Combined With Determining Direction Patents (Class 342/146)
  • Publication number: 20140306840
    Abstract: A device and a method for determining the position of an object, in particular of a moving object, in a three dimensional space is made available. Here the device comprises at least two switchable transmitting antenna arrays having different vertical beam alignments and a number of receiving antennas arranged in a row. The transmitting antennas are arranged spaced apart by a distance that corresponds to the distance between the outer phase centres of the receiving antennas. Otherwise the transmitting antennas can be positioned arbitrarily around the receiving antenna. The horizontal beam sweep over a wide angle range is implemented by the “digital beam forming” method. The vertical object position is measured by comparing the amplitude of the received signals with sequentially operated transmitting antennas having different vertical beam directions.
    Type: Application
    Filed: September 4, 2012
    Publication date: October 16, 2014
    Applicant: Astyx GmbH
    Inventors: Richard Koerber, Felix Hoehne
  • Publication number: 20140292554
    Abstract: A method for operating a radar system on a vehicle to reduce nuisance alerts caused by a stationary structure proximate to the vehicle. The method includes determining a stationary count indicative of the number of targets detected by the radar system that are within a travel path of the vehicle and are classified by the radar system as stationary, and indicating that the vehicle is proximate to a stationary structure if the stationary count is greater than a count threshold.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: MATTHEW R. SMITH, ROBERT J. CASHLER
  • Publication number: 20140292560
    Abstract: A pedestrian detecting device mounted on a vehicle includes: a transmission unit that irradiates an electromagnetic wave to an area around a vehicle; a receiving unit that receives a reflected wave caused by reflection of the electromagnetic wave from an obstacle; a storage unit that stores data of the reflected wave received by the receiving unit; and a control unit that reads the data of the reflected wave, stored in the storage unit, and that calculates a variance of an intensity of the reflected wave, wherein the control unit determines that the obstacle is a pedestrian when the calculated variance of the intensity of the reflected wave is larger than or equal to a reference value, and, after the control unit determines that the obstacle is a pedestrian, the control unit identifies that the same obstacle is a pedestrian and outputs information regarding a position of the pedestrian.
    Type: Application
    Filed: October 30, 2012
    Publication date: October 2, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomoya Kawasaki, Makoto Nakai
  • Patent number: 8847815
    Abstract: An electronic scanning radar apparatus mounted on a moving object includes a receiving unit including a plurality of antennas receiving a received wave arriving from a target having reflected a transmitted wave, a beat signal generating unit generating a beat signal from the transmitted wave and the received wave, a frequency resolving unit resolving the beat signal in beat frequencies and to calculate complex data based on the beat signal resolved for each beat frequency, and an azimuth detecting unit calculating a direction of arrival of the received wave based on original complex data calculated based on the beat signal, wherein the azimuth detecting unit includes a data extending unit generating extended complex data by extending the number of data based on the original complex data, and a first computation processing unit calculating the direction of arrival of the received wave based on the extended complex data.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventor: Junji Kanamoto
  • Publication number: 20140269162
    Abstract: Methods, apparatuses, and computer program products are herein provided for causing presentation of sonar or radar image data over environment information. A method may include determining a position and a line of sight of a device. The method may further include determining at least one of sonar image data or radar image data associated with the position and the line of sight. The method may further include causing presentation of an image associated with the at least one of sonar image data or radar image data on a display of the device over environment information indicative of an environment currently viewable by a user through the device. Corresponding apparatuses and computer program products are also provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Navico Holding AS
    Inventor: Barry Antao
  • Publication number: 20140278214
    Abstract: A method for determining a FDOA of a pulsed waveform received by two sensors includes obtaining a respective plurality of in-phase and quadrature-phase (IQ) samples indicative of a pulse envelope of the received pulsed waveform. The method includes determining a TDOA responsive to a leading edge of a pulse of the pulsed waveform and obtaining a first cross correlation of IQ samples at a delay (dc) closest to the TDOA, and respective second and third cross correlations at least one additional delay (dc+1 and dc?1) on either side of the closest delay. The method includes refining the approximation of the TDOA according to an interpolation of amplitudes of the cross-correlation and determining a respective rate of change of cross-correlation phase (??). The method includes approximating a straight line fit to the rates of change of cross-correlation phase (d??/dt), the slope of the straight line representative of the FDOA.
    Type: Application
    Filed: July 19, 2013
    Publication date: September 18, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: John T. Broad, Lee M. Savage
  • Patent number: 8836575
    Abstract: This disclosure provides a detection device, which includes an image data generation module for generating image data based on echo signals, and a target object detection module for determining an existence of a target object based on a level of the echo signal at each location of the image data for every azimuth. The target object detection module determines a continuity of the echo signals in a distance direction and an azimuth direction for every target object, and outputs an end location for each target object based on a determination result at each location, including a plurality of locations adjacent to a location determined as being a non-target object location.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: September 16, 2014
    Assignee: FURUNO Electric Company
    Inventor: Koji Nishiyama
  • Publication number: 20140253368
    Abstract: A system for providing a multi-mode, multi-static interferometer may include a transmitter array, a receiver array and a processor. The transmitter array includes at least a first transmitter and a second transmitter spatially separated from each other by a first known distance. The receiver array includes at least a first receiver and a second receiver spatially separated from each other by a second known distance. The receiver array is positioned to enable receipt of a return signal from transmissions provided by the transmitter array and reflecting off an object. The processor is configured to enable the transmitter array to generate uniquely coded signals and configured to distinguish, based on the uniquely coded signals, a first signal transmitted by the first transmitter from a second signal transmitted by the second transmitter in response to reception of a combined signal including reflected signals corresponding to at least the first and second signals by the receiver array.
    Type: Application
    Filed: July 16, 2009
    Publication date: September 11, 2014
    Inventor: Ernest Jefferson Holder
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Patent number: 8816902
    Abstract: There is provided a radar apparatus for detecting a target. A detection signal generating unit generates detection signals of the target based on transmission and reception waves of antennas. A detection signal processing unit performs frequency analysis on the detection signals to extract signal components of the target, and performs a predetermined process on the signal components to calculate at least one of a distance to the target, a relative speed to the target, and an orientation of the target. The detection signal generating unit includes a filter unit for giving changes to the detection signals in a frequency bandwidth higher than Nyquist frequency which is a half a sampling frequency. The detection signal processing unit acquires the signal components from the detection signals to which the filter unit gives the changes to determine whether the signal components are generated by replication due to the Nyquist frequency.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Ten Limited
    Inventor: Hiroshi Itoh
  • Patent number: 8816895
    Abstract: Embodiments of a target classifier and method for target classification using measured target epsilons and target glint information are generally described herein. The target classifier is configured to compare a total epsilon measurement with target glint information to determine whether to the target being tracked corresponds to an intended target type. Based on the comparison, the target classifier may cause target tracking circuitry of a target-tracking radar to either continue tracking the target or break-off from tracking the target. Glint of different target types may be characterized at different ranges and the target's glint characteristics may be used to distinguish intended from non-intended targets. Accordingly, intended targets such as incoming artillery may be distinguished from non-intended targets such as aircraft to help prevent countermeasures from being launched against non-intended targets.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 26, 2014
    Assignee: Raytheon Company
    Inventors: Brett J. Young, Jason A. Johnson
  • Patent number: 8810446
    Abstract: According to one embodiment, a radar device includes a radio module, a pulse compressor, a Doppler filter processor, a signal processor, an integration processor, an estimation module and a target detector. The radio module receives a plurality of received pulses corresponding to transmission pulses transmitted from a transmitter. The integration processor generates third data by integrating first data generated at the signal processor with second data generated based on first data obtained by a previous scan. The estimation module estimates a position at a time of a next scan based on the third data to generate second data. The target detector detects a target based on the third data.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshikazu Shoji, Mitsuyoshi Shinonaga, Junichiro Suzuki
  • Publication number: 20140210660
    Abstract: An object movement and location detection system and method is provided. A locating circuit is substantially secured to the object. A plurality of monitoring units is positioned remotely from the locating circuit, each in a different location. A first omnidirectional signal is intermittently communicated between the locating circuit and the plurality of monitoring units. A movement sensor is substantially secured to the object, wherein the movement sensor detects a movement of the object. A calculator is in communication with each of the plurality of monitoring units and the movement sensor, wherein the calculator determines a duration of transmission time of the first omnidirectional signal between each of the monitoring units and the locating circuit and calculates a location of the locating circuit using the determined duration of transmission time for each of the monitoring units and the locating circuit subsequent to a detected movement of the object.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: Secure Care Products, LLC
    Inventors: Albert Larose, Doug Richard, Matthew Cammack, Christopher D. Stevens, Mike Singer, Sam Corliss, Vijaya Kodali, Ray Scott
  • Patent number: 8786489
    Abstract: An active radar target includes several receive antennas and several transmit antennas that are arrangeable into pairs of antennas. Each pair includes a transmit and a receive antenna. At least one antenna in a pair is at a different height relative to at least one other antenna in a different pair of antennas.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Guidance IP Limited
    Inventor: David E. Patrick
  • Patent number: 8773301
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8773264
    Abstract: An intrusion detection and tracking system includes a plurality of nodes, a DP and a gateway. The nodes are disposed about an area and form a wireless network to be monitored, the nodes are configured to receive data and transmit data frames with a signal strength indicator and/or a link quality indicator in the frames. The DP is communicatively connected to the network and configured to analyze variations in the signal strength indicator and/or link quality indicator to detect and track disturbances to an electromagnetic field in the area. The gateway is configured to form a data link between the network and the DP.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 8, 2014
    Assignee: Raytheon Company
    Inventors: Toni S. Habib, Wassim S. Habib
  • Publication number: 20140159941
    Abstract: Provided is a device for detecting intruding objects that enables the detection of intruding objects without requiring antenna switching. Delay units (102) use different delay amounts to delay signals received at each of a plurality of antennas (110). A signal synthesis unit (103) synthesizes the delayed signals. A frequency conversion unit (106) converts the synthesized signal frequency to a baseband. A wave detection unit (107) detects the signal that has undergone frequency conversion. A radar profile generation unit (104) uses the detected signal to generate a profile formed from the distance from the antenna, and the signal strength at each distance from the antenna. A detection processing unit (105) detects a peak in the profile at which the signal strength exceeds a preset threshold value, and determines whether an intruding object is present in a detection region on the basis of the detected peak.
    Type: Application
    Filed: February 14, 2013
    Publication date: June 12, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Makoto Yasugi, Hirofumi Nishimura
  • Publication number: 20140145873
    Abstract: Methods, systems, and products determine electromagnetic reflective characteristics of ambient environments. A wireless communications device sends a cellular impulse and receives reflections of the cellular impulse. The cellular impulse and the reflections of the cellular impulse may be compared to determine the electromagnetic reflective characteristics of an ambient environment.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Robert Raymond Miller, Kevin A. Li, Troy C. Meuninck, James H. Pratt, Horst J. Schroeter, Behzad Shahraray
  • Publication number: 20140139369
    Abstract: An object detection apparatus mounted in a vehicle, includes a first domain definition unit, a second domain definition unit, and a determination unit. The first domain definition unit defines a first object domain including a first detection point which is indicative of a position of a first object detected by using a vehicle-mounted radar. The second domain definition unit defines a second object domain including a second detection point which is indicative of a position of a second object detected on the basis of an image captured by a vehicle-mounted monocular camera. The determination unit determines whether or not an overlapping domain of the first and second object domains is present, and when it is determined that an overlapping domain of the first and second object domains is present, then determines that the first and second objects are the same.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 22, 2014
    Applicant: DENSO CORPORATION
    Inventor: Takahiro Baba
  • Publication number: 20140132441
    Abstract: An object detection method includes outputting a radio wave, receiving a reflected wave of the radio wave, generating a plurality of object information each indicating a location of each of a plurality of objects with respect to a predetermined reference point based on the radio wave and the reflected wave, calculating a first distance between an observation reference line which represents a shape and a location of a target area for detection preset depending on a target object for detection, and each of the plurality of objects, based on the observation reference line information stored in advance indicating a shape and a location of the observation reference line and the object information, selecting a predetermined number or less of the object information in ascending order of the first distance among the plurality of the object information as the object information to be output, and outputting the selected object information.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 15, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Junko KAJIKI, Tomonori Ikeya, Mitsuru OCHI, Kazuhiko SHITE
  • Patent number: 8723719
    Abstract: A bistatic radar receiver is centrally located within an array of multiple bistatic transmitters at an airport to precisely determine bird positions and altitudes. Bird target reflections from multiple transmitters are received by the radar receiver. Target location is determined by the transmitter location, receiver location, and measured transmitter-to-target-to-receiver ranges. Target position and altitude accuracy is similar to GPS. The radar receiver antenna is composed of a vertical array of elements and rotated 360 degrees in azimuth. The output of each element is downconverted, digitized, and digitally beamformed to provide multiple simultaneous antenna beams each electronically scanned in elevation. When bistatic transmitters cannot be deployed, a narrow-azimuth wide-elevation transmit antenna beam is overlapped with a wide-azimuth narrow-elevation receive antenna beam electronically scanned in elevation to provide a composite narrow azimuth and elevation beamwidth.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: May 13, 2014
    Inventor: Gregory Hubert Piesinger
  • Patent number: 8717229
    Abstract: An active antenna array is arranged to activate subsets of switchable elements causing the antenna to form a first beam having a first beam pattern, and later to form a second beam having a second beam pattern of substantially identical far field radiation pattern to the first beam pattern but with different origins. A receiver receives radiation reflected from a target back to the antenna when the antenna is configured with the first beam pattern and then when configured with the second beam pattern, and compares the phase of the radiation received at the receiver when the antenna is configured with the first beam pattern with the phase of the radiation received at the receiver when the antenna is configured with the second beam pattern to provide a phase difference signal. A target locating means determines the angular location of the target from the phase difference signal.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 6, 2014
    Assignee: TRW Automotive US LLC
    Inventor: Richard Blachford
  • Publication number: 20140111372
    Abstract: A system and method for an arrayed sensor to resolve ambiguity in received signals, improve direction of arrival accuracy and estimate a location of one or more targets in an environment including signal interference.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Applicant: SAAB-SENSIS CORPORATION
    Inventor: Ryan Haoyun Wu
  • Patent number: 8704704
    Abstract: Presented is a method for determining speeds (vr14, vr16) and distances (r14, r16) of objects (14, 16) relative to a radar system (12) of a motor vehicle (10), wherein a coverage area (EB) of the radar system (12) is divided into at least two part-areas (TB1, TB2, TB3), the coverage area (EB) is examined for reflecting objects (14, 16) in successive measuring cycles (MZ1, MZ2; MZi, MZi+1), wherein radar signals received in a measuring cycle (MZ1, MZ2; MZi, MZi+1) are processed separated in accordance with part-areas (TB1, TB2, TB3) and processed signals are assembled to form a total result differentiated in accordance with spatial directions. The method is characterized in that from signals received in a first measuring cycle (MZ1; MZi), hypotheses for the distance (r14, r16) and speed (vr14, vr16) of reflecting objects (14, 16) are formed and the hypotheses are validated in dependence on signals received in at least one further measuring cycle (MZ2; MZi+2).
    Type: Grant
    Filed: June 16, 2007
    Date of Patent: April 22, 2014
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventors: Urs Luebbert, Udo Haberland
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8686894
    Abstract: A radar imaging apparatus includes: (i) a delay code generation unit which repeats, for M scan periods, scan processing of generating, using a transmission code, N delay codes in a scan period for scanning N range gates having mutually different distances from the radar imaging apparatus; (ii) a signal storage unit which stores, in association with a range gate and a scan period, a baseband signal; (iii) a memory control unit which repeatedly writes, in the signal storage unit, for the M scan periods, N demodulated signals corresponding to a single scan period, and reads out a group of M demodulated signals corresponding to mutually different scan periods; (iv) a Doppler frequency discrimination unit which performs frequency analysis on demodulated signals having the same range gate; and (v) a direction of arrival calculation unit which estimates a direction of a target.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeshi Fukuda, Kenichi Inoue, Toru Sato, Takuya Sakamoto, Kenshi Saho
  • Publication number: 20140085126
    Abstract: Methods and systems for dynamic range detection and positioning utilizing leaky wave antennas (LWAs) are disclosed and may include configuring one or more LWAs to enable communication of signals in a particular direction. RF signals that are reflected from an object may be received via the LWAs, and a location of the object may be determined based on the received reflected RF signals. The velocity of the object may be determined based on a Doppler shift associated with the received reflected RF signals. A frequency chirped signal may be transmitted by the LWAs to determine a location of the object. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. LWAs may be situated along a plurality of axes in the wireless device. The LWAs may include microstrip or coplanar waveguides, where a cavity height is dependent on spacing between conductive lines in the waveguides.
    Type: Application
    Filed: November 1, 2013
    Publication date: March 27, 2014
    Applicant: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Publication number: 20140062762
    Abstract: In an in-vehicle radar device, as a vertical azimuth which is an azimuth of a target in a direction perpendicular to a ground surface, a real image vertical azimuth which is an azimuth of a real image existing above ground is calculated from a reflected wave generated when a transmission signal transmitted from a transmission antenna reflected from the target, and a virtual image vertical azimuth which is an azimuth of a virtual image existing underground is calculated from a reflected wave generated when the transmission signal transmitted from the transmission antenna is reflected from the target and reflected again from the ground surface. Next, in the in-vehicle radar device, an angle difference between the real image vertical azimuth and the virtual image vertical azimuth which are calculated is calculated, and a height of the target from the ground surface is calculated using the calculated angle difference.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 6, 2014
    Applicants: FUJITSU LIMITED, FUJITSU TEN LIMITED
    Inventors: Yasuhiro KURONO, Kazuo SHIRAKAWA, Yoji OHASHI
  • Publication number: 20140062759
    Abstract: An object detection apparatus includes: a first radar configured to measure first positional information regarding a first object existing in a first scan range; a second radar configured to measure second positional information regarding a second object existing in a second scan range on the basis of second reflected wave of second wave radiated onto the second scan range including the first region and a second region, the second wave being radiated in such a way as to scan the first region in a direction opposite a direction in which the first radar radiates the first wave; and a processor configured to detect a third object existing in the first region on the basis of the first positional information and the second positional information.
    Type: Application
    Filed: July 18, 2013
    Publication date: March 6, 2014
    Inventors: Takeshi MORIKAWA, Koichi Tezuka, Koichi Iida
  • Patent number: 8665140
    Abstract: This disclosure provides a signal processing device, which includes an echo signal input unit for being inputted with echo signals caused by electromagnetic waves discharged from an antenna and reflected on one or more target objects, an echo signal level detector for detecting a level of each of the echo signals with reference to an azimuth and a distance to the antenna, a level change detector for detecting a level change between the echo signals from locations close to each other, the locations of the echo signals being such that the distances from the antenna are substantially the same but the azimuths are different, a pattern output module for comparing the level change with a predetermined reference pattern and outputting a level change pattern, and a missing determining module for determining a missing of a signal based on at least two of the level change patterns.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 4, 2014
    Assignee: Furuno Electric Company Limited
    Inventors: Kazuya Nakagawa, Hitoshi Maeno
  • Publication number: 20140049421
    Abstract: A bend sensor for use in wirelessly sensing an amount of bend of a joint or other monitored object. The sensor includes a radio frequency (RF) antenna and an integrated circuit linked to the antenna. The integrated circuit or chip is passive and responds to, or is powered by, a read signal received by the antenna to transmit a reflected signal via the antenna such as to an RFID reader. The sensor also includes a transducer linked to the integrated circuit. The transducer defines reflecting impedance, which modulates amplitude and phase of the reflected signal. The transducer has impedance varying with deformation or bend. In one example, the transducer includes an upper conductor, and the amount of the deformation is defined by a bend radius of the upper conductor. The read signal may be at 5 GHz or higher such with the antenna and the transducer being microwave structures.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: DISNEY ENTERPRISES, INC
    Inventors: Jasmin Grosinger, Joshua D. Griffin
  • Publication number: 20140049422
    Abstract: This disclosure provides systems, methods and apparatus for tuning a transmit coil for operation in a plurality of frequency bands. In one aspect, a method of wireless power transmission is provided. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 20, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: William H. Von Novak, Pavel Monat, Edward Kallal
  • Patent number: 8654005
    Abstract: Methods for resolving radar ambiguities using multiple hypothesis tracking are described. One such method includes (a) choosing a single waveform for each of a plurality of dwells of a first scan, wherein the single waveforms of consecutive scans are different, (b) generating the first scan using the single waveform for each of the dwells of the first scan, (c) receiving observation data as a result of the first scan, the observation data comprising measured positions of true targets and false targets, (d) generating, using multiple hypothesis tracking, position predictions for true targets and false targets, (e) comparing the predicted positions and measured positions, repeating (a)-(e) until a preselected process condition is met, and determining the true targets based on the results of the comparisons.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 18, 2014
    Assignee: Raytheon Company
    Inventors: Keian Christopher, Samuel S. Blackman, Robert A. Rosen, Robert J. Dempster
  • Publication number: 20140043185
    Abstract: A method for detecting targets using a mobile radar having a rotary antenna, notably small targets buried in radar clutter, without increasing the number of false detections, includes determining pre-detections during N antenna revolutions, including determining pre-detections revolution by revolution, each pre-detection being stored in a grid of cells centered on the position that the radar occupied at the start of the current revolution, each grid cell corresponding to an azimuth range and a distance range. This step also includes, at the end of each revolution, a step of shifting all the pre-detections stored in the grid during the previous revolutions by the movement undergone by the radar during the last revolution. The method also includes determining detections, a target being detected from the moment that a set of pre-detections stored in the grid has its distances to the radar which constitute a linear progression during the N antenna revolutions.
    Type: Application
    Filed: April 5, 2012
    Publication date: February 13, 2014
    Applicant: THALES
    Inventors: Jean-Michel Quellec, Stephane Kemkemian, Xavier Mayeux
  • Publication number: 20140035777
    Abstract: The present invention provides a method and a system for producing a classifier for recognizing an obstacle, including a processor configured to: display surface data of a plurality of obstacles measured by a distance measurement sensor in a two-dimensional (2D) coordinate system; group and classify the surface data displayed in the 2D coordinate system for each obstacle; setting a plurality of feature references to analyze region based features displayed for each obstacle in the 2D coordinate system and calculate the respective feature references for each obstacle grouping; and producing the classifier by applying a weight to each of the feature references.
    Type: Application
    Filed: December 13, 2012
    Publication date: February 6, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Jin Hak Kim, Kyung Ho Yoo, Yoon Ho Jang, Seong Su Im, Hui Sung Lee, Kyoung Moo Min, Eun Jin Choi
  • Patent number: 8643536
    Abstract: A positioning system for radio frequency devices includes a two-way radio antenna, for vehicles, having a transmitting and a receiving element. Reference antennas have retro-directive arrays which can shape the signal beams in elevation; polarize transmission and reception signals according to a circular or a linear polarization, the polarized transmission retro-directively reflecting signals having the same polarization as the incident ones in the case of circular polarization, or retro-directively reflecting signals having orthogonal polarization in the case of linear polarization. An encoder is included for transmitting an identification code of the reference antenna. A controller processes the spatial and temporal data resulting from communication through the radio waves transmitted and received by the vehicle antennas and reflected by the reference antennas. The controller calculates the distance of the vehicle from the reference antennas that have reflected the signal transmitted by the antennas.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 4, 2014
    Assignee: Elettric 80 S.p.A.
    Inventors: Vittorio Cavirani, Francesco Trotta, Luca Marcaccioli, Roberto Vincenti Gatti, Franco Manzini, Domenico Di Terlizzi
  • Patent number: 8643534
    Abstract: A system for sensing aircraft and other objects uses bistatic radar with spread-spectrum signals transmitted from remotely located sources such as aircraft flying at very high altitudes or from a satellite constellation. A bistatic spread spectrum radar system using a satellite constellation can be integrated with a communications system and/or with a system using long baseline radar interferometry to validate the digital terrain elevation database. The reliability and safety of TCAS and ADS-B are improved by using the signals transmitted from a TCAS or ADS-B unit as a radar transmitter with a receiver used to receive reflections. Aircraft and other objects using spread spectrum radar are detected by using two separate receiving systems. Cross-Correlation between the outputs of the two receiving systems reveals whether a noise signal is produced by the receiving systems themselves or is coming from the outside.
    Type: Grant
    Filed: August 25, 2012
    Date of Patent: February 4, 2014
    Inventor: Jed Margolin
  • Publication number: 20140015708
    Abstract: An apparatus and associated method for improved angular resolution capability of a remote sensing echo system based on utilizing both a first and a secondary echo of a single transmission signal.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 16, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: IGAL BILIK
  • Patent number: 8624774
    Abstract: The invention concerns a method and system of locating objects by means of UWB signals, the system including a search device (D1), incorporated in a portable apparatus (11) and provided with a pair of antennae (A1, A2), and at least one target device (D2) attached to an object sought (12). The target device (D2) includes, in addition to the transceiver (34, 35), a very low power consumption wake up receiver (46) which, when the target device is in a standby state, can receive a UWB wake up signal to switch on said device. This target device is arranged for measuring a time difference (tdiff) between the respective receptions of two locating signals respectively emitted by the two antennae (A1, A2) of the search device and for transmitting said time difference in a return signal that further contains, in a preferred variant, a signal processing time (trproc). Thus, it is not necessary for the two devices to be synchronized.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 7, 2014
    Assignee: The Swatch Group Research and Development Ltd
    Inventor: Luca De Rosa
  • Patent number: 8587467
    Abstract: A method for determining locations of a moving emitter is disclosed. Initially, a set of emitter pulses is collected when a collector platform moves over a collection baseline. In addition, the time and location of the collection platform are recorded each time an emitter pulse is collected. A set of time-tagged pulse time-of-arrival (TOA) values is then generated by associating a recorded collection time value to each of the collected emitter pulses. Next, a set of time-tagged and position-tagged pulse TOA values is generated by associating a recorded collection location value to each of the time-tagged pulse TOA values. Finally, a set of location values and velocity values of a moving emitter is estimated based on the time-tagged and position-tagged pulse TOA values.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Paul D. Zemany
  • Publication number: 20130300597
    Abstract: A high resolution processing device that is provided to a target finder for detecting a presence of a target, and that increases resolution of a received signal received by the target finder, includes a first change amount calculator, a second change amount calculator, a coefficient setting component, and an output signal production component. The first change amount calculator calculates as a first change amount an amount of change in the received signal received by the target finder per unit quantity in one direction of an angle direction and a distance direction. The second change amount calculator calculates as a second change amount an amount of change in the first change amount per unit quantity in the one direction. The coefficient setting component sets at least one coefficient based on the first change amount and the second change amount.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 14, 2013
    Applicant: FURUNO Electric Company Limited
    Inventor: Akihiro HINO
  • Publication number: 20130300598
    Abstract: The apparatus according to the present invention is an apparatus for measuring width direction end position of a strip which passes through an enclosed space surrounded by a plurality of surfaces. The apparatus includes an antenna section which emits electromagnetic waves toward the width direction end and receives the electromagnetic waves reflected by the width direction end; a signal processing section for determining a position of the width direction end using the reflected electromagnetic waves; and a scattering plate for scattering electromagnetic waves which are incident thereon, wherein the antenna section is installed on a first surface which faces the width direction end a position of which is to be determined and the scattering plate is installed on a second surface which faces the first surface.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Masahiro YAMAMOTO, Takahiro YAMAKURA, Yasumasa KATO, Tomoki NAKAO
  • Publication number: 20130300596
    Abstract: An apparatus includes a first array including sensors; a second array including sensors that are not collinear with the sensors of the first array except for a sensor that defines the origin of a spatial phase; and a signal processing unit that generates covariance matrices including a first covariance matrix and a second covariance matrix based on reflected waves received by the first and second arrays from targets, estimates first angles of the targets based on the first covariance matrix, reproduces an angle matrix based on the estimated first angles, performs triangular decomposition on the product of a generalized inverse matrix of the angle matrix and the second covariance matrix to obtain a matrix, constructs a similarity transformation problem from submatrices of the obtained matrix, and estimates second angles of the targets based on the estimated first angles and solutions of the similarity transformation problem.
    Type: Application
    Filed: April 2, 2013
    Publication date: November 14, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Kazuo SHIRAKAWA
  • Publication number: 20130293408
    Abstract: Apparatus and a method for processing a radar image, the method comprising: using a radar, generating a radar image of an area of terrain (8), the radar image deriving from radar observations taken along a plurality of azimuth angles; performing a background extraction process on the radar image to extract a background image comprising extracted radar observations, the background extraction process comprising estimating a range spread of a radar echo from the surface of the terrain (8) as function of the azimuth angle and a tilt of the radar relative to the surface of the terrain (8); fitting a model to the extracted radar observations along a particular azimuth angle; determining a value of a parameter indicative of the goodness of fit between the model and the extracted radar observations along the particular azimuth angle; and determining a classification depending on the value of the parameter for that azimuth angle.
    Type: Application
    Filed: November 10, 2011
    Publication date: November 7, 2013
    Applicant: THE UNIVERSITY OF SYDNEY
    Inventors: James Patrick Underwood, Giulio Reina
  • Patent number: 8571574
    Abstract: A system and method for providing wireless network services using three-dimensional access zones is provided. One or more sensors may determine signal strength information, distance, or other positional information for wireless devices. An agent may provide information relating to fixed wireless reference points, and may control underlying operating systems for the reference points based on policies defined by a manager. For example, the manager may be coupled to the sensors and to the agent, and may define a three-dimensional coordinate system for a managed environment. By collecting information from the sensors and the agent, the manager may triangulate three-dimensional locations of the wireless devices, and may enforce three-dimensional access zone policies for the wireless network via the agent.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 29, 2013
    Assignee: CA, Inc.
    Inventor: Joannes G. van de Groenendaal
  • Publication number: 20130278457
    Abstract: A direction detection apparatus includes antennas of a plurality of systems having polarization characteristics different from each other and configured to receive a signal reflected by an object, a determination unit configured to determine the polarization characteristic of the received signal, and an operation processing unit configured to select a detection range corresponding to the polarization characteristic which have been determined.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Applicant: Honda elesys Co., Ltd.
    Inventor: Hiroyuki KAMO
  • Publication number: 20130278456
    Abstract: A receiving and processing device includes an antenna extension unit configured to perform a process of arranging data of two or more continuous receiving antennas in which one or more intervals from one end are different from a regular interval at the other positions in a receiving antenna array in which a plurality of receiving antennas are arranged at two or more irregular intervals, a process of inverting phases of the arranged data of the two or more receiving antennas, a process of rearranging the phase-inverted data of the two or more receiving antennas so as to invert the arrangement of the data, a process of rotating the phases of the rearranged data of the two or more receiving antennas, and a process of connecting the phase-rotated data of the two or more receiving antennas to the data of the original two or more receiving antennas.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 24, 2013
    Applicant: Honda elesys Co., Ltd.
    Inventor: Honda elesys Co., Ltd.
  • Publication number: 20130271311
    Abstract: A receiving and processing device includes an antenna extension unit configured to perform a process of additionally arranging data pieces of two or more continuous receiving antennas in a receiving antenna array in which the plurality of receiving antennas are arranged at regular intervals, a process of inverting phases of data pieces of the additionally-arranged two or more receiving antennas, a process of rearranging the data pieces of the phase-inverted two or more receiving antennas so as to invert the arrangement of the data pieces, a process of rotating the phases of the data pieces of the rearranged two or more receiving antennas, and a process of connecting the data pieces of the phase-rotated two or more receiving antennas to the data pieces of the plurality of receiving antennas.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Inventors: Itaru IZUMI, Takeshi Kambe
  • Patent number: 8558731
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 15, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8547273
    Abstract: The invention provides a pulse radar apparatus, and a control method thereof, that permits to readily downsize and to lower its cost and allows information on an object to be detected in high precision by removing an influence of noise when a gain of a variable gain amplifier is discontinuously changed corresponding to detected distance, with a simple configuration. A variable gain amplifier 135 configured to adjust a gain corresponding to a distance gate is used to be able to detect weak reflected wave from a distant object and to amplify a reflected wave from a short distance with a low gain. An offset noise from the variable gain amplifier 135 is prepared together with interference noise and self-mixing noise in advance as a replica signal of unwanted wave and the replica signal is removed from a baseband signal in detecting the object T.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 1, 2013
    Assignees: Furukawa Electric Co., Ltd., Furukawa Automotive Systems Inc.
    Inventors: Yasushi Aoyagi, Kazutaka Kamimura, Yoshihito Ishida