By Monitoring Patents (Class 342/173)
  • Patent number: 7936302
    Abstract: A method and apparatus are described for the unwrapping of a set of phase values observed for an incoming signal on a phased array antenna. The difference between values observed on adjacent elements in the array forms a first data set. The differences between adjacent ordinates in the first data set forms a second data set. The values in the second data set are rounded to the nearest whole multiple of one complete cycle before the differencing process is reversed to provide the values (representing a whole number of complete cycles) which are added to the observed phase values to provide the unwrapped phase values.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 3, 2011
    Assignee: Roke Manor Research Limited
    Inventors: David Herbert Brandwood, Michael-Richard Richardson
  • Patent number: 7925218
    Abstract: Method for planning and/or dimensioning links between several stations in a wireless telecommunication system including the following steps: a) establishing a relation, in logarithmic scale, for each existing link between the ground equivalent radiated power, EIRPground, the signal to noise density ratio required (C/No)req for a link, and a quality indicator QaF, b) determining the quality indicator QaF from the contribution of the first type items (link analysis disturbance) that are linear in EIRPground and the second type items that are non-linear in EIRPground, c) determining the EIRPground from the quality indicator QaF determined in step b).
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 12, 2011
    Assignee: Thales
    Inventor: Patrick Bruas
  • Patent number: 7925251
    Abstract: A method for determining changes in internal delays of RF units, the RF units including a plurality of receivers and transmitters. The method includes providing initial direct signals' time of arrivals of the RF units initial internal delays of the RF units. Following this, each transmitter transmitting a direct signal, and the real-time direct signal's time of arrivals of the RF units, are measured. Then, changes in internal delays of the RF units are calculated based on the real-time direct signals' time of arrivals and initial direct signals' time of arrivals. And finally, real-time internal delays of the RF units are calculated based on the changes in internal delays and the initial internal delays of the RF units.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 12, 2011
    Assignee: Camero-Tech Ltd.
    Inventors: Eyal Hochdorf, Ran Timar, Amir Beeri, David Gazelle
  • Patent number: 7924224
    Abstract: In a network-based Wireless Location System (WLS), geographically distributed Location Measurement Units (LMUs) must be able to detect and use reverse channel (mobile to network) signals across multiple BTS coverage areas. By using Matched Replica correlation processing with the local and reference signals subdivided into discrete segments prior to correlation, the effects of mobile clock drift and Doppler shifts can be mitigated allowing for increased processing gain.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: April 12, 2011
    Assignee: TruePosition, Inc.
    Inventors: Ronald LeFever, Rashidus S. Mia, Robert J. Anderson
  • Patent number: 7893868
    Abstract: A radar device is mounted on a vehicle, for detecting an object, and includes: a transmitting unit for transmitting an electromagnetic wave as a transmitter signal; a receiving unit for receiving a reflected signal that is reflected from the object as a receiver signal; a signal processing unit for measuring a distance and a relative velocity between the vehicle and the object on the basis of a beat signal that is obtained by the transmitter signal and the receiver signal; and an interference detecting unit for detecting the interference signal from another radar device or a communication device on the basis of a signal intensity of the frequency range that is not used for measuring the distance to the object and the relative velocity of the object.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: February 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenichi Akita, Kado Nakagawa
  • Patent number: 7893866
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 22, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Publication number: 20110037643
    Abstract: An enhanced impulse response measurement for a pulsed frequency modulation (FM) radar signal provides a more accurate measurement of the amplitude of a secondary response relative to the amplitude of a main response. The pulsed FM radar signal is sampled to produce a time-domain sample record. The sample record is windowed to produce a windowed sample record. The windowed sample record is transformed into a frequency-domain spectrum. The spectrum is multiplied with the complex conjugate of a frequency-domain estimate of a transmitted pulsed FM radar signal to produce a de-spreaded pulse. The de-spreaded pulse is transformed into the time domain to produce a measurement of the impulse response having a main response and a secondary response. The amplitude of the secondary response is corrected to eliminate errors caused by the windowing.
    Type: Application
    Filed: September 30, 2009
    Publication date: February 17, 2011
    Applicant: TEKTRONIX, INC.
    Inventors: Shigetsune Torin, Thomas C. Hill, III
  • Patent number: 7889121
    Abstract: A transmit/receive module that reduces size and weight of a radar apparatus is disclosed. The transmit/receive module includes a transmit input terminal, a receive output terminal, a transmit line, a receive line, and a plurality of branch devices. During monitoring of the transmit line, the plural branch devices are configured so that a standard signal inputted to the transmitting terminal passes through the transmit line, and is outputted to the receive output terminal. During monitoring of the receive line, the plural branch devices are configured so that the standard signal inputted to the transmitting terminal passes through the receive line, and is outputted to the receive output terminal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuhiro Kanto
  • Patent number: 7889123
    Abstract: A GPS assembly test system and method for a wireless communications device, such as a mobile telephone, having an integrated GPS receiver. The GPS assembly test can be performed without the requirement of external testing equipment. The GPS assembly test activates the wireless communications device transmitter during testing to increase GPS in-band noise. If the GPS receiver components are installed and operating properly, a change in noise is expected and can be detected. Embodiments include test software to initiate the transmitter during testing. Different methods can be used to detect a change in noise density. For example, an expected automatic reduction in gain control to a low noise amplifier (LNA) can be detected when the transmitter is activated. Another example includes setting LNA gain to a fixed gain and detecting expected changes in data generated an analog-to-digital (A/D) converter in response to the increased noise.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: February 15, 2011
    Assignee: RF Micro Devices, Inc.
    Inventor: Andreas Warloe
  • Patent number: 7884755
    Abstract: A level measuring instrument has a variable transmitting power for measuring a filling level in a tank. The level measuring instrument includes a generator unit generating one of a first oscillator signal and a second oscillator signal. The generator unit generates a transmit signal from one of the first oscillator signal and the second oscillator signal. The level measuring instrument includes further a controller controlling the generator unit. The generator unit generates one of first and second transmitting powers for the transmit signal.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: February 8, 2011
    Assignee: Vega Grieshaber KG
    Inventors: Josef Fehrenbach, Daniel Schultheiss, Christoph Mueller, Bernhard Corbe
  • Patent number: 7881671
    Abstract: A system supporting data retrieval from a plurality of wireless sensor nodes is defined. The system includes the plurality of wireless sensor nodes and a data retrieval device. The plurality of wireless sensor nodes include a transceiver receiving a first signal and transmitting a second signal. The second signal includes a sensed datum or an encoded statistic based on the sensed datum identified at the plurality of wireless sensor nodes. The data retrieval device includes a plurality of antennas transmitting the first signal toward the plurality of wireless sensor nodes and receiving the second signal from the plurality of wireless sensor nodes, and a processor coupled to receive the received second signal from the plurality of antennas, the processor defining a virtual receive signal from the received second signal for the plurality of antennas and processing the defined virtual receive signal to determine the identified sensed datum.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 1, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Akbar M. Sayeed, Thiagarajan Sivanadyan
  • Patent number: 7880667
    Abstract: Methods and apparatus for preventing spoofing of targets, such as aircraft, in an air traffic control system. In one embodiment, first and second antennas at respective ground stations can be used to receive a signal transmitted by an aircraft from which a phase signal can be generated. A position of the aircraft generate can be generated from peaks and troughs in the phase signal due to movement of the aircraft. The determined position can be compared to a position reported by the aircraft to identify spoofing of the target.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 1, 2011
    Assignee: Raytheon Company
    Inventor: Paul J. Lanzkron
  • Patent number: 7880670
    Abstract: A signal measurement system tests an RF component in an RF test facility, such as an RF anechoic chamber. The system includes a repeater which is connected to an exterior antenna disposed outside the chamber and a transmitting antenna disposed inside the chamber. The repeater receives the RF broadcast signal from the exterior antenna and rebroadcasts it as an RF testing signal inside the chamber. The subject antenna receives the RF testing signal, which is then analyzed with a computer. The repeater may also modify the RF testing signal to produce a wide variety of test situations that mimic those available in a traditional field-test.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 1, 2011
    Assignee: AGC Automotive
    Inventors: Wladimiro Villarroel, Argy Petros
  • Patent number: 7875837
    Abstract: A method for engaging a hostile missile with an interceptor missile includes mathematically dividing an estimated target trajectory into portions, the junction of each portion with the next defining a possible intercept point. The engagement for each possible intercept point is modeled, to generate a probability of lethal object discrimination which is processed to generate a probability of intercept for each of the possible intercept points. The intercept point having the largest probability of intercept defines a selected intercept point from which intercept missile launch time is calculated, interceptor missile guidance is initialized, and the interceptor is launched at the calculated launch time and under the control of the interceptor missile guidance. Also, a method for estimating discrimination performance of a system of sensors includes generating sensor data signal-to-noise ratio and an aspect angle between the sensor and a lethal object.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Renee Szabo, Christian E. Pedersen, Wade E. Cooper
  • Patent number: 7876261
    Abstract: A radar system has a phased-array antenna and plural local oscillators for controlling local transmit/receive units. The local oscillators are slaved to a master oscillator. The analog clock signal paths are subject to relative changes in electrical length. The electrical lengths of the signal paths are measured by phase-detecting forward- and reverse-direction clock signal flows. The phase-detected information for each signal path is a measure of the time delay. The radar command processor receives the measure of time delay and corrects the radar operation in response thereto.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Gregory F. Adams
  • Patent number: 7864101
    Abstract: According to one embodiment, a radar tracking system includes a radar coupled to a radar processing system. Radar processing system receives images from the radar and that are each obtained at a differing angular orientation of the radar to a target. Radar processing system dithers each image along its azimuthal extent and then combines the dithered images to form an enhanced image of the target.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: January 4, 2011
    Assignee: Raytheon Company
    Inventors: Raymond Samaniego, Jagannath Rath, Brandeis E. Marquette
  • Patent number: 7858910
    Abstract: A method and apparatus for remotely sensing the content in a field of view are disclosed. The method includes transmitting a coherent optical signal into a field of view; receiving and detecting a reflection of the optical signal from a portion of the field of view bounded by the platform's boresight; correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the platform's boresight. The apparatus comprises a radome; an optical signal generator; an optical transmission channel; an optical receiver channel; and a plurality of electronics capable of receiving the representative signal and: correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the boresight from the corrected first instance of the reflection.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: December 28, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A Williams
  • Patent number: 7852258
    Abstract: In a power-loss reducing system, a transmitting unit causes a radar to transmit a measurement radio wave, and a power monitoring unit monitors power of the measurement radio wave transmitted from the radar through a cover while changing a positional relationship between the cover and the radar. An extracting unit extracts a value of the changed positional relationship between the cover and the radar based on a result of the monitoring of the power such that the extracted value of the positional relationship allows reduction of power loss of a radar wave transmitted, through the cover, from the radar located based on the extracted value of the positional relationship.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 14, 2010
    Assignee: Denso Corporation
    Inventors: Yusuke Kato, Yutaka Aoki
  • Patent number: 7847723
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Publication number: 20100253570
    Abstract: The present invention relates to antenna calibration for active phased array antennas. Specifically, the present invention relates to a built in apparatus for autonomous antenna calibration Accordingly, the present invention provides a method of continuous on-line monitoring of each element in an array antenna comprising the steps of: (i) transmitting known test signals to one or more elements of the array antenna; (ii) monitoring responses of the elements to the test signals; and (iii)comparing the response with expected responses for the elements to determine an operation condition of the elements.
    Type: Application
    Filed: August 8, 2008
    Publication date: October 7, 2010
    Applicant: BAE SYSTEMS PLC
    Inventor: Michael Andrew Scott
  • Patent number: 7808425
    Abstract: The present invention is directed to a space-borne altimetry apparatus having a first receiving antenna, pointing to outer space, for receiving at least one signal emitted by a remote satellite emitter via a direct path; a second receiving antenna, pointing to the Earth, for receiving said signal via an indirect path including a reflection from the Earth surface; and a signal processing means for computing a distance of the apparatus from a specular reflection point of the signal on the Earth surface by cross-correlating the signals received by said first and second antennas; wherein both the first and second receiving antennas are high-gain steerable antennas; and wherein the apparatus may also include antenna control means for steering at least one receiving lobe of the first antenna toward the remote satellite emitter, and at least one receiving lobe of the second antenna toward a specular reflection point on the Earth surface.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 5, 2010
    Assignee: Agence Spatiale Europeenne
    Inventors: Manuel Martin Neira, Salvatore D'Addio
  • Patent number: 7791531
    Abstract: A VOR monitoring receiving apparatus includes a receiving circuit for receiving a field signal from a VOR apparatus, and outputting content of the field signal to a plurality of signal systems, first and second monitoring receiving circuits provided in first and second signal systems included in the plurality of signal systems, respectively, for monitoring the content of the field signal, a self-check signal generator for generating a self-check signal necessary to confirm whether the first and second monitoring receiving circuits normally operate, a VOR monitoring controller for detecting an abnormality of the VOR apparatus based on monitoring results of the first and second monitoring receiving circuits, a switch for performing switching to alternately output the field signal and the self-check signal to the first and second signal systems, and a switch controller for controlling the switch to perform switching whenever a preset time elapses.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroki Kihara
  • Patent number: 7786924
    Abstract: According to one embodiment, a DVOR apparatus includes a main device outputting a radio frequency (RF) signal, a distributor distributing the RF signal output from a main device into a plurality of systems, and sideband antennas radiating the RF signal, wherein, the main device includes a RF signal output unit outputting the RF signal, a measuring unit measuring power levels of reflected waves, a determining unit determining presence or absence of faulty power levels from the measurement results, a generating unit generating selection signals to control selections of outputs of the RF signal for the distributor, a comparison unit comparing the selection signals with the determining results, and a specifying unit specifying faulty sideband antennas and a faulty transmission path of the RF signal among the main device and the distributor from the comparison results.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasushi Tominaga
  • Publication number: 20100214157
    Abstract: Narrow virtual transmit pulses are synthesized by differencing long-duration, staggered pulse repetition interval (PRI) transmit pulses. PRI is staggered at an intermediate frequency IF. Echoes from virtual pulses form IF-modulated interference patterns with a reference wave. Samples of interference patterns are IF-filtered to produce high spatial resolution holographic data. PRI stagger can be very small, e.g., 1-ns, to produce a 1-ns virtual pulse from very long, staggered transmit pulses. Occupied Bandwidth (OBW) can be less than 10 MHz due to long RF pulses needed for holography, while spatial resolution can be very high, corresponding to ultra-wideband (UWB) operation, due to short virtual pulses. X-Y antenna scanning can produce range-gated surface holograms from quadrature data. Multiple range gates can produce stacked-in-range holograms. Motion and vibration can be detected by changes in interference patterns within a range-gated zone.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Inventor: Thomas Edward McEwan
  • Publication number: 20100214158
    Abstract: A gated peak detector produces phase-independent, magnitude-only samples of an RF signal. Gate duration can span as few as two RF cycles or thousands of RF cycles. Response is linearly proportional to RF amplitude while being independent of RF phase and frequency. A quadrature implementation is disclosed. The RF magnitude sampler can finely resolve interferometric patterns produced by narrowband holographic pulse radar.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Inventor: Thomas Edward McEwan
  • Patent number: 7773025
    Abstract: A method and system for remotely affecting electronics within a conductive enclosure are disclosed. The method can comprise transmitting electromagnetic radiation of two different frequencies to the enclosure. The two different frequencies can be selected such that they penetrate the enclosure and therein form electromagnetic radiation of a third frequency that resonates within the enclosure. The third frequency can interact with the electronics, such as to disrupt operation thereof.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 10, 2010
    Assignee: The Boeing Company
    Inventors: Sandor Holly, Steven B. Pickard
  • Patent number: 7773031
    Abstract: An acquisition channel (20) includes a UWB sampler block (21) coupled to an analog integration block (22) further coupled to a digital integration block (24) via an analog/digital converter (23). For each range cell the UWB sampler block (21) repeatedly samples the received signal by tuning the sampling instants to the range cells to be acquired. The acquisition channel (20) is further coupled to a processor (26) and a database (25).
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Camero - Tech Ltd.
    Inventors: David Gazelle, Amir Beeri, Ron Daisy
  • Patent number: 7773030
    Abstract: A method and system for antenna training for communication of multiple parallel data streams between multiple-input multiple-output communication stations is provided. An implementation involves performing antenna training by obtaining optimal antenna training coefficients by multi-stage iteration in estimating the multi-dimensional beamforming coefficients.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: August 10, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pengfei Xia, Chiu Ngo
  • Patent number: 7764218
    Abstract: Described in an example embodiment herein is a procedure that comprises sampling one or more channels that are not in use for a short time at certain intervals. In particular embodiments, the interval duration is irregular so as to prevent “out of step” lock with a radar's pulses. During the sampling period, detection events are stored in terms of start time and duration. If potential radar events are detected, the channels are sampled for a longer, second interval to determine whether the detection events are indicative of radar. The length of the sampling period determines the number of samples needed to get an acceptable detection probability.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: July 27, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Johannes Kruys, Hari Narayanan Rangarajan, Raghuram Rangarajan, Christopher Meil
  • Publication number: 20100171650
    Abstract: There is provided a multi-antenna measurement method of measuring a device under test having at least two receive antennas and capable of considering the spatial correlation between antennas in a simpler configuration. Two different uncorrelated signal sequences “a” and “b” are generated by the pseudo base transceiver station 4. These signal sequences “a” and “b” are transmitted as radio waves from positions (positions of transmitting antenna elements 31 and 32) of the two base angles of the isosceles triangle toward the device under test 1 provided at a position of the apex angle respectively to measure the received antennas by receive antennas of the device under test 1. This method is easy to calibrate and can consider the spatial correlation between antennas in a simpler configuration.
    Type: Application
    Filed: October 13, 2009
    Publication date: July 8, 2010
    Applicant: NTT DoCoMo, Inc.
    Inventors: Yoshiki OKANO, Daisuke KURITA, Shin NAKAMATSU, Takashi OKADA
  • Patent number: 7737885
    Abstract: The invention relates to an FMCW radar system and a method of operating an FMCW radar system to produce a linear frequency ramp. The FMCW radar system includes a VCO, a frequency divider coupled to the VCO output, followed by an A/D converter. A down-converter shifts the digitally converted signal to baseband samples, followed by a low-pass filter coupled to an output thereof. A VCO frequency estimator produces instantaneous VCO frequency estimates from phase differences determined from the filtered baseband samples. A D/A converter coupled to an output of the VCO frequency estimator produces an input signal for the VCO to produce therewith a linear VCO frequency ramp. A ?-? modulator is coupled between the VCO frequency estimator and the input of the D/A converter to produce a dithered VCO control signal, thereby increasing the effective number of bits of the D/A converter.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 15, 2010
    Assignee: Infineon Technologies AG
    Inventor: Volker Winkler
  • Patent number: 7737883
    Abstract: The method generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the method is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 15, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Patent number: 7737884
    Abstract: The invention relates to a method for operating a radar system (100) especially of a motor vehicle (200), comprising at least one first sensor module (110a) and at least one additional sensor module (110b). A detection range (A) of the first sensor module (100a) at least partly overlaps a detection range (B) of the additional sensor module (110b) while the first sensor module (100a) receives a transmit signal transmitted by the additional sensor module (110b) in a monitoring mode (305) in order to obtain information about the operating condition of the additional sensor module (110b).
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: June 15, 2010
    Assignee: Valeo Schalter und Sensoren GmbH
    Inventors: Udo Haberland, Urs Luebbert
  • Patent number: 7734416
    Abstract: The automatic vehicle braking device is equipped with a braking force control processing portion which, based on the judgment result of a collision judgment processing portion and the judgment result of a steering avoidance judgment processing portion, imparts a turning property in a direction of head-on collision to the vehicle when the lateral position of the obstacle with respect to a travel route curve is large in a condition in which the driver is unconscious of a high possibility of collision between the vehicle and the obstacle and has taken no steering avoidance action yet. As a result, it is possible to reduce the speed of the vehicle and, at the same time, mitigate the damage suffered by the vehicle occupants at the time of collision.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 8, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takuto Yano, Shinji Taniguchi, Yuji Shimizu, Atsushi Yuyama
  • Patent number: 7719462
    Abstract: A time-of-flight calibration system for a radar-based measurement device is provided. The time-of-flight calibration system includes a target antenna and a waveguide, e.g. a coaxial cable. The waveguide is coupled at one end to the target antenna and terminated at its other end by a wave-reflecting impedance.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: May 18, 2010
    Assignee: Siemens Milltronics Process Instruments, Inc.
    Inventors: Shaun Philip Harwood, George Quinton Lyon
  • Publication number: 20100073219
    Abstract: A method of electromagnetic interference assessment applicable to a receiver, comprising the following steps: initially, scanning a plurality of frequencies; next, for each scanned frequency, measuring corresponding signal strength value; finally, based on the correspondence between the frequencies and the signal strength values, acquiring an analysis curve graph, furthermore assessing the extent of electromagnetic interference occurring in the receiver through the acquired analysis curve graph.
    Type: Application
    Filed: December 15, 2008
    Publication date: March 25, 2010
    Applicant: ALI (ZHUHAI) CORPORATION
    Inventor: QIN HE
  • Patent number: 7683828
    Abstract: A device and method for measuring phase and power shifts in a simultaneous dual polarization radar system comprises an access port, a quadrature mixer, and a power detector. The access port is configured to couple to the simultaneous dual polarization radar system near the antenna of the simultaneous dual polarization radar system. The quadrature mixer is configured to mix a first signal from a first polarization and a second signal from a second polarization. The first signal and the second signal are sampled through the access port. The first power detector is configured to measure the power level of the first signal.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: March 23, 2010
    Assignee: Enterprise Electronics Corporation
    Inventors: James J. Stagliano, Jr., James Larry Alford, James Rogers Helvin, Dean A. Nelson
  • Publication number: 20100066591
    Abstract: The invention is related to radar system characterization. In one embodiment, a radar module characterization system comprises a target, a conveyor comprising at least one connector configured to removably couple a radar module to the conveyor and to linearly displace the radar module relative to the target, and a control system communicatively coupled to the conveyor. In another embodiment, a method comprises linearly displacing a radar module relative to a target, transmitting a signal from the radar module toward the target, and determining a characteristic of the radar module based on a reflection of the signal from the target.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Inventor: Erich KOLMHOFER
  • Patent number: 7675461
    Abstract: A circuit for a display used on an aircraft causes the display to display a composite terrain image. The composite terrain image can be formed from first terrain data from a terrain database and second terrain data from a radar system. A display control circuit can generate a display signal for the composite terrain image. The display signal is received by the display. The composite terrain image can be viewed by a pilot.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 9, 2010
    Assignee: Rockwell Collins, Inc.
    Inventors: Patrick Dennis McCusker, Richard Marcel Rademaker, Richard D. Jinkins, Joel Michael Wichgers, Daniel L. Woodell
  • Patent number: 7675460
    Abstract: An in-vehicle radar apparatus includes a beam emitting part that emits a beam, a casing that supports the beam emitting part, and a reference unit that is attached to the casing and is equipped with multiple surfaces usable as a reference plane. A surface of the casing to which the reference unit is attached and the reference plane form an angle that depends on which one of the multiple surfaces is used as the reference plane.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: March 9, 2010
    Assignee: Fujitsu Ten Limited
    Inventor: Hiromasa Sanada
  • Publication number: 20100057293
    Abstract: A method for recognizing a vertical misalignment of the radiation characteristic of a radar sensor of a control system for a motor vehicle, in particular of a driving speed and/or adaptive driving speed system, including the following steps: the receive power of the radar radiation reflected from an object is determined; the distance dependence and the horizontal angular dependence are compensated according to the radar equation; the functional dependence of the receive power, processed in this way, on the distance from the object is compared to an expected and stored curve of the receive power over the distance, and from this the vertical misalignment of the radiation characteristic of the radar sensor is inferred.
    Type: Application
    Filed: October 15, 2007
    Publication date: March 4, 2010
    Inventors: Dieter Hoetzer, Ruediger Jordan, Oliver Schwindt
  • Patent number: 7667639
    Abstract: Taught herein is a passive channel calibration method wherein a non-linear antenna array sets an antenna array to a non-linear formation that contains at least a combination of translation invariant dual array-element couples, detects single-azimuth ocean echoes via combinations of translation invariant dual array-element couples, estimates channel amplitude mismatch coefficients via the single-azimuth ocean echoes to implement amplitude calibration, and estimates channel phase mismatch coefficients via the single-azimuth ocean echoes after amplitude calibration and the known array position information to implement phase calibration.
    Type: Grant
    Filed: September 22, 2007
    Date of Patent: February 23, 2010
    Inventors: Feng Cheng, Xiongbin Wu
  • Publication number: 20100026560
    Abstract: A method and system for antenna training for communication of multiple parallel data streams between multiple-input multiple-output communication stations is provided. An implementation involves performing antenna training by obtaining optimal antenna training coefficients by multi-stage iteration in estimating the multi-dimensional beamforming coefficients.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Pengfei Xia, Chiu Ngo
  • Patent number: 7642950
    Abstract: Provided is a radar device includes a transmitting unit, a receiving unit for receiving the electromagnetic wave reflected by a target object of the transmission electromagnetic wave, a target object measuring unit for measuring at least a distance between the radar device and the target object on the basis of the transmission and reception electromagnetic waves, a transmission output control unit (S1, S2) for stopping or reducing a transmission output of the transmitting unit under a predetermined condition, a transmission output control function abnormality determining unit (S3 to S6) for determining that the transmission output control unit is abnormal upon receiving the reception electromagnetic wave having an intensity exceeding a predetermined threshold value even at the time of one of stop and reduction of the transmission output, and an abnormality determination time processing unit (S7) for stopping a power supply of the radar device when an abnormality is determined.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: January 5, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Koichi Kai
  • Patent number: 7633430
    Abstract: A terrain awareness and warning system includes electronics for receiving radar returns and providing terrain and/or obstacle alerts or warnings in response to the radar returns. The electronics receives information from a database and the information is utilized to suppress false alerts or warnings.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: December 15, 2009
    Assignee: Rockwell Collins, Inc.
    Inventors: Joel M. Wichgers, Richard D. Jinkins, Patrick D. McCusker, Richard M. Rademaker, Daniel L. Woodell
  • Patent number: 7612708
    Abstract: A system for tracking an object in space for position, comprises a transponder device connectable to the object. The transponder device has one or several transponder aerial(s) and a transponder circuit connected to the transponder aerial for receiving an RF signal through the transponder aerial. The transponder device adds a known delay to the RF signal thereby producing an RF response for transmitting through the transponder aerial. A transmitter is connected to a first aerial for transmitting the RF signal through a first aerial. A receiver is connected to the first, a second and third aerials for receiving the RF response of the transponder device therethrough. A position calculator is associated to the transmitter and the receiver for calculating a position of the object as a function of the known delay and the time period between the emission of the RF signal and the reception of the RF response from the first, second and third aerials. A method is also provided.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 3, 2009
    Assignee: Orthosoft Inc.
    Inventor: Jean-Louis Laroche
  • Patent number: 7598905
    Abstract: There are presented various approaches to monitor performance of RF systems and circuitry such as those used in aircraft transponders. Such monitoring may be designed to verify operational performance of transponders as set forth by FAA regulations, or may be used to periodically or continually monitor integrity of transponder performance. Data may be collected by such periodic or continual monitoring, and may be analyzed to identify potentially troublesome trends in transponder performance, allowing early intervention or repair, if warranted.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: October 6, 2009
    Assignee: Aviation Communication & Surveillance Systems LLC
    Inventors: Gregory T. Stayton, Stephen P. Williams
  • Patent number: 7592948
    Abstract: A method of calibrating a dual polarization weather radar system has been developed. The method first generates a transmission pulse from the radar system. The transmission pulse is then modified to generate a test signal that simulates a desired atmospheric condition. The test signal is transmitted directly into the radar system from a test antenna and the radar system is calibrated according to the test signal.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 22, 2009
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 7589665
    Abstract: A multistatic detection device for measuring a distance to an object includes a transmitter and a receiver, each having a high-frequency oscillator and a pulse generator. The pulse generators can be supplied with synchronisation signals emitted by signals generators, the synchronisation signals being transmitted by a data bus common to the transmitter and the receiver. The relation of the deterministic phases of high-frequency signals can be produced by the high-frequency oscillator. The method includes feeding two synchronisation signals to the transmitter and the receiver by the common data bus, the transmitter signal is transmitted towards an object, the signal passing through the receiver and contained in the data bus being mixed with a reception signal reflected by the object, thereby producing a measuring signal thereby making it possible to compare the phases of clock signals.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: September 15, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Patric Heide, Martin Vossiek
  • Patent number: 7586435
    Abstract: A radar level gauge system, for determining a filling level of a product contained in a tank, said radar level gauge system comprising: a transceiver for generating, transmitting and receiving electromagnetic signals within a frequency range; a waveguiding structure arranged to extend into said product contained in the tank and to guide a transmitted signal from said transceiver towards a surface of said product and to guide echo signals resulting from reflections at impedance transitions encountered by the transmitted electromagnetic signals, including a surface echo signal resulting from reflection at said surface, back to said transceiver; a plurality of reference impedance transitions provided substantially periodically along said waveguiding structure with a distance between adjacent reference impedance transitions that is selected such that signals resulting from reflection of said transmitted signal at each of said reference impedance transitions combine to form a reference signal having a frequency
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 8, 2009
    Assignee: Rosemount Tank Radar AB
    Inventor: Olov Edvardsson