With Electronic Scanning Patents (Class 342/371)
  • Patent number: 10790584
    Abstract: The present invention relates to a directional antenna module comprising: at least one antenna array having at least two antenna elements connected to a 180-degree hybrid providing an inphase summation signal and an out-of-phase summation signal of the antenna signals received from the antenna elements and a switching element adapted to switch between the inphase summation signal and the out-of-phase summation signal output by said 180-degree hybrid in response to a direction finding mode control signal (DFM-CRTL) to provide an antenna output signal at an antenna module output of said directional antenna module. The present invention further relates to a method for direction finding of a signal source.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 29, 2020
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventor: Markus Neinhues
  • Patent number: 10762310
    Abstract: At least some embodiments of the present invention are directed to RFID reader systems, readers, and/or arrangements configured to estimate a directional bearing of an RFID tag. In an embodiment, the present invention is an RFID arrangement configured communicate with an RFID tag via a primary transmit and receive signals and to contemporaneously determine a plurality of RSSI levels of the RFID tag over a 360-degree azimuth range via a plurality of secondary receive signals.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Zebra Technologies Corporation
    Inventors: Benjamin J. Bekritsky, Michael J. Koch, Charles Burton Swope
  • Patent number: 10750377
    Abstract: An apparatus comprises a plurality of transceiver circuits, a memory, and an interface circuit. The memory generally embodies a table associating a plurality of index values with corresponding gain and phase values for each channel of each of the transceiver circuits. In a first mode, the interface circuit may be configured to receive the corresponding gain and phase values associated with each of the plurality of index values and store the corresponding gain and phase values in the table. In a second mode, the interface circuit, in response to receiving one of the index values, configures each channel of each of the transceiver circuits with the corresponding gain and phase values from the table.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 18, 2020
    Assignee: Integrated Device Technology, Inc.
    Inventors: Samet Zihir, Kevin Sheng, Mark Cuezon, Himanshu Khatri
  • Patent number: 10722136
    Abstract: A system detects extravasation or infiltration by segregating active components that drive a passive sensor for economical single use. A receiving antenna of the passive sensor receives a transmitted signal comprising RF electromagnetic power. A first circuit transmits a first portion of the received signal through a body portion. A sensor detects a resultant signal from the body portion. A second circuit combines a reference signal comprising a second portion of the received signal with the resultant signal so as to define an output signal. A transmit antenna transmits the output signal to a receiver.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: July 28, 2020
    Assignee: Battelle Memorial Institute
    Inventor: Chad E. Bouton
  • Patent number: 10677088
    Abstract: A monitoring system for monitoring environmental conditions for rotary members includes a plurality of stationary reader antennas positioned proximate rotary members. A first sensor is coupled to a first rotary member and a second sensor is coupled to a second rotary member. Each sensor is configured to generate environmental condition data. A key phasor is coupled to a third rotary member and configured to generate key phasor data. The monitoring system also includes a data integrator communicatively coupled to each stationary reader antenna and configured to determine measurement values for the first and second environmental condition based on raw data from each stationary reader antennas and data from the key phasor.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 9, 2020
    Assignee: NUOVO PIGNONE TECHNOLOGIE SRL
    Inventors: Yongjae Lee, Joseph Alfred Iannotti, Filippo Gerbi
  • Patent number: 10644406
    Abstract: In accordance with one or more embodiments, an antenna system includes a dielectric antenna having a feed-point, wherein the dielectric antenna is a single antenna having a plurality of antenna beam patterns. At least one cable having a plurality of conductorless dielectric cores is coupled to the feed-point of the dielectric antenna, each of the plurality of conductorless dielectric cores corresponding to one of the plurality of antenna beam patterns. A controller, selects one of the plurality of antenna beam patterns and generates a control signal in response thereto. A core selector, responsive to the control signal, couples electromagnetic waves from a source to a selected one of the plurality of conductorless dielectric cores, the selected one of the plurality of conductorless dielectric cores corresponding to the selected one of the plurality of antenna beam patterns.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 5, 2020
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, Donald J. Barnickel, Farhad Barzegar, Robert Bennett, Irwin Gerszberg, Thomas M. Willis, III
  • Patent number: 10644649
    Abstract: An acoustic wave force field generator array that uses a plurality of synchronized oscillating emitters system that effectively blocks noise from passing through an acoustic barrier of wave/bubble pattern forms generated by the rapid oscillation of the integrated magnet and emitter system. The movement of the magnets also produces an EM field that generates a current to at least partially power the driver and speaker systems.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: May 5, 2020
    Assignee: Chromodynamics II LLC
    Inventor: Renee Marion Kastan Dahl
  • Patent number: 10605911
    Abstract: A system includes a controller having a processor and a memory. The processor executes computer-executable instructions stored in the memory to operate the controller. The instructions cause the controller to determine at least two beam patterns for separate scanning receive beams that operate within a field of regard to be scanned by a Radio Detection and Ranging (RADAR). The instructions cause the controller to generate beam pattern commands to form the separate scanning receive beams based on the determined beam patterns, the beam pattern commands specify an azimuth beamwidth and a pointing direction for each of the separate scanning receive beams that operate within each portion of the field of regard.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 31, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Alan Dale Parker, Jeffrey M. Yang
  • Patent number: 10534168
    Abstract: A light-scanning apparatus according to the present invention is provided with: an optical fiber; a signal-generating portion that generates a driving signal that has a frequency fd different from a resonant frequency fr of the optical fiber; and a driving portion that causes a distal end of the optical fiber to undergo spiral oscillations in accordance with the driving signal, wherein the signal-generating portion generates the driving signal that includes, during one scanning period, a first period in which an amplitude gradually increases from substantially zero to a maximum value and a second period in which the amplitude gradually decreases from the maximum value to substantially zero, and that satisfies conditional expression (1) below. N2 is the number of oscillations of the driving signal in the second period. { Eq . ? 1 } 2 ? 1 N ? ? 2 2 · 12 ( fd fr - 0.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 14, 2020
    Assignee: OLYMPUS CORPORATION
    Inventor: Atsuyoshi Shimamoto
  • Patent number: 10511075
    Abstract: A semiconductor structure is disclosed that includes a dielectric waveguide, a first transmission electrode and a second transmission electrode, and a first receiver electrode and a second receiver electrode. The first transmission electrode and the second transmission electrode that are disposed over and below the dielectric waveguide, respectively, and the first transmission electrode and the second transmission electrode are symmetric with respect to the dielectric waveguide. The first receiver electrode and a second receiver electrode that are disposed over and below the dielectric waveguide, respectively, and the first receiver electrode and the second receiver electrode are symmetric with respect to the dielectric waveguide. The dielectric waveguide is configured to receive a transmission signal from a driver circuit through the first transmission electrode and to transmit the received transmission signal to a receiver circuit through the first receiver electrode.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chewn-Pu Jou, Wen-Shiang Liao
  • Patent number: 10511380
    Abstract: System and method for efficient wideband code division multiplexing in subband domain include: aggregating L analog signals received from L antenna elements into a single aggregated signal, by using code division multiplexing with L code words, where L is an integer greater than 1; converting the single aggregated analog signal to a single aggregated digital signal, by a single analog-to-digital converter (ADC); channelizing the single aggregated digital signal into N subbands, where N is an integer greater than 1; performing circular convolutions of the N subbands with the L code words to demultiplex the channelized signal into L elements per subband; and routing each subband signal of the L elements to N beamforming circuits for performing beamforming on each of the N subbands.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: December 17, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Jason A. Ching, Hao O. Phung, Yueh-Shan Chang
  • Patent number: 10476128
    Abstract: A system includes a platform including a first mounting component and a second mounting component, the platform being secured to an external surface of a structure via the second mounting component, a first network device coupled to the first mounting component, the first network device being part of a first network, and a second network device coupled to a surface of the platform and communicably coupled to the first network device. The system may further include an energy source component configured to provide power to the first network device, wherein the second network device is configured to receive data from the first network device and provide the data to one or more client devices located within the structure.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: November 12, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Jin Dong Kim, Adrian Napoles, Ulf Jan-Ove Mattsson
  • Patent number: 10446926
    Abstract: The present invention provides a base station antenna, including power dividers, network calibration modules, and connectors. The base station antenna further includes at least two phase shifters. At least one phase shifter is integrated with a combiner, the connectors are connected to the network calibration modules, and the network calibration modules are connected to the phase shifters. The one phase shifter integrated with the combiner is connected to the power divider, and at least one output port of the at least one other phase shifter is connected to the phase shifter integrated with the combiner. The base station antenna has an integrated design of phase shifters and combiners, which allows cables in different bands to be shared, reduces a quantity of used cables, is easy to implement in an actual layout and production, facilitates the layout and heat dissipation on the whole, satisfies user requirements, and reduces costs.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 15, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Weihong Xiao, Zhiqiang Liao, Wei Su
  • Patent number: 10446903
    Abstract: Surface scattering antennas on curved manifolds provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: October 15, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Pai-Yen Chen, Brian Mark Deutsch, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Alexander Remley Katko, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10418714
    Abstract: In an electronic switching beamforming antenna array, a coplanar feeding line of the antenna array is configured on a metal plane of a substrate, and a plurality of slot antennas of aforementioned antenna array are inclinedly configured on the metal plane and configured on at least one side of the coplanar feeding line. A slot coupling segment of slot antenna is configured at one end of the slot antenna and neighbored with the coplanar feeding line so as to make the slot antenna couple with the coplanar feeding line, and a switch device of the slot antenna is configured at one portion which between one part of the slot antenna and a grounding plane formed by the metal plane. When the switch device is triggered to configure a radiating feature of the slot antenna, the antenna array is able to achieve the purpose of setting beamforming direction.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: September 17, 2019
    Assignee: Chunghwa Telecom Co., Ltd.
    Inventors: Wen-Jiao Liao, Yan-Yun Lin, Chang-Fa Yang, Chang-Lun Liao
  • Patent number: 10411344
    Abstract: Monitoring and compensating for environmental and other conditions affecting antenna elements of an antenna is described. The conditions may affect radio frequency (RF) liquid crystal of the antenna elements. In one embodiment, the antenna comprises a physical antenna aperture having an array of surface scattering antenna elements that are controlled and operable together to form a beam for the frequency band for use in holographic beam steering and a compensation controller to perform compensation on the antenna elements based on monitored antenna conditions.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 10, 2019
    Assignee: KYMETA CORPORATION
    Inventors: Tung Pham, Phillip Izdebski, Mikala C. Johnson, Taylor Stokes, Ryan A. Stevenson, Jacob Tyler Repp, Michael Severson
  • Patent number: 10389029
    Abstract: In accordance with one or more embodiments, an antenna system includes a dielectric antenna having a feed-point, wherein the dielectric antenna is a single antenna having a plurality of antenna beam patterns. At least one cable having a plurality of conductorless dielectric cores is coupled to the feed-point of the dielectric antenna, each of the plurality of conductorless dielectric cores corresponding to one of the plurality of antenna beam patterns. A core selector switch couples electromagnetic waves from a source to a selected one of the plurality of conductorless dielectric cores, the selected one of the plurality of conductorless dielectric cores corresponding to a selected one of the plurality of antenna beam patterns.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 20, 2019
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Paul Shala Henry, Donald J. Barnickel, Farhad Barzegar, Robert Bennett, Irwin Gerszberg, Thomas M. Willis, III
  • Patent number: 10367259
    Abstract: An antenna is described. This antenna includes: a ground plane; and antenna elements that are positioned in a first horizontal plane offset along a vertical direction from the ground plane. Moreover, the antenna elements are configured to generate a beam having a horizontal polarization. Furthermore, the antenna includes a planar reflector that is positioned in a second horizontal plane offset along the vertical direction from the first ground plane, so that the antenna elements are positioned between the ground plane and the planar reflector. During operation, a first reflection from the ground plane, the beam from the antenna elements, a second reflection from the planar reflector and diffractions from edges of the ground plane and the planar reflector combine to generate an antenna radiation pattern having a main beam approximately in a horizontal direction, e.g., at 10-15° from the horizontal direction.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: July 30, 2019
    Assignee: ARRIS Enterprises LLC
    Inventor: Arie Shor
  • Patent number: 10256894
    Abstract: In certain aspects of the present disclosure, an apparatus for wireless communications is provided. The apparatus comprises a plurality of block circuits, wherein each one of the plurality of block circuits is configured to receive a respective plurality of signals from a respective subset of antenna elements of an antenna array. Each one of the plurality of block circuits comprises a respective plurality of phase shifters configured to shift phases of the respective plurality of signals to obtain a respective plurality of phase-shifted signals, and a respective combiner configured to combine the respective plurality of phase-shifted signals into a respective combined signal. The apparatus also comprises a plurality of time-delay elements configured to delay the combined signals to obtain a plurality of delayed combined signals, and a combiner configured to combine the plurality of delayed combined signals into a total combined signal.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 9, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Alecsander Eitan, Amichai Sanderovich
  • Patent number: 10243276
    Abstract: A phased array antenna system includes a plurality of radio frequency (RF) tile sub-arrays. Each RF tile sub-array includes a multiplicity of RF elements, a tile control integrated circuit, a multiplicity of RF integrated circuits and a configuration storage device. The configuration storage device stores data including calibration and configuration information that is unique to the RF tile sub-array and the tile control integrated circuit. The multiplicity of RF integrated circuits, the multiplicity of RF elements, and the configuration storage device are disposed on a single associated RF tile sub-array. The system also includes an antenna controller configured to process data for steering or tracking one or more RF beams by the multiplicity of RF elements. The calibration and configuration information that is unique to the RF tile sub-array is downloaded from the configuration storage device through the tile control integrated circuit to an RF element compensation table.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: March 26, 2019
    Assignee: The Boeing Company
    Inventors: Robert G. Ford, Frank R. Brogden, Jay W. Clement, Rodney K. Bonebright
  • Patent number: 10243270
    Abstract: In accordance with one or more embodiments, an antenna system includes a dielectric antenna having a feed-point, wherein the dielectric antenna is a single antenna having a plurality of antenna beam patterns. At least one cable having a plurality of conductorless dielectric cores is coupled to the feed-point of the dielectric antenna, each of the plurality of conductorless dielectric cores corresponding to one of the plurality of antenna beam patterns. A controller, selects one of the plurality of antenna beam patterns and generates a control signal in response thereto. A core selector, responsive to the control signal, couples electromagnetic waves from a source to a selected one of the plurality of conductorless dielectric cores, the selected one of the plurality of conductorless dielectric cores corresponding to the selected one of the plurality of antenna beam patterns.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 26, 2019
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Paul Shala Henry, Donald J. Barnickel, Farhad Barzegar, Robert Bennett, Irwin Gerszberg, Thomas M. Willis, III
  • Patent number: 10218069
    Abstract: Systems and associated methods for improved beamforming of the phase array antenna are disclosed herein. In one embodiment, a communication system for wireless signals has a phase array antenna having a plurality of individual antennas and a plurality of electrically conductive traces. The individual traces electrically connect corresponding individual antennas with a transmitter. The lengths of individual traces Ti, Tk satisfy equation Abs ((Ti?Tk) mod (?))<?/B, where ? is a wavelength of the wireless signal and ?/B is a fraction of ?.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 26, 2019
    Assignee: Facebook, Inc.
    Inventors: Krishna S. Gomadam, Djordje Tujkovic, Sanjai Kohil
  • Patent number: 10212011
    Abstract: A wireless device includes a plurality of antenna and a plurality of wireless modules that transmit or receive signals via the plurality of antennas. Each of the plurality of wireless modules includes: a generator that generates a high-frequency signal; and a high-frequency circuit that transmits or receives, based on the generated high-frequency signal, a signal via at least one of the plurality of antennas. The wireless device further includes a controller. The controller obtains, each time the plurality of wireless modules start generation of a plurality of the high-frequency signals, a difference of phases of the plurality of high-frequency signals, and controls, based on the obtained difference, at least one phase of a plurality of signals to be transmitted or received by the plurality of wireless modules.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 19, 2019
    Assignee: FUJITSU LIMITED
    Inventor: Toshihiro Shimura
  • Patent number: 10110270
    Abstract: A system and method for precision array processing using semi-coherent transceivers are disclosed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 23, 2018
    Assignee: TARANA WIRELESS, INC.
    Inventors: Dale Branlund, Harry May
  • Patent number: 10079433
    Abstract: The invention relates to a multifilar helix antenna (1) comprising a wave feed and polarizing section (2) comprising a cover portion (3) comprising a through opening (4). The antenna (1) comprises a helix radiator (5) comprising three or more resonant helical elements (6) evenly distributed about an imaginary circle. Each helical element (6) extends in a longitudinal direction (Z) from the feed and polarizing section (2) through the opening (4) in the cover portion (3) and wound to form the helix radiator (5). Each helical element (6) comprises one or a plurality of wave perturbations (7) separated in the longitudinal direction (Z) and that each set of perturbations are positioned at the same level in the longitudinal direction (Z) to yield an equivalent array of stacked helical radiators, wherein the cover portion (3) comprises a rotationally symmetric corrugated assembly (8).
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: September 18, 2018
    Assignee: Ruag Space AB
    Inventors: Mikael Ohgren, Joakim Johansson, Patrik Dimming
  • Patent number: 10057778
    Abstract: A method of providing a region of radio coverage within a wireless telecommunication network and a wireless telecommunication base station operable to provide that region of radio coverage. The base station comprises: transmission apparatus operable to provide a first region of radio coverage on a first radio frequency and a second region of radio coverage on a second radio frequency. The first region of radio coverage comprises a plurality of angularly spaced primary first radio beams and at least one secondary first radio beam. The base station is arranged to transmit the secondary first radio beam at a vertical tilt angle which differs from a tilt angle associated with the plurality of primary first radio beams. The second region of radio coverage comprises at least a primary second radio beam; that primary second radio beam is arranged to radiate from the base station between adjacent angularly spaced primary first radio beams.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: August 21, 2018
    Assignee: WSOU Investments, LLC
    Inventor: Holger Claussen
  • Patent number: 10050752
    Abstract: A device, method, and computer-readable medium are provided for adjusting omnidirectional antenna array elements for mitigating cross interference between communication network cells. Radially disposed antenna array elements are configured to collectively function as a single omnidirectional antenna assembly at a cell. Signal data associated with signal strength and/or quality is monitored and received. Based on the signal data received, at least one antenna array element is selected for disconnection from the antenna assembly. The at least one antenna array element is disconnected from the assembly to nullify at least a portion of the omnidirectional signal distributed therefrom, thereby mitigating cross-interference with a neighboring cell.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: August 14, 2018
    Assignee: Sprint Communications Company L.P.
    Inventors: Stephen R. Bales, Martin D. Zeller, Maneesh Gauba, Eugene S. Mitchell, Jr.
  • Patent number: 10014590
    Abstract: A multi-antenna array for a LTE MIMO communication system is provided in an embodiment of this invention, comprising a reflection plate and a power feed network disposed on the back of the reflection plate, a plurality of power distribution plates being arranged on the back of the reflection plate for controlling power distribution for antenna radiation units in different polarization manners respectively, the plurality of power distribution plates being disposed in upper and lower layers and are located at the geometrical center of a parallel plane of the reflection plate. The embodiment of this invention may prevent the scrambled arrangement of the power feed network in a multi-antenna array adopted in a LTE MIMO communication system, simplify power feed manner of antenna radiation units in different polarization manners, reduce complexity and the rate of errors in mass production of multi-antenna arrays of LTE MIMO communication systems, and facilitate locating faults and replacing feed circuits.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: July 3, 2018
    Assignee: China Telecom Corporation Limited
    Inventors: Qi Bi, Shenke Zhang, Meng Shi, Tao Yang, Weiliang Xie
  • Patent number: 10004020
    Abstract: A communication apparatus having a plurality of antennas uses a predetermined frequency channel to perform communication, adjusts beamforming for transmission/reception by setting a weighting coefficient for each of the plurality of antennas, monitors to detect a radar signal outputted from another communication apparatus by using the predetermined frequency channel in a beamforming state formed in accordance with the weighting coefficients, and determines whether or not a reception level of the radar signal is greater than or equal to a predetermined threshold. When it is determined that the reception level of the radar signal is greater than or equal to the predetermined threshold, the communication apparatus changes the weighting coefficients, and uses the predetermined frequency channel in a beamforming state formed in accordance with the changed weighting coefficients to perform communication.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 19, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Tetsuya Yamamoto
  • Patent number: 9992050
    Abstract: The multi-channel signal processing device includes a multi-channel continuous waveform (CW) phase shifter module configured to generate phase control and filter interference therein for multiple local oscillator (LO) signals at a same frequency, a multi-channel up-converter module configured to up-convert the multiple LO signals to a desired frequency and filter respective image signals therein, and a multi-channel wideband mixer module configured to receive and mix the up-converted LO signals at the desired frequency from the multi-channel up-converter module with radio frequency (RF) signals.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 5, 2018
    Assignee: Keysight Technologies, Inc.
    Inventors: Hong-Wei Kong, Ya Jing
  • Patent number: 9966648
    Abstract: A compact, agile polarization diversity, multiband antenna with integrated electronics for satellite communications antenna systems is disclosed. The antenna includes a feed assembly having integrated microwave electronics that are mechanically and electromagnetically coupled thereto in a distributed arrangement so that diverse polarization senses having a low axial ratio and electronic switching control is provided. The microwave electronics include a distributed transmitter that can include high-band and low-band transceivers. The high-band and low-band transceivers can include high-band and low-band transmitter and receiver pairs, respectively. The antenna presented enables the mechanical rotation of the orientation of the high-band transceiver for skew alignment while the low-band transceiver remains stationary relative to the antenna assembly.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: May 8, 2018
    Assignee: KVH Industries, Inc.
    Inventors: Bosui Liu, Thomas D. Monte
  • Patent number: 9929466
    Abstract: Methods and apparatus, including computer program products are provided for self-steering antennas. In one aspect, there is a method. The method may include receiving, at a plurality of antennas, phase shifted versions of a signal. The method may further include determining a phase relationship between the phase shifted versions of the signal. Based on the determined phase relationship, the method may include adjusting a phase of a first local oscillator to remove a phase difference between the phase shifted versions of the signal to change the phase shifted versions of the signal to being in-phase versions of the signal. The method may further include combining the in-phase versions of the signal to steer a beam to a transmitter.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 27, 2018
    Assignee: The Regents of The University of California
    Inventors: Arpit K. Gupta, James Buckwalter
  • Patent number: 9912072
    Abstract: A radio frequency (RF) module may comprise: (a) a substrate including a plurality of integral waveguides formed therein, each of the plurality of waveguides orthogonally-oriented with respect to the one or more adjacent waveguides; and (b) a plurality of antenna radiator elements attached to the dielectric substrate and oriented such that a pair of antenna radiator elements is electrically coupled to each waveguide. Each of the integral waveguides is electrically coupled to electrical circuitry of the RF module.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: March 6, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Andrew R. Mandeville, Daniel W. Harris
  • Patent number: 9871296
    Abstract: Dual-band antenna elements can be used to construct a dual-beam three-column antenna array. The dual-band antenna elements include both a high-band and a low-band radiating element, which allows the dual-band antenna elements to radiate signals in two frequency bands. The dual-band antenna elements also include a resonating box to isolate the co-located radiating elements from one another, as well as to mitigate inter-band distortion. The dual-band antenna elements may be interleaved with single-band elements to achieve a dual-beam three-column antenna array. Individual elements in the dual-beam three-column antenna array may be separated by non-uniform offsets/spacings to achieve improved performance.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: January 16, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Senglee Foo
  • Patent number: 9853361
    Abstract: Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: December 26, 2017
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Jay McCandless, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9843096
    Abstract: Compact lacunated lenses having a lens body with a plurality of input ports, (which may correspond to a predetermined steering angle), a plurality of output ports, and a plurality of holes/openings in the lens body, wherein the openings are arranged through the lens body so that an electromagnetic signal entering the lens body from any one of the input ports will exit from each of the output ports at a time delay corresponding to the predetermined steering angle of the input port from which the electromagnetic signal entered the lens body. The lenses may be used for RF signals between 2 GHz and 30 GHz for beamforming, and may have a diameter of less than 10 cm. The lenses may also be used for amplification. Methods of using these lenses and phase array antennas including these lenses are also described.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: December 12, 2017
    Assignee: Ubiquiti Networks, Inc.
    Inventor: John R. Sanford
  • Patent number: 9806432
    Abstract: An antenna is provided from a plurality of antenna elements, each having a pair of orthogonally coupled notch elements coupled to an interleaved stripline-to-slot feed structure. Each dual-polarized, interleaved tapered slot antenna element forms a building block and a plurality of such tapered slot antenna elements can be arranged to form a phased array antenna having a triangular lattice pattern. The phased array antenna is capable of receiving electromagnetic signals having orthogonal polarization and includes a feed structure which provides interconnections on a single plane. The structure of the tapered slot antenna structure provides wideband, wide scan performance, for multiple polarizations without requiring electrical continuity between adjacent notch antenna elements.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 31, 2017
    Assignee: Raytheon Company
    Inventors: Matthew P. Little, David R. Kralj, Landon L. Rowland, Jacquelyn A. Vitaz
  • Patent number: 9793969
    Abstract: In examples, two arrays of Radio Frequency nodes achieve enhanced beamforming for communications between the arrays by successively sending sounding signals from one array to the other array. Each sounding signal sent by the first of the two arrays is beamformed through time reversal of an immediately preceding sounding signal received by the first array from the second array, and each sounding signal (except the initial sounding signal) sent by the second array is beamformed through time reversal of an immediately preceding sounding signal received by the second array from the first array. The initial sounding signal sent by the second array may be omnidirectional, beamformed through a guesstimate, random, predetermined, or determined through a search of the area where the arrays are located. With sufficient beamfocusing, the arrays may communicate by sending and receiving data from one array to the other array.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: October 17, 2017
    Assignee: ZIVA CORP.
    Inventors: David Smith, Mark Hsu, Maha Achour, Jeremy Rode, Anis Husain, Kris Gregorian, Jeremy Ward
  • Patent number: 9768517
    Abstract: A radar sensor includes: a radar antenna, a radar lens and a funnel element between the radar antenna and the radar lens. The funnel element includes a material which absorbs the radar radiation emitted by the radar antenna.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 19, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thomas Binzer, Raphael Hellinger, Juan Pontes
  • Patent number: 9768494
    Abstract: The present invention relates to an antenna comprising multiple array elements with a first and second feeding point, each associated with orthogonal polarizations, each array element has a first and second phase centre each associated with the orthogonal polarizations, the first and second phase centres of said array elements are arranged in at least two columns, and one antenna port connected to the first and second feeding points of at least two array elements with first phase centre and second phase centre arranged in the at least two columns via a respective feeding network. The feeding network comprises a beam forming network having a primary connection, connected to the antenna port, and at least four secondary connections. The beam forming network divides power between the first feeding point and the second feeding point and controls phase shift differences between the respective feeding points with phase centre arranged in different columns.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 19, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Stefan Johansson, Martin Johansson, Sven Oscar Petersson
  • Patent number: 9749033
    Abstract: A receive only smart antenna with a command pointing option for communicating with geostationary satellites that autonomously detects the directions from which desired signal are received, and steer the multiple beams accordingly. An array feed is used to illuminate a parabolic reflector. Each feed element of the receive only smart antenna is associated with a unique beam pointing direction. As a receiver is switched to different feed elements, the far-field beam is scanned, making it possible to track a geostationary satellite in a slightly inclined orbit. This eliminates the need for mechanical tracking and maintains high antenna gain in the direction of the geostationary satellite. The receive only smart antenna also features capabilities to form multiple simultaneous beams supporting operations of multiple geo-satellites in closely spaced slightly inclined orbits. The designs can support orthogonal beams for enhanced bandwidth capacity via multiple beams with excellent spatial isolation.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: August 29, 2017
    Assignee: Spatial Digital Systems, Inc.
    Inventor: Donald C. D. Chang
  • Patent number: 9614604
    Abstract: A multi-protocol, multi-band array antenna system may be used in Radio Frequency Identification (RFID) system reader and sensory networks. The antenna array may include array elements with an integrated low noise amplifier. The system may employ digital beam forming techniques for transmission and steering of a beam to a specific sensor tag or group of tags in a cell. The receive beam forming network is optimized for detecting signals from each sensor tag. Narrow and wideband interferences may be excised by an interference nulling algorithm. Space division multiplexing may be used by the antenna system to enhance system processing capacity.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: April 4, 2017
    Assignee: Mojix, Inc.
    Inventor: Ramin Sadr
  • Patent number: 9614291
    Abstract: A two-dimensional antenna array has n rows of 1×m one-dimensional array and each one-dimensional array is composed of multiple single differential feeding antennas. Each single differential feeding antenna has a differential feeding structure and a microstrip antenna stripe. A longitudinal length of the microstrip antenna stripe is no longer than one wavelength in a dielectric medium, so the microstrip antenna stripe is not excited to a high-order mode. An angle of inclination of a main beam aligns with the broadside and a width of the main beam is further concentrated at elevation direction. The differential feeding structure can reduce an even mode to enhance an isolation. The one and two-dimensional antenna array is miniature by using the small single differential feeding antennas. Isolation and gain of a dual-antenna system using the two-dimensional or one-dimensional antenna arrays are further enhanced and increased if more feeding antenna arrays are used.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: April 4, 2017
    Assignee: U&U ENGINEERING INC.
    Inventors: Chun-Hao Hu, Chi-Ho Chang, Yo-Sheng Lin, Ping-Chang Tsao
  • Patent number: 9602257
    Abstract: A master application device comprises a plurality of distributed transceivers, a central baseband processor, and a network management engine that manages operation of the master application device and end-user application devices. The master application device communicates data streams to the end-user devices utilizing one or more distributed transceivers selected from the plurality of distributed transceivers. The selected distributed transceivers are dynamically configured to switch between spatial diversity mode, frequency diversity mode, multiplexing mode and MIMO mode based on corresponding link quality and propagation environment. Digital signal processing needed for the selected distributed transceivers is performed by the central baseband processor. The network management engine continuously monitors communication environment information to configure beamforming settings and/or antenna arrangement for the selected distributed transceivers.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: March 21, 2017
    Assignee: Golba LLC
    Inventor: Mehran Moshfeghi
  • Patent number: 9590706
    Abstract: A method and apparatus provide equal energy codebooks for antenna arrays with mutual coupling. A plurality of precoders can be received from a codebook in a transmitter having an antenna array. Each precoder of the plurality of precoders can be transformed using a transformation that maps each precoder to equal radiated power to generate transformed precoders. A transformation matrix for the transformation can be a matrix with column vectors equal to the eigenvectors of a Hermitian and non-negative definite matrix multiplied by a diagonal matrix with the value of each diagonal element equal to the inverse of the positive square root of the eigenvalue of the corresponding eigenvector. A signal can be received for transmission. A transformed precoder of the plurality of transformed precoders can be applied to the signal to generate a precoded signal for transmission over a physical channel. The precoded signal can be transmitted.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: March 7, 2017
    Assignee: Motorola Mobility LLC
    Inventor: Colin Frank
  • Patent number: 9537215
    Abstract: An antenna structure includes a first antenna, a second antenna, a radio frequency (“RF”) circuit, and a controller. The first antenna includes a first radiating portion and a first feeding portion. The second antenna includes a second radiating portion and a second feeding portion. The second radiating portion is positioned in a first plane that is substantially parallel to a second plane in which the first radiating portion is positioned. The RF circuit is configured to output a first current signal to the first feeding portion and a second current signal to the second feeding portion. The controller is configured to control the RF circuit to adjust phases of the first current signal and the second current signal.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: January 3, 2017
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventor: Chun-Yu Lu
  • Patent number: 9461733
    Abstract: A telecommunications system for intermittent data transfer from and to at least one user located substantially on the surface of a celestial body. The system comprises at least one surface transmitter/receiver terminal associated with each user, one or more signal repeater means for the signals transmitted and/or received from the surface terminals. Each moving repeater means has at least one antenna oriented toward the surface of the celestial body, and adapted to allow communications from and to surface terminals. Each antenna produces a transmission/reception beam, the track of which on the surface of the celestial body forms the ground track, the progressive sweeping of the surface by this ground track forming a strip called a swath.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 4, 2016
    Assignee: AIRBUS DEFENCE AND SPACE SAS
    Inventors: Jerome Tronc, Jean-Christophe Dunat
  • Patent number: 9253760
    Abstract: A subscriber platform for broadband communication, according to various aspects of the present invention, includes an antenna, a plurality of transceivers, and a processor. The antenna supports communication via a plurality of directional beams. The plurality of frequency agile transceivers operate simultaneously, each transceiver being coupled to the antenna for communication via a respective directional beam. The processor is coupled to the plurality of transceivers. And, the transceivers are coupled to the antenna to communicate data among the directional beams as directed by the processor, communication including directional diversity and frequency diversity.
    Type: Grant
    Filed: February 16, 2013
    Date of Patent: February 2, 2016
    Inventors: Erling J Pedersen, Roc A Lastinger
  • Patent number: 9209957
    Abstract: Systems and methods in accordance with embodiments of the invention include converting satellite signals to an intermediate frequency signal for content decoding, and selecting modulated digital data within the satellite signals for content decoding using digital signal processing. One embodiment includes a system configured to select at least one content channel from an input signal including a plurality of content channels modulated onto a carrier, the system including: a digital channelizer switch including: a high speed analog to digital converter configured to digitize the intermediate frequency signal; a digital channelizer configured to digitally tune a content channel from the digitized intermediate frequency signal; and a high speed digital to analog converter configured to generate an analog output signal using the content channel digitally tuned from the digitized intermediate frequency signal by the digital channelizer.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 8, 2015
    Assignee: ENTROPIC COMMUNICATIONS, LLC
    Inventor: Tommy Yu
  • Patent number: 9140787
    Abstract: A radar sensor for motor vehicles has a transmitting antenna in the form of a planar array antenna having a plurality of juxtaposed antenna elements, and a supply network for supplying microwave power to the antenna elements, wherein the supply network is developed to supply the antenna elements with the microwave power having a phase shift increasing at constant increments from one end of the row to the other.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: September 22, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventor: Thomas Binzer