases the countermeasure module from the aircraft, and the flight mechanism on the released countermeasure module returns the countermeasure module to the location.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: May 30, 2006
    Assignee: Textron Systems Corporation
    Inventor: Daniel W. Trainor
  • Patent number: 7038611
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. A rule-based system is provided for determining how emitters should be detected by a detection system. Rules may be used to prioritize certain emitters with respect to other emitters. The rules may also specify parameters for emitter modes, such as probability of intercept, turn-on range, detect-by range, tolerance, tolerance direction, scan periods, and other parameters. The rules may be used to compute the revisit time for the receiver. Multiple sets of rules may be created and a scan strategy may be computed based upon the selected rule set.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 2, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 7034738
    Abstract: A system and method for classifying radar emitters includes: (a) receiving a plurality of signals from the radar emitters; (b) generating data components for each signal received from the radar emitters; (c) forming multi-dimensional samples using the generated data components; and (d) sorting the multi-dimensional samples into a plurality of data clusters, based on their respective proximity to the data clusters, each data cluster representing a classification of a radar emitter.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: April 25, 2006
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Paul C. Wang, Charles R. Ward
  • Patent number: 7019681
    Abstract: The invention is a system and method for verifying the radar signature of a pair of aircraft. The system includes a radar transmitter and receivers located in the leading and trailing edge of the wing at the wing tip of the aircraft such that when flying the aircraft in formation with one aircraft behind the other aircraft, each aircraft can illuminate the other and verify the radar signature of the other.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: March 28, 2006
    Assignee: Lockheed Martin Corporation
    Inventors: Larry F. Pellett, Scott Kennedy
  • Patent number: 7002509
    Abstract: A Method and System for Emitter Identification Using Transmission Signatures is disclosed. Also disclosed is a system that is able to take in the undemodulated IF of the receiver and perform identification algorithms on that data. The system is further able to perform these functions in real-time and present the operator with an intelligent evaluation as to the identification of an emitter, or the presence of a new emitter. Still further, the system is capable of being fully automated to reduce the processing time to react to the results of the emitter identification. Furthermore, the present invention can feasibly remotely control the emitter identification system over a network and collect the same information from similar systems. In this way, a far more efficient System can be achieved wherein emitters can be determined, tracked, or monitored more quickly from a centralized command facility.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: February 21, 2006
    Assignee: Networkfab Corporation
    Inventor: Lars Karlsson
  • Patent number: 6989780
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. However, it is possible that the scan strategy is not realizable because of capacity constraints within the receiver system itself. One embodiment of the invention provides a method for detecting and correcting such a situation.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 24, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6985102
    Abstract: A method of deinterleaving parameter descriptor word (PDW) data includes parallel scoring of pulses in an a posteriori search for associating of pulses based on proximity within a multi-parameter problem space. The a posteriori search includes scoring an oldest pulse against all newer pulses, and then scoring a next oldest pulse against all newer pulses. The associating utilizes at least one of a plurality of parallel computation modes, parallel tasks to operate on separate data fields, and multi-threading or multitasking that can implement one of parallel and configuration-overlaid operation, synchronized by events.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: January 10, 2006
    Assignee: Lockheed Martin Corporation
    Inventors: William T. Horn, Steven F. Hurt
  • Patent number: 6980151
    Abstract: A bi-static continuous wave radar system and related methods for detecting incoming threats from ballistic projectiles includes a remote source of RF illumination, and a local receiver installed in one or more target aircraft. A first receiving channel acquires direct path illumination from the source and provides a reference signal, and a second receiving channel acquires a scatter signal reflected by a projectile. A processor coupled to each receiver corrects scatter signal Doppler offset induced by relative source motion, isolates narrowband Doppler signals to derive signatures characteristic of the projectile, and by executing appropriate algorithms, compares the derived signatures to modeled signatures stored in memory. If the comparison yields a substantial similarity, the processor outputs a warning signal sufficient to initiate defensive countermeasures.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: December 27, 2005
    Assignee: General Dynamics Advanced Information Systems, Inc.
    Inventor: Paul L. Mohan
  • Patent number: 6975264
    Abstract: A signal separating system 1 comprises a frequency conversion element 3, a dynamic filter component 4 with associated coherent stop slot and non-coherent passband, optionally a signal wave enhancer 7 with bypass, and a frequency reconversion element 8. In operation of the system, mixed incoming signals 12 (CW or pulse signals) having known interference and unknown emission components can be effectively separated, permitting a virtually instantaneous separation of the known interference from the unknown emissions and permitting an unobscured monitoring and/or characterization of the extracted unknown emissions 21, if desired. The arrangement bears definite advantage over known arrangements and retains utility for various frequency/agile or multiple or non-agile unknown signal applications.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: December 13, 2005
    Assignee: Astrium Limited
    Inventor: Victor Nendick
  • Patent number: 6972708
    Abstract: A global position system radio receiver achieved through use of an electronic warfare receiver, and particularly one of the electronic warfare receiver output frequency channels, as a front-end signal processor for the global position system receiver. Electronic warfare receiver channel selection for such usage is described and the attenuating effect of electronic warfare receiver channel center frequency and global position system signal frequency differences are considered. A favorable comparison of present invention and conventional global position system receiver-generated results in processing a global position system signal are included along with control of a sampling frequency characteristic within the electronic warfare receiver in order to align global position system signal frequency and electronic warfare receiver channel location to an electable better degree.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: December 6, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: James B. Y. Tsui, David M. Lin, Stephen L. Hary
  • Patent number: 6967615
    Abstract: An electronic warfare apparatus for determining the location of for example a ground based source of electromagnetic radiation from a platform such as an aircraft. Location is determined using angle of arrival based vector determinations provided by signal differences detected in the ground based signals arriving at platform antennas. Elimination of angle of arrival errors arising from imprecise knowledge of platform electronic warfare antenna characteristics is a focal point of the invention and is accomplished through precision use of global position system information received via the same electronic warfare antennas. Accurate determination of electronic warfare antenna characteristics prior to consideration of the large distance multiplication factors imposed by aircraft to distant signal source geometry enables accurate distant signal source location using the invention.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 22, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: David M. Lin, James B. Y. Tsui
  • Patent number: 6967614
    Abstract: A projectile launch detection system utilizes a continuous wave radio frequency signal (CW/RF) to confirm muzzle exit. The projectile launch detection system can be used in smoothbore, fin-stabilized, non-air breathing projectiles. The gun tube appears as a waveguide to the projectile launch detection system during projectile launch. The projectile launch detection system transmits a CW/RF signal down the gun tube during launch of the projectile. A portion of the CW/RF signal is reflected back by an impedance mismatch at the boundary between the muzzle of the gun tube and free space. Upon exit by the projectile from the gun tube, an exit signature is detected that is defined by the impedance of the gun tube and by a ratio of the diameter of the gun tube to the frequency of the CW/RF signal. The projectile launch detection system processes the exit signature to detect a muzzle launch of the projectile from a specific gun tube.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: November 22, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ronald G. Wardell, John I. Nickel, Dennis W. Ward
  • Patent number: 6952179
    Abstract: A dual mode radar seeker comprising a wide-band passive anti-radar antenna system (3) at the rear of a radome (1), operating at relatively low radar frequencies in an amplitude comparison tracking mode, and a high-frequency (W-band) active amplitude-comparison antenna system (5) in the nose of the radome (1) and having a common boresight with the anti-radar system. The active system employs coarse phase shift steering (31, 41) of the antenna ‘beam’ for the transmit and, optionally, also, the receive ‘beam’. The high frequency and the use of phase shift steering both help to keep down the size of the active radar thus enabling it (5, 7, 9) to be positioned far forward in the nose of the radome (1) so as not to obscure the field of the anti-radar system (3).
    Type: Grant
    Filed: January 26, 1988
    Date of Patent: October 4, 2005
    Assignee: BAE Systems Electronics Limited
    Inventor: Michael Arthur Jones
  • Patent number: 6950053
    Abstract: A radar and laser detection device for mounting upon a motorcycle is described which provides increased concealment, security, safety, ease of use and functionality specific to the needs of motorcycle drivers. A method of semi-permanently mounting the device is described which requires no permanent alterations to the vehicle while providing improved visibility of alarm signals, a simple display technique, and controls which do not require the operator to remove his/her hands from the vehicle handlebars.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: September 27, 2005
    Inventor: Daniel John Peterson
  • Patent number: 6943723
    Abstract: The present invention relates generally to a combined radar and laser detector that enables a driver to drive safely and, more particularly, to a combined radar and laser detector, in which a signal receiving module for receiving various kinds of signals including traffic information and an information display module for informing a driver of the signals are separated, the signal receiving module and information display module are constructed to communicate with each other using wireless communication, and the information display module is integrated with a Global Positioning System (GPS) receiver detecting GPS data related to the location and speed of a moving vehicle, so that the combined radar and laser detector can not only provide accurate traffic information to the driver, but also allow the installation thereof to be easy, the miniaturization thereof to be achieved, and power consumption to be minimized.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: September 13, 2005
    Assignee: Channel Technology, Inc.
    Inventors: Dong-Ryeol Kim, Sun-Woung Jung
  • Patent number: 6937181
    Abstract: The invention relates to a device for exhausting hot gases with a reduced signature, for instance exhaust gases from an exhaust (7, 8) of a tank. The device is of the type comprising a means for mixing (9, 33) of the hot gases with fresh air from the exterior of the tank. To prevent the exhaust from, for instance, reflecting radar radiation and emit IR radiation, the device is provided with a protecting means (10, 34) which is positioned outside at least parts of said means. The device may comprise a space (12, 32) which accommodates preferably the entire means for mixing. The space is defined on the one hand by a shell (11, 31) towards the other spaces of the tank and, on the other hand, by the protecting means towards the exterior. The protecting means has openings (23, 25) for passing preferably a gas mixture from the means to the exterior and fresh air from the exterior to said means.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: August 30, 2005
    Assignee: Forsvarets Materielverk
    Inventor: Urban Mathiasson
  • Patent number: 6933877
    Abstract: The Multiple-Antenna Jamming System (MAJS) is useful for missile-borne jamming of active protection system radars that operate in close proximity to the frequency band of the missile's radio frequency seeker. The MAJS utilizes multiple receiving and transmitting antennas to reduce shadowing effects due to the transmissive radome. It also channelizes the jamming signals into in-seeker-band and out-of-seeker band signals to synchronize the transmission of jamming signals with the emit-listen pattern of the missile seeker and to eliminate the problem of de-sensitizing the RF seeker from the jammer energy. The in-seeker-band jamming signals are transmitted only concurrently with the missile seeker emissions and any signals emanating from an enemy radar are received only during the listen mode of the missile seeker.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: August 23, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ralph H. Halladay, Michael R. Christian, Donald E. Lovelace
  • Patent number: 6929214
    Abstract: A conformal air defense (CAD) system is provided which is adapted to be attached externally to an aircraft as an appendage. The CAD system includes a conformal mounting adapter having an aircraft-to-adapter interface and upper adapter side. A mounting structure is provided which has an adapter interface and a mounting side, wherein the adapter interface is attached to the upper adapter side. A missile countermeasures system is mounted on the mounting side of the mounting structure. And a cover substantially encloses the countermeasures system, wherein the cover is removably fastened to the mounting side of the mounting structure.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Northrop Grumman Corporation
    Inventors: James E. Ackleson, Michael A. Guy, Robert A. Hale, Jeffrey A. Plebanski
  • Patent number: 6927724
    Abstract: Adaptive modification of surface properties such as color, temperature and reflective properties by adjustably varying the temperature of a surface perceived by an observer, utilizing Peltier devices at the surface for temperature adjustment.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: August 9, 2005
    Inventor: Alvin A. Snaper
  • Patent number: 6917325
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. In one embodiment of the invention, a set of models is used to compute antenna characteristics as a function of frequency, gain, power, beam width, scan and polarization. Data such as actual antenna gain vs azimuth for several polarizations may also be used, thereby reducing the amount of data needed for the antenna modeling purposes.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: July 12, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6911937
    Abstract: A digital polarimeteric system employs a signal time stretching technique and digital signal processing of the time-stretched signal to accurately measure the polarization of a received RF signal with commercially available digital hardware. A superheterodyne receiver down converts received RF signal components to IF, and analog-to-digital converters sample the signal components at much lower sampling rates than would normally be required to accurately measure the signal polarization. Each signal sample is “time stretched” by storing each sample in M locations in a memory, such that N samples occupy M×N memory locations. A digital signal processor applies incremental phase shifts to the digital samples until a phase-shifted combination of the digital samples yields a minimum null output. The phase shifts producing the minimum null identify the polarization of the received signal.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: June 28, 2005
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Mitchell J. Sparrow, Joseph Cikalo
  • Patent number: 6903674
    Abstract: The invention concerns a procedure for emission of jamming signals for jamming of laser-based measuring instruments as a result of which systems for distance or speed measurement of targets using laser reflection receive further signals (jamming signals) in addition to the laser signals emitted by the measuring system itself and then reflected at the target. The invention is applicable to affect the distance or speed measurement of targets by means of laser-based measuring instruments, where the measurement procedure of the respective laser-based measuring system is jammed or even prevented.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: June 7, 2005
    Inventors: Holger Hoesel, Sven Diestel
  • Patent number: 6894634
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. Data is provided that specifies one or more emitters or emitter types desired for detection. An algorithm evaluates the cost, in terms of receiver resources, of using one or more different detecting methods to create a receiver scan strategy for the desired emitters or emitter types.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 17, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6894635
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. When revisit times are computed for each receiver detecting method for an emitter, these revisit times may not be monotonically increasing or decreasing as expected due to discontinuities in the antenna model. A system and method are provided for detection and correction of such discontinuities.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 17, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6885333
    Abstract: An electronic warfare (EW) cross-eye system comprises two antennas separated a distance, d, a part, where d is much greater than the wavelength, ?, of a tracking signal emitted by a fire control radar (i.e., d>>?). The EW cross-eye system further comprises a receive polarimeter for measuring the tracking signal and a second polarimeter for synthesizing the measured tracking signal to produce, for transmission, a jamming signal comprising a pair of inverted amplitude signals that are 180 degrees out of phase with each other.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: April 26, 2005
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Mitchell J. Sparrow, Joseph Cikalo
  • Patent number: 6876321
    Abstract: A pulse descriptor word (PDW) collector, including an extractor coupled to a computer, for passively collecting radio frequency (RF) data received by an electronic surveillance system (ESS). It is integrated into the ESS after a receiver (which converts RF pulse data to digitized PDWs) and parrallel to a presorter. Using two RAM circuits, the extractor forms a read/write loop to ensure that no PDWs are lost in the collection process. The extractor simultaneously writes onto one RAM while reading from the other RAM to the computer. The read/write functions of the RAMs are switched at predetermined interrupts. Collected data is stored on the computer hard drive. The computer controls the entire collection process by using data management software, graphical user interface software and sequencing software. Stored data is available on demand for analysis and is used to monitor, assess, and update the threat identification capabilities of the particular ES system.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: April 5, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Barry P. Slutzky, Andrew W. Kluender
  • Patent number: 6873284
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. Typically, the minimum dwell duration of a dwell is the maximum pulse repetition interval (PRI) of the emitters that the dwell is intended to cover. However, it may be possible to reduce the minimum dwell duration when the overall probability of intercept of a particular dwell may be met with a shorter dwell duration. A system and method are provided to detect this condition and reduce the dwell duration of the dwell if appropriate.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: March 29, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6867727
    Abstract: A system-of-systems avionics architecture that is compatible with futuristic multi-function multi-platform sensor applications. The method and device of the invention is based on localized “adaptive” waveform and spectrum allocation for ultra-wideband radio frequency and microwave signals. The invention includes a plurality of system platforms with each platform comprising a common radio frequency front end for receiving ultra-wideband signals, a common radio frequency back end for transmitting ultra-wideband signals and a plurality of sensors for exchanging data between platforms.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 15, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Atindra Mitra
  • Patent number: 6867728
    Abstract: Signals-of-interest are identified by distinguishing such signals from signals constituting environmental or internal receiver noise. A received signal is rapidly sampled in order to set a dynamic, system threshold. Signals above the threshold constitute signals-of-interest.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 15, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Hanna, James A. Johnson
  • Patent number: 6864825
    Abstract: A method of creating electromagnetic interference includes creating an electromagnetic (EM) field of a frequency at distant target by transmitting at least two electromagnetic beams. At the target, the beams may converge and interfere creating an interference difference frequency. In another method, the beams may be combined and the combined beams create an interference over a distance. An interference difference frequency is selected so that a desired electromagnetic frequency is established at the target creating interference. The interference difference frequency is established by the difference in the two electromagnetic beams. As each converges or is combined, the resultant frequency corresponds to the difference between each the frequencies of each beam. An apparatus for creating electromagnetic radiation includes at least two transmitters.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: March 8, 2005
    Assignee: The Boeing Company
    Inventor: Sandor Holly
  • Patent number: 6859160
    Abstract: A system estimates the utilization of an electromagnetic signal receiver. The system includes a detection module and a processing module. The detection module receives electromagnetic signals from a surrounding environment. The electromagnetic signals are chronologically segregated into a plurality of dwells each with an elapsed time. The processing module controls the scanning of the surrounding environment. The processing module receives data about the signals from the detection module. The processing module computes a plurality of utilizations by dividing each individual elapsed time by a predetermined sample interval. The processing module further determines a total utilization by adding the plurality of utilizations.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 22, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6859161
    Abstract: A system time thresholds dwells executed by an electromagnetic signal receiver. The system includes a detection module and a processing module. The detection module receives electromagnetic signals from a surrounding environment. The electromagnetic signals are chronologically segregated into a plurality of dwells each with a dwell time. The processing module controls the scanning of the surrounding environment. The processing module sets dwell parameters and determines whether to skip the execution of particular dwells. The processing module receives data about the signals from the detection module.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 22, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey K. Bricker, Anthony J. Gounalis
  • Patent number: 6844841
    Abstract: A system and method for optimizing transmission of radio frequency communication link signals in a radio frequency communications network comprises determining a statistical difference between a mean radio frequency communication link propagation loss value based on a set of measured radio frequency communication link propagation loss values, and a radio frequency communication link propagation loss model value; calculating a signal to noise ratio of a radio frequency communication link signal; computing a confidence interval based on a measured signal to noise threshold ratio of a measured radio frequency communication link signal, and a standard deviation associated with the calculated signal to noise ratio; assigning a probability value based on the confidence interval; and generating a radio frequency communication link packet completion rate performance level based on the probability value. The transmission of radio frequency communication link signals occurs in either jamming or no jamming situations.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: January 18, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Michael Masciulli
  • Patent number: 6842137
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. If a dwells assigned frequency bandwidth is small and not a multiple of the minimum frequency spacing between dwells (tuning step), then coverage gaps can be inadvertently introduced between adjacent dwells. A system and method are provided for detecting this condition and generating dwells without accidental loss of frequency coverage for any combination of bandwidth and step size.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 11, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Publication number: 20040257262
    Abstract: The invention concerns a procedure for emission of jamming signals for jamming of laser-based measuring instruments as a result of which systems for distance or speed measurement of targets using laser reflection receive further signals (jamming signals) in addition to the laser signals emitted by the measuring system itself and then reflected at the target. The invention is applicable to affect the distance or speed measurement of targets by means of laser-based measuring instruments, where the measurement procedure of the respective laser-based measuring system is jammed or even prevented.
    Type: Application
    Filed: May 8, 2000
    Publication date: December 23, 2004
    Inventors: Holger Hoesel, Sven Diestel
  • Patent number: 6825791
    Abstract: A deceptive signature broadcast system for an aircraft or other emissions generating asset for generating an emissions pattern for masking the normal emissions signature of the aircraft or asset, and protecting it from emissions tracking intercept vehicles such as Infrared tracking missiles; the system includes at least two beacons mounted in a spaced apart arrangement orthogonal to the desired zone of protection, and bracketing the asset, such as on opposite wingtips of the aircraft for fore and aft protection; the beacon set is modulated from one end to the other with a sweeping pattern of emission intensity, deceptively indicating to the intercepting vehicle a lateral component of motion of the aircraft away from its true relative position within the intercept vehicle's field of view, thereby inducing the intercept vehicle to adopt an erroneous and exaggerated lead angle and course correction that results in a missed intercept trajectory.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: November 30, 2004
    Assignee: Sanders Design International, Inc.
    Inventors: Royden C. Sanders, Albin Hastbacka
  • Patent number: 6825792
    Abstract: The present invention is intended to provide a system for determining the precise launch point of ballistic missiles, and may additionally provide the capability of neutralizing said threats. The invention provides a mobile object information means configured to classify electromagnetic frequency activity within satellite and land based commercial and private broadcast and telecommunications spectra in a given geographical area, said means also configured to classify associated area weather normality and anomalies. The system includes a software algorithm configured to extract from said database, a missile launch in a given geographical zone by “tagging” an electromagnetic wave disturbance caused by the high intensity initial fuel burn of said missile launch.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: November 30, 2004
    Inventor: Howard Letovsky
  • Patent number: 6806823
    Abstract: Applicants' Passive Radar Detector for Dualizing Missile Seeker Capability incorporates passive RF detectors into a standard active MMW seeker missile with a minimum requirement for hardware modifications. Anti-radiation homing (ARH) antennas and down conversion elements are added to the missile and coupled to existing signal-processing hardware. The added antennas intercept the air defense radar emission signals and the conversion elements convert the intercepted signals to the intermediate frequency (IF) usable by the MMW radar. The IF can then be processed by signal processor that already exists as a part of the MMW seeker.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: October 19, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Brian J. Smith, Janice C. Rock
  • Patent number: 6801152
    Abstract: Emitter target range and heading are estimated from bearing measurements enhancing bearings-only estimator convergence to a target track, and permitting optimization of an observer position relative to the target at the end of the total bearing measurement period. One or more estimates of the target range, speed and heading made from bearing measurements before an observer maneuver are used to determine the most appropriate observer maneuver giving complete bearings-only target-motion-analysis observability. A set of parameters characterizing a set of potential emitter signal sources is generated based on measured emitter characteristics. A most probable set of emitter platforms is identified and the emitter operating mode and corresponding platform set are associated with a kinematic regime set. A specific speed or discrete set of speeds best adapted to a set of all possible platform missions, emitter speed as a continuous function of emitter range, and emitter range are all determined.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: October 5, 2004
    Assignee: Northrop Grumman Corporation
    Inventor: Conrad Rose
  • Publication number: 20040183717
    Abstract: cosmic background radiation from the big bang is spread across the entire sky.when a stealth aircraft flies through it, it blocks out the radiation. this makes a moving hole in the radiation.with the proper-receiving equipment, it is posible to detect, track, and target an aircraft.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventor: Joseph Gerard Conley
  • Patent number: 6788243
    Abstract: The present invention relates to a method for identifying modern radar systems. A finite state automaton comprising a finite set of states and a set of transitions from state to state that occur in dependence upon an input signal is provided for modeling the radar system. The finite state automaton produces a sequence of output symbols from an output alphabet in dependence upon the state transitions such that the sequence of output symbols corresponds to a received electromagnetic signal emitted from the radar system. The finite state automaton is then transformed into a hidden Markov model such that a sequence of observation symbols produced from an observation alphabet by the hidden Markov model is equal to the sequence of output symbols. The method provides powerful tools for solving electronic warfare problems such the classification problem, the decoding problem, the prediction problem and the training problem.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: September 7, 2004
    Assignee: Minister of National Defence of Her Majestry's Canadian Government The Secretary of State for Defence
    Inventor: Pierre Lavoie
  • Patent number: 6779752
    Abstract: A projectile guidance system without gyros in which the projectile has an orthogonal body cordinate system. The projectile has a triax of accelerometers providing x, y and z acceleration data measured along the x, y and z axes respectively. A GPS antenna and receiver means provides onboard GPS position and velocity data in earth referenced navigational coordinates. A computer and program means stores and accesses time indexed GPS position and GPS velocity data and transforms x, y and z axis acceleration data from body to navigation coordinates. The program means is responsive to corresponding time indexed acceleration data and to GPS velocity and position data for calculating and outputing an estimated-projectile roll, pitch and yaw angle via optimal smoothing techniques with respect to local level for each time index iteration of present position to a flight control system for guiding the projectile to a predetermined location.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: August 24, 2004
    Assignee: Northrop Grumman Corporation
    Inventor: Joseph A. Ratkovic
  • Patent number: 6771205
    Abstract: A combined defense and navigational system on a naval vessel is disclosed. The disclosed system includes a track-while-scan pulse radar which is controlled to provide either navigational information or tracking information on selected targets. Additionally, the disclosed system includes a plurality of guided missiles, each of which may be vertically launched and directed toward intercept of a selected target either by commands from the track-while-scan radar or from an active guidance system in each such missile.
    Type: Grant
    Filed: August 1, 1979
    Date of Patent: August 3, 2004
    Assignee: Raytheon Company
    Inventors: David K. Barton, Benjamin L. Young
  • Patent number: 6768444
    Abstract: The invention relates to a method of interference suppression in a radar system (10) and also to a system (10) operating according to the method. The system (10) incorporates a first antenna (40) and associated electronic circuits for emitting interrogating radar radiation towards a remote scene (S). Moreover, the system (10) also incorporates a second antenna (45) and associated electronic circuits for receiving interrogating radiation reflected from the scene (S) and generating correponding first and second processed signals. The first and second processed signals correspond to a broader main beam response of the antenna (45) and to a narrower main beam response thereof respectively. By mutually comparing the first and second processed signals, the system (10) is operable to identify those second processed signals affected by interference from the scene (S).
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: July 27, 2004
    Assignee: Alenia Marconi Systems Limited
    Inventor: Peter Langsford
  • Patent number: 6765522
    Abstract: A system for determining the scan type of a signal, such as a radar signal, includes a scan detector, a transformer (e.g., an FFT algorithm), a correlator, and a decision block. The signal is received and processed by the scan detector. The scan detector provides an envelope signal, representing the scan type of the received signal. The envelope signal is transformed, typically from a time domain signal to a frequency domain signal, by any of several processes including a Fourier transform, a Laplace transform, an FFT, or a DFT. The transformed envelope signal is compared to several scan data sets by the correlator. Each scan data set represents a particular scan type. If the decision block determines that the comparison between the transformed envelope signal and a scan data set meets (or exceeds) a degree of similarity, the scan type of the received signal is determined to be the scan type of that scan data set.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: July 20, 2004
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas H. Greer
  • Patent number: 6765498
    Abstract: An embedded digitization system which enables a military platform to receive, transmit and process a variety of types of information for a variety of purposes. The system includes a mission processing capability, a digital message communications capability, a time and position location and navigation capability, a weapons delivery system aim and shoot capability, a sensor input processing capability, a user interface capability, and an input/output processing capability. The system exchanges information through digital message communications with other systems in a theater of operation. Information exchanged and processed by the system includes command and control information, situational information, intelligence information, mission information and host platform information.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: July 20, 2004
    Assignee: Honeywell International Inc.
    Inventor: Anthony Edward Sabatino