With Correlation Patents (Class 342/145)
  • Patent number: 10473756
    Abstract: A sensor includes a transmit antenna, a receive antenna, circuitry, and a memory. The transmit antenna includes N transmit antenna elements each transmitting a transmit signal. The receive antenna includes M receive antenna elements each receiving N receive signals including reflection signals reflected by an organism. The circuitry extracts a second matrix corresponding to a predetermined frequency range from an N×M first matrix representing propagation characteristics between each transmit antenna element and each receive antenna element calculated from the receive signals. The circuitry estimates the position of the organism by using the second matrix, and calculates a radar cross-section value with respect to the organism, based on the estimated position and the positions of the transmit antenna and the receive antenna.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 12, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi Nakayama, Shoichi Iizuka, Naoki Honma, Dai Sasakawa
  • Patent number: 10185028
    Abstract: Disclosed herein are a number of example embodiments that employ controllable delays between successive ladar pulses in order to discriminate between “own” ladar pulse reflections and “interfering” ladar pulses reflections by a receiver. Example embodiments include designs where a sparse delay sum circuit is used at the receiver and where a funnel filter is used at the receiver. Also, disclosed are techniques for selecting codes to use for the controllable delays as well as techniques for identifying and tracking interfering ladar pulses and their corresponding delay codes. The use of a ladar system with pulse deconfliction is also disclosed as part of an optical data communication system.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: January 22, 2019
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt
  • Patent number: 10001554
    Abstract: Provided is a radar signal processing method and apparatus, the method including transmitting a plurality of transmission radar signals through a transmission antenna, receiving a reception radar signal reflected from a target in response to the transmitting, and extracting location information on the target based on a result obtained by applying an auto-correlation to the reception radar signal.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: June 19, 2018
    Assignee: DAEGU GYEONGBUK INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Dae Gun Oh, Jong Hun Lee
  • Patent number: 9791552
    Abstract: The present invention is directed to an antenna system and a method that is configured to compute calibration element voltage gain patterns as functions of a digital antenna model and a plurality of complex beamformer voltages, determine calibration through path transfer functions from the plurality of complex voltages, and remove the calibration element voltage gain patterns from the calibration through path transfer functions to determine a beamforming network transfer function. The beamforming network transfer function and the far-field element voltage gain patterns are combined to obtain a system transfer function used to revise a calibration table.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: October 17, 2017
    Assignee: SRC, INC.
    Inventor: Harvey K. Schuman
  • Patent number: 9035824
    Abstract: A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 19, 2015
    Assignee: Thales
    Inventors: Stéphane Kemkemian, Jean-Paul Artis, Jean-Michel Quellec
  • Patent number: 9019152
    Abstract: A standard wafer is provided including a substrate; a first layer of semiconductor material formed on the substrate; a bar formed over the first layer of semiconductor material with an interlayer interposed therebetween; and a first sidewall spacer and a second sidewall spacer formed on the opposite sides of the bar respectively, in which the bar and the first layer of semiconductor material are formed of a same semiconductor material, and the interlayer interposed between the first layer of semiconductor material and the bar is formed of a first oxide, and the first sidewall spacer and the second sidewall spacer are formed of a second oxide. A corresponding fabrication method of the standard wafer is also provided.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: April 28, 2015
    Assignee: Semiconductor Manufacturing International Corporation (Shanghai)
    Inventors: BoXiu Cai, YanLei Zu
  • Patent number: 8963766
    Abstract: According to one embodiment, a target tracking apparatus calculates N-dimensional predicted values from a respective stored (N+1)-dimensional tracks for each of the targets, determines whether or not the N-dimensional predicted value for each of the targets is correlated with the received N-dimensional angle observed value for the target, if the N-dimensional predicted value is not correlated, generates a new (N+1)-dimensional track for the target based on the N-dimensional track corresponding to the N-dimensional angle observed value and if the N-dimensional predicted value is correlated, updates and stores the (N+1)-dimensional track using the N-dimensional angle observed value.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Furukawa
  • Publication number: 20150048969
    Abstract: The invention relates to a method for operating a distance sensor (10). In the method, a transmission signal (S1) is radiated as transmission radiation (S2), reflected as reflection radiation (S3) by an object (16), the distance (D) of which is to be measured, and received as a reflection signal (S4). The reflection signal (S4) present at a receiver input (28) and a reference signal likewise occurring at the receiver input (28) are controlled to a specified ratio, the distance (D) being determined during the adjusting process. The invention further relates to devices for performing the method. The method is characterized in that microwaves are used as the transmission radiation (S2) and a cross-talk signal (S5, S6) from the transmission signal (S1) directly to the receiver input (28) with suppressed radiation of the transmission signal (S1) is used as the reference signal.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 19, 2015
    Applicant: BALLUFF GMBH
    Inventors: Sorin Fericean, Martin Osterfeld
  • Patent number: 8947296
    Abstract: A system includes a radar antenna and a radar controller. The radar controller generates two narrowband radar signals, each narrowband radar signal having substantially constant frequency, the frequencies of the two narrowband radar signals differing from one another. The controller operates the radar antenna to transmit each of the generated narrowband radar signals as a transmitted signal, each transmitted signal being characterized by a transmitted power. The controller also measures a received power of received signals that are received by the radar antenna, each received signal including a portion of a corresponding one of the transmitted signals that was returned from an object or from a calibration surface at a known calibration range. A processor operating in accordance with programmed instructions calculates a range to the object on the basis of the transmitted and received powers.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Guy Raz, Ron Rotstein
  • Patent number: 8742978
    Abstract: A method and an arrangement for determining the delay of a signal between a first station and a second station of the arrangement, with the aim of determining the spatial distance between the stations. A first series of first signal pulses is generated in the first station at a first pulse repetition rate f1. A second and a third series of second and third signal pulses is generated in the second station, comprising a second f2 and third pulse repetition rate f3, where f2=f1+?f and f3=f1??f. The second and third series of second and third signal pulses are transmitted to the first station, where the series are correlated with the first series of first signal pulses. The delay of the signal can be determined from the time elapsed between two successive pulses of the signal arising from the correlation.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: June 3, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Roland Gierlich, Jörg Hüttner, Andreas Ziroff
  • Patent number: 8742979
    Abstract: This disclosure provides a range side lobe removal device, which includes a pulse compressor for acquiring a reception signal from a radar antenna and generating a pulse-compressed signal by performing a pulse compression of the reception signal, a pseudorange side lobe generator for generating a pseudo signal of range side lobes of the pulse-compressed signal based on the reception signal, and a signal remover for removing a component corresponding to the pseudo signal from the pulse-compressed signal.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 3, 2014
    Assignee: Furuno Electric Company Limited
    Inventor: Yoshifumi Ohnishi
  • Patent number: 8723721
    Abstract: A multistatic radar surveillance system includes transmitter elements and receiver elements arranged according to a zone to be monitored, and a command and control unit that configures the elements and collects information relating to objects detected by the receiver elements. Each transmitter element transmits a signal, the bandwidth of which is substantially equal to the totality of a frequency band B allocated to the system. Each transmitter element transmits a common waveform to all of the transmitter elements, and the waveform is modulated by a binary signal specific to the element in question, this signal allowing each of the receiver elements receiving a signal to identify the transmitter element at the source of this signal. The coding applied to the waveform is defined so that the spread spectrum caused to the signal transmitted by the latter does not exceed the frequency band B allocated to the system.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 13, 2014
    Assignee: Thales
    Inventors: Michel Moruzzis, Daniel Muller, Jean-Marie Ferrier
  • Patent number: 8724677
    Abstract: Provided are a method and apparatus (receiver) of receiving and processing a radio signal in a transmitter-receiver environment. The radio signals are transmitted across a wireless interface using Ultra Wideband (UWB) pulses. A transmitted reference approach is utilized. The radio signal include pairs of UWB pulses with each pair of pulses separated by a fixed time delay. The two pulses are then combined to provide for improved noise immunity.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 13, 2014
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8698670
    Abstract: A high speed high dynamic range and low power consumption analog correlator for use in a radar sensor. The analog correlator combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The analog correlator includes a replica generator, a multiplier, and an integrator module. The replica generator generates a template signal having a plurality of replicated pulse compression radar (PCR) pulses. The multiplier multiplies a received PCR signal with the plurality of replicated PCR pulses. The integrator module is coupled to the multiplier and configured to generate a plurality of analog correlation signals, each of which is based on the multiplying between the received PCR signal and one of the replicated PCR pulses.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Patent number: 8604971
    Abstract: A method and apparatus is devised for detecting objects of interest in which frequency-scanned RF in the HF region of the electromagnetic spectrum is projected out across a given area and returns are detected and converted into image data in which phase, amplitude, range and frequency associated with the incoming data is correlated with frequency-dependent range templates to determine the existence of, the range of and the direction of the objects of interest.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: December 10, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. Apostolos, Richard J. Millard
  • Patent number: 8593335
    Abstract: A method includes inputting an echo signal from an antenna for discharging an electromagnetic wave to a predetermined area and receiving an echo signal reflected on a target object, outputting a level of the echo signal from every location so as to associate the level with a distance from the antenna in an azimuth direction where the electromagnetic wave is discharged, calculating a degree of change in the level of the echo signal from mutually adjacent locations among all the locations concerned, performing edge emphasis processing for the level of the echo signal in the azimuth direction based on the degree of change and outputting an edge-emphasized echo signal, and performing scan-to-scan correlation processing to calculate a correlation value of the echo signals of two or more scans using the edge-emphasized echo signals, where the echo signals from the entire predetermined area is used as one scan.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 26, 2013
    Assignee: FURUNO Electric Company Limited
    Inventor: Kazuya Nakagawa
  • Patent number: 8588270
    Abstract: The invention includes a method for transmitting and detecting high speed Ultra Wideband pulses across a wireless interface. The transmitter includes a serializer and pulse generator. The receiver comprises a fixed delay line, multiplier, local serializer (with a sequence matching the transmitter), digital delay lines, low noise amplifier and logic fan-out buffer along with an array of D flip-flop pairs. Each flip-flop pair is enabled, at fixed time increments, to detect signals at a precise time; the timing is controlled by the pseudo-random sequence generated by the local serializer. A local tunable oscillator is controlled by detecting the phase change of the incoming signal and applying compensation to maintain the phase alignment and clock synchronization of the receiver to the clock reference of the transmitter. The invention uses a pair of pulses with a fixed delay and then relies on mixing the two to provide better noise immunity.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 19, 2013
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8576116
    Abstract: Systems, methods and apparatus related to a high speed, high dynamic range and low power consumption radar system are provided herein. The radar system may include an analog correlator which combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The radar system may further include a matched filter for determining a match of a portion of a received PCR signal and producing an output signal in response to further improve the speed of detection of the radar system.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Patent number: 8558730
    Abstract: A method for detecting precipitation in a region monitored by radar beams includes ascertaining a first average power of a first backscattered radar signal, ascertaining a second average power of a second backscattered radar signal, and detecting an existence of a homogenous medium when the average powers conform.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Alebel Arage Hassen
  • Publication number: 20130234878
    Abstract: A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).
    Type: Application
    Filed: February 22, 2013
    Publication date: September 12, 2013
    Applicant: THALES
    Inventors: Stéphane Kemkemian, Jean-Paul Artis, Jean-Michel Quellec
  • Patent number: 8482456
    Abstract: A microwave sensor assembly includes at least one probe including an emitter configured to generate an electromagnetic field from at least one microwave signal. The emitter is also configured to generate at least one loading signal representative of a loading induced within the emitter by an object positioned within the electromagnetic field. The microwave sensor assembly also includes a signal processing device coupled to the at least one probe. The signal processing device includes a linearizer configured to generate a substantially linear output signal based on the at least one loading signal.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Steven Go, Boris Leonid Sheikman, William Platt
  • Publication number: 20130154873
    Abstract: A system includes a radar antenna and a radar controller. The radar controller generates two narrowband radar signals, each narrowband radar signal having substantially constant frequency, the frequencies of the two narrowband radar signals differing from one another. The controller operates the radar antenna to transmit each of the generated narrowband radar signals as a transmitted signal, each transmitted signal being characterized by a transmitted power. The controller also measures a received power of received signals that are received by the radar antenna, each received signal including a portion of a corresponding one of the transmitted signals that was returned from an object or from a calibration surface at a known calibration range. A processor operating in accordance with programmed instructions calculates a range to the object on the basis of the transmitted and received powers.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Guy RAZ, Ron Rotstein
  • Patent number: 8428518
    Abstract: A network controller may schedule directional communications between two devices in its own network in such a way as to avoid potential interference from anticipated transmissions from another device. In some instances, the network controller may be one of the two devices using the directional communications. The timing of the anticipated transmissions may be determined by the network controller based on its own observations, or it may be informed of that timing in a transmission from a device in its own network. A possible format is given for transmitting that information to the network controller.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 23, 2013
    Assignee: Intel Corporation
    Inventor: Carlos Cordeiro
  • Patent number: 8416120
    Abstract: Disclosed herein is a method of sensor network localization through reconstruction of a radiation pattern with a characteristic value of an antenna depending on orientation thereof. The method can minimize errors using an antenna characteristic value and a signal strength depending on the orientation. In addition, the method can minimize errors using an artificial neural network to characterize a distorted radiation pattern of an antenna and using it for the localization of a triangulation method. Furthermore, the method can increases the localization rate even in a passive localization method by characterizing an asymmetric antenna radiation pattern and constructing the antenna characteristic through an artificial neural network.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: April 9, 2013
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jong Tae Kim, Chae Seok Lim
  • Patent number: 8410978
    Abstract: A shape measurement instrument includes a plurality of transmitters 1 to 4 which radiate signals having different waveforms or phases, receivers 31 to 34 which receive signals reflected from an object O, correlation units 41 to 44 which obtain correlation waveforms between waveforms of the signals received by the receivers 31 to 34, and the signal radiated by a transmitter radiating the received signal of the transmitters 1 to 4, and a shape estimation unit 5 which extracts a quasi-wavefront based on the correlation waveforms obtained by the correlation units 41 to 44 and estimates a shape of the object O based on a relationship between the quasi-wavefront and the object O. As a result, a period of time required to measure an object shape can be significantly reduced.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Sakai, Takeshi Fukuda, Takuya Sakamoto, Toru Sato
  • Patent number: 8405541
    Abstract: A radar system operable to detect objects within multiple ranges using common components is provided. The radar system includes a transmitter antenna, a first and second microwave radiation source, and a receiver. The first and second microwave radiation sources both are transmitted through the transmitter antenna. The echoes are received by the same receiver. The first microwave radiation source is a frequency modulated wave form and the second microwave radiation source is an ultra-wide band wave form. A multiplexer selectively connects one of the first and second microwave radiation sources to the transmitter antenna.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 26, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Jae Seung Lee, Paul D. Schmalenberg
  • Patent number: 8345731
    Abstract: Control circuitry is configured to control a sampler, in a sampling phase determination process, to sample a signal at a sampling period of T±T/n for outputting a sample set for each one of n phases of the sampled signal. Each one of n correlators has a first input configured to receive one of the sample sets, a second input configured to receive a PN signal, and an output which provides a correlation result from a correlation process between the sample set and the PN signal. The control circuitry is further configured to identify, from the correlation results, one of the phases associated with the optimal correlation result. The control circuitry is then configured to control the sampler, in a communication mode, to sample a received signal at a sampling period of T at the phase associated with the optimal correlation result.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 1, 2013
    Assignee: Research In Motion Limited
    Inventor: Xin Jin
  • Patent number: 8314731
    Abstract: Methods for estimating a distance between an originator and a transponder, methods for calculating a fine time adjustment in a radio, computer-readable storage media containing instructions to configure a processor to perform such methods, originators used in a system for estimating a distance to a transponder, and transponders used in a system for estimating a distance to an originator. The methods utilize fine time adjustments to achieve sub-clock cycle time resolution. The methods may utilize offset master clocks. The methods may utilize a round-trip full-duplex configuration or a round-trip half-duplex configuration. The method produces accurate estimates of the distance between two radios.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: November 20, 2012
    Assignee: ENSCO, Inc.
    Inventors: Russell Alan Fretenburg, Henry Hon-You Leung, Derek John Pyner, Bradley David Farnsworth, David W. A. Taylor, Jr.
  • Patent number: 8264397
    Abstract: A Time Transfer Time Reverse Mirror (TT TRM) method and system includes a radio transceiver for transmitting a series of short pulses repeatedly at a period T and for receiving from a remote node a return signal that is a retransmission of the original signal at the same period T: a clock circuit for inputting a clock signal to the transceiver: and a computer for (i) computing and generating an imaginary time-reversed signal version of the original signal, (ii) comparing the return signal with the imaginary version, (iii) computing a delay between the return signal and the imaginary version that is substantially equal to twice the time difference between the two nodes, and (iv) applying the computed delay to a clock input calibration for a desired signal. The system includes time transfer using the ionospheric reflection (refraction), producing precise synchronization among remote nodes beyond the line-of-sight and thus without necessitating GPS or communication satellites.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 11, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Eung Gi Paek, Joon Y Choe
  • Patent number: 8259003
    Abstract: In conventional pulse compression processing, sidelobes from strong return signals may hide correlation peaks associated with weaker return signals. Example embodiments include methods of mitigating this near/far interference by weighting a received return signal or corresponding reference signal based the return signal's time of arrival, then performing pulse compression using the weighted signal to produce a correlation peak that is not hidden by sidelobes from another return. Multi-frequency processing can also be used to reduce the pulse width of the transmitted pulses and received return signals, thereby mitigating near/far interference by decreasing the overlap between signals from nearby targets. Weighting can be combined with multi-frequency pulse transmission and reception to further enhance the fidelity of the processed correlation peak. Weighting and multi-frequency processing also enable higher duty cycles than are possible with conventional pulse compression radars.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: September 4, 2012
    Assignee: Massachusetts Institute of Technology
    Inventor: William S. Song
  • Patent number: 8199047
    Abstract: Methods for estimating a distance between an originator and a transponder, methods for calculating a fine time adjustment in a radio, computer-readable storage media containing instructions to configure a processor to perform such methods, originators used in a system for estimating a distance to a transponder, and transponders used in a system for estimating a distance to an originator. The methods utilize fine time adjustments to achieve sub-clock cycle time resolution. The methods may utilize offset master clocks. The methods may utilize a round-trip full-duplex configuration or a round-trip half-duplex configuration. The method produces accurate estimates of the distance between two radios.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: June 12, 2012
    Assignee: Ensco, Inc.
    Inventors: Russell Alan Fretenburg, Henry Hon-You Leung, Derek John Pyner, Bradley David Farnsworth, David W. A. Taylor, Jr.
  • Patent number: 8195425
    Abstract: Systems and methods for estimating the distance between a start point and a true endpoint in which at least two functions of differing resolutions are used. The method includes measuring a coarse distance between the start point and an intermediate point using the lower resolution function, the intermediate point comprising a point which is substantially within one unit of the higher resolution function away from the true endpoint. Next, a vernier distance is measured from the intermediate point to a vernier endpoint using the higher resolution function, the vernier endpoint being within a narrow, vernier error window of the true endpoint. Subsequently, the coarse and vernier distances are summed to obtain the estimated distance.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: June 5, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shekhar Ramachandra Borgaonkar, Prasenjit Dey, Deepu Vijayasenan
  • Patent number: 8185264
    Abstract: According to an aspect of the invention, there is provided a method for determining whether first and second components of a vehicle are physically coupled together, the method comprising: transmitting a first signal from the first component of the vehicle; receiving a second signal from the second component of the vehicle; processing the second signal to determine whether the first and second components of the vehicle are coupled.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 22, 2012
    Assignee: Nomad Spectrum Limited
    Inventor: Caleb Carroll
  • Patent number: 8174433
    Abstract: According to one embodiment, bias estimation and orbit determination include receiving measurements in real time. The measurements include radar measurements and radar array orientation measurements. The radar measurements are generated by a radar system and indicate the location of a target. The radar array orientation measurements are generated by a navigation system and indicate the orientation of a radar array of the radar system. A state variable set is used. The state variable set includes measurement variables and dynamic bias variables. For example, a state variable set may include orbit position, orbit velocity, radar orientation, and radar measurement variables, which in turn may include dynamic bias variables such as orientation bias variables and measurement bias variables. A measurement variable is associated with a measurement, and a dynamic bias variable is associated with bias of a measurement.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: May 8, 2012
    Assignee: Raytheon Company
    Inventor: Michael E. Hough
  • Patent number: 8154438
    Abstract: The present invention can find the exact location anywhere in the nautical world (latitude/longitude coordinates) by correlating or matching radar returns with maps produced by a digital nautical chart called a Chart Server, because each pixel location on the Chart Server maps can be traced back to a latitude/longitude coordinate. An obstacle avoidance module called a Chart Server provides digital nautical charts to create a map of the world. To determine the current world location of a vehicle, the invention combines the Chart Server maps with a radar return, which also appears to display prominent features such as coastlines, buoys, piers and the like. These return features from the radar are correlated or matched with features found in the Chart Server maps. The radar then reports its current location inside of its local map, which when translated to the Chart Server map, correlates to a latitude/longitude registration location.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: April 10, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jacoby Larson, Michael Bruch
  • Patent number: 8098712
    Abstract: Optical correlators are discussed, suitable for in-vehicle distance measurement. The correlators use modulation sequences based on maximal length sequences. A number of different modulation sequences are obtained by generator (32) from a single maximal length sequence, either by adding a variable number of cycles to the end of the maximal length sequence or by starting the maximal length sequence at different points in the sequence.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: January 17, 2012
    Assignee: Instro Precision Limited
    Inventor: Christopher John Morcom
  • Patent number: 8081105
    Abstract: An embodiment of the invention includes a step of transmitting an OFDM waveform including several frequency carrier signals transmitted simultaneously, the frequency carrier signals being coded in order to improve the Doppler response. An embodiment of the invention includes a step of receiving the echoed waveform from the target. The initial phase of each frequency carrier signal is recovered from the echoed waveform. The recovered initial phase of each frequency carrier signal is cyclically shifted in order to compensate for the Doppler effect and subsequently decoded. A compressed pulse is synthesized from the decoded initial phases.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: December 20, 2011
    Assignee: Thales Nederland B.V.
    Inventors: Recep Firat Tigrek, Wilhelmus Johannes De Heij
  • Patent number: 8026840
    Abstract: A biometric radar system and method for identifying a person's positional state are generally described herein. The biometric radar may phase adjust a sequence of radar return signals received through two or more receive antennas to remove at least some phase noise due to the stationary objects. The biometric radar may also segment the phase adjusted radar return signals into a plurality of multi-resolutional Doppler components. Each multi-resolutional Doppler component may be associated with one of a plurality of biometric features. The biometric radar system may also combine and weight the segmented radar returns for each biometric feature to generate weighted classifications for a feature extraction process.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 27, 2011
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Patent number: 8022863
    Abstract: A method includes correlating a plurality of samples of a waveform into a correlation domain to provide a mainlobe defined by a first subset of a plurality of pulse-compressed samples and a plurality of sidelobes defined by a second subset of the plurality of pulse-compressed samples. A weight is calculated for at least one of the pulse-compressed samples, and one of a plurality of SVA filter values is selected to apply to the at least one pulse-compressed sample based on the calculated weight of the at least one pulse-compressed sample. The SVA filter values include one, one minus a quotient of one-half divided by the calculated weight of the at least one sample, and a scale factor having a value greater than zero and less than or equal to one. The selected SVA filter values are applied to the at least one pulse-compressed sample.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Rao Nuthalapati
  • Publication number: 20110205104
    Abstract: A method includes inputting an echo signal from an antenna for discharging an electromagnetic wave to a predetermined area and receiving an echo signal reflected on a target object, outputting a level of the echo signal from every location so as to associate the level with a distance from the antenna in an azimuth direction where the electromagnetic wave is discharged, calculating a degree of change in the level of the echo signal from mutually adjacent locations among all the locations concerned, performing edge emphasis processing for the level of the echo signal in the azimuth direction based on the degree of change and outputting an edge-emphasized echo signal, and performing scan-to-scan correlation processing to calculate a correlation value of the echo signals of two or more scans using the edge-emphasized echo signals, where the echo signals from the entire predetermined area is used as one scan.
    Type: Application
    Filed: January 25, 2011
    Publication date: August 25, 2011
    Inventor: Kazuya NAKAGAWA
  • Patent number: 7990310
    Abstract: Disclosed herein is an Ultra-WideBand (UWB) ranging method using a narrowband interference suppression waveform. A transmission signal is transmitted to a target object. The transmission signal, reflected from the target object, is received. A template signal is generated by combining the narrowband interference suppression waveform and a channel estimation signal together. A correlation output signal is generated by convoluting the template signal and the received signal. A distance is calculated using a time delay when the correlation output signal has the maximum value thereof. The narrowband interference suppression waveform is any one of two waveforms that are expressed by the following Equation: wr1(t)=g(t??1/2)+g(t+?1/2) wr2(t)=g(t??2/2)?g(t+?2/2) where g(t) is a basic UWB pulse waveform, ?1=(N+1/2)f1, ?2=(N)/f1, N is an integer, and fi is the center frequency of a narrowband interference signal.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 2, 2011
    Assignees: Inha-Industry Partnership Institute, Samsung Electronics Co., Ltd.
    Inventors: Kyoung Seop Kwak, Weihua Zhang, Wooshik Kang
  • Patent number: 7969347
    Abstract: By using the delay profile created by delay profile creating section 102 and the first threshold value 330 received from the first threshold value calculation 105, the first threshold value timing detection section 103 selects only the earliest receive timing exceeding the first threshold value, from all the timing that the correlation value in the delay profile becomes a maximum. By using the receive timing and the second threshold value 331 received from the second threshold value calculation section 107, reference timing calculation section 106 selects the reference timing required for calculating the receive timing for the incoming wave of the minimum propagation delay time. The timing delayed by previously set timing behind said reference timing is sent from receive timing calculation section 108 as the receive timing 113 of the incoming wave of the minimum propagation delay time.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: June 28, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Katsuhiko Tsunehara, Nobukazu Doi, Mikio Kuwahara, Tomoaki Ishifuji
  • Patent number: 7965227
    Abstract: A simplified multilateration and ADS-B Surveillance System is used, to perform tagging for the FAA Low Cost Ground Surveillance program. This system may also be used as the foundation for a full multilateration system, if a customer wants to upgrade. The present invention uses just one active transmitter/receiver unit as opposed to multiple passive receivers. The present invention captures UF 5 and DF 5 data, thus providing Mode A identification, which then acts as the key to obtaining the call sign from a data fusion packages—thus making it an affordable and marketable product for small to medium-sized airports.
    Type: Grant
    Filed: February 22, 2009
    Date of Patent: June 21, 2011
    Assignee: ERA Systems, Inc.
    Inventors: Vadim Kozhevnikov, Carl Evers
  • Patent number: 7956797
    Abstract: A system for measuring relative distance between a first component on a vehicle and a second component on the vehicle is provided. The system includes a wireless ultra-wideband (UWB) transceiver attached to the first component. The wireless UWB transceiver transmits a UWB measurement pulse toward the second component, and receives a reflected UWB pulse from a reflective surface of the second component. The reflected UWB pulse represents a reflected version of the UWB measurement pulse. The system also includes a processor coupled to the wireless UWB transceiver. The processor derives a relative distance between the first component and the second component, based upon characteristics of the UWB measurement pulse and the reflected UWB pulse. The system further includes a power generating system for the wireless UWB transceiver.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: June 7, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Talty, Chandra S. Namuduri, Yunjun Li, Nancy McMahon, Robert B. Elliott
  • Publication number: 20110128179
    Abstract: A method and apparatus is devised for detecting objects of interest in which frequency-scanned RF in the HF region of the electromagnetic spectrum is projected out across a given area and returns are detected and converted into image data in which phase, amplitude, range and frequency associated with the incoming data is correlated with frequency-dependent range templates to determine the existence of, the range of and the direction of the objects of interest.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. APOSTOLOS, Richard J. MILLARD
  • Patent number: 7898469
    Abstract: Provided is a receiving device that is used for a spread spectrum radar apparatus, receives a spectrum-spread signal, and obtains a precise radar spectrum, and includes: a despreading unit that (i) generates first and second despread signals that are generated by despreading a reception signal using a pseudo-noise code, the second despread signal passing through a transmission line carrying a current having a current value identical to a current value of a current carried by a transmission line through which the first despread signal passes, and (ii) includes a first transistor pair including first and second transistors having an identical characteristic, the first transistor outputting the first despread signal, and the second transistor outputting the second despread signal; and a quadrature demodulating unit that generates an in-phase signal and a quadrature signal by quadrature-demodulating the first despread signal and the second despread signal, respectively.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: March 1, 2011
    Assignee: Panasonic Corporation
    Inventors: Shinji Ujita, Takeshi Fukuda
  • Publication number: 20110012774
    Abstract: The range finder includes a transmitting unit (71) which emits a transmitted wave (75) spread using a spread code at a constant chip rate, a receiving unit (72) which receives a reflected wave (76), a correlation unit (73) which calculates a correlation waveform indicating delay time and a correlation between the transmitted wave (75) and the reflected wave (76), and a distance calculation unit (74) which calculates, from a peak position in the waveform, a distance to the object. The correlation unit (73) calculates the correlation waveform obtained when changing the delay time for each range gate. The distance calculation unit (74) calculates the distance to the object by calculating, at a resolution finer than the range gate, a delay time corresponding to the peak in the correlation wave using a highest-correlation point and an adjacent higher-correlation point in the wave form.
    Type: Application
    Filed: March 6, 2009
    Publication date: January 20, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroyuki Sakai, Takeshi Fukuda, Kenichi Inoue, Toru Sato, Takuya Sakamoto, Yusuke Kani
  • Publication number: 20110001656
    Abstract: A radar system includes: a transmission antenna outputting transmission signals having multiple frequencies; multiple reception antennas receiving reflected waves of the transmission signals, reflected from an object; a mixer mixing the transmission signals with reception signals received by the reception antennas to generate beat signals; and a signal processing unit detecting Doppler frequency by analyzing frequencies of the beat signals, detecting phase information of the Doppler frequency for each of combinations of the reception antennas and the transmission signal frequencies, constructing a matrix having the pieces of phase information arranged in a predetermined order with respect to the reception antennas and the frequencies of the transmission signals, obtaining a correlation matrix from the matrix and its complex conjugate transposed matrix, and estimating at least one of a distance, direction and relative velocity of the object based on the correlation matrix.
    Type: Application
    Filed: June 28, 2010
    Publication date: January 6, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Makoto NAKAI, Masaru Ogawa, Tomoya Kawasaki
  • Patent number: 7855674
    Abstract: The present invention provides a coherent radar system based on a modification of standard non-coherent radar without Moving Target Indication. Typical radars in this class are Navigation radars which are mass produced with low cost components. These radars utilize a magnetron in the transmitter which is a random phase device. In the present invention, the received signal is extracted just prior to amplitude detection process (where phase information is lost), and digitized using an analogue to digital converter providing coherent detection based on correlation between the transmitted pulse and the received signal.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: December 21, 2010
    Assignee: Telefonaktiebolaget L M Ericsson (Public)
    Inventor: Per Atle Våland