Radar Transponder Only Patents (Class 342/51)
  • Patent number: 10296738
    Abstract: An apparatus includes a Non-Volatile Memory (NVM) and a controller. The controller is configured to store in the NVM a state array, which includes multiple words. In each word, one or more bits are designated as lock-bits. The controller is further configured to set an operational state for the apparatus based on the lock-bits of the state array, by (i) deciding whether each word in the state array is locked or unlocked by comparing the lock-bits of that word to respective expected lock values, (ii) if all the words in the state array are found locked, setting the apparatus to a locked state, (iii) if all the words in the state array are found unlocked, setting the apparatus to an unlocked state, and (iv) if one or more of the words are found locked and one or more other words are found unlocked, setting the apparatus to an error state.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: May 21, 2019
    Assignee: Nuvoton Technology Corporation
    Inventors: Ziv Hershman, Yossi Talmi, Dan Morav
  • Patent number: 10262255
    Abstract: A low-cost, multi-function tracking system with a form factor that unobtrusively integrates the components needed to implement a combination of different localization techniques and also is able to perform a useful ancillary function that otherwise would have to be performed with the attendant need for additional materials, labor, and expense. An example tracking system is implemented as an adhesive product that integrates tracking components within a flexible adhesive structure in a way that not only provides a cost-effective platform for interconnecting, optimizing, and protecting the components of the tracking system but also maintains the flexibility needed to function as an adhesive product that can be deployed seamlessly and unobtrusively into various tracking applications and workflows, including person and object tracking applications, and asset management workflows such as manufacturing, storage, shipping, delivery, and other logistics associated with moving products and other physical objects.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: April 16, 2019
    Assignee: Trackonomy Systems, Inc.
    Inventor: Ajay Khoche
  • Patent number: 9994043
    Abstract: An example media processing device includes a coupler configured to transmit wireless signals to an encoding area, the coupler to transmit the wireless signals via a plurality of radiating elements; a controller to control which set of the radiating elements is to transmit the wireless signals; and a processor to adapt the coupler to a transponder configuration by: encoding a first transponder of the transponder configuration using the first set of the radiating elements to transmit the wireless signals; executing a first encoding evaluation on the encoded first transponder; encoding a second transponder of the transponder configuration using the second set of the radiating elements to transmit the wireless signals; executing a second encoding evaluation on the encoded second transponder; and selecting, based on the first and second encoding evaluations, the first set or the second set as a preferred radiating set for the transponder configuration.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: June 12, 2018
    Assignee: ZIH Corp.
    Inventors: Boris Y. Tsirline, Mao Tian, Karl Torchalski
  • Patent number: 9871641
    Abstract: Measures for controlling uplink antenna selection in a user equipment comprising at least two antennas. At the user equipment, at least two radio wave signals are received, fading conditions in relation to the received at least two radio wave signals are detected and uplink antenna selection in the user equipment is controlled at least on the basis of the detected fading conditions.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: January 16, 2018
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Marko Tapio Autti, Seppo Rousu
  • Patent number: 9698871
    Abstract: A near field communications apparatus comprising a signal source, a transmit antenna and means for detecting a change in the input impedance of the transmit antenna to detect the presence of a device which is compatible with the apparatus.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 4, 2017
    Assignee: QUALCOMM TECHNOLOGIES INTERNATIONAL, LTD.
    Inventors: Zern Tay, Shyam Patel, Anthony McFarthing
  • Patent number: 9674023
    Abstract: Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 6, 2017
    Assignee: INTEL CORPORATION
    Inventors: Alexander Maltsev, Vadim Sergeyev, Alexei Davydov
  • Patent number: 9496007
    Abstract: The disclosure provides a voltage regulator for generating piece-wise linear regulated supply voltage. The voltage regulator includes a first clamp circuit that receives a reference voltage and an analog supply voltage. A second clamp circuit receives the reference voltage. A voltage divider circuit is coupled to the first clamp circuit and the second clamp circuit. The voltage divider circuit receives a peripheral supply voltage and generates a regulated supply voltage.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sumantra Seth, Subrato Roy, Deepak Verma
  • Patent number: 9460376
    Abstract: A radio IC device includes an electromagnetic coupling module includes a radio IC chip arranged to process transmitted and received signals and a feed circuit board including an inductance element. The feed circuit board includes an external electrode electromagnetically coupled to the feed circuit, and the external electrode is electrically connected to a shielding case or a wiring cable. The shielding case or the wiring cable functions as a radiation plate. The radio IC chip is operated by a signal received by the shielding case or the wiring, and the answer signal from the radio IC chip is radiated from the shielding case or the wiring cable to the outside. A metal component functions as the radiation plate, and the metal component may be a ground electrode disposed on the printed wiring board.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: October 4, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noboru Kato, Satoshi Ishino, Takeshi Kataya, Ikuhei Kimura, Nobuo Ikemoto, Yuya Dokai
  • Patent number: 8981988
    Abstract: A radar system is provided. The system includes a radar transceiving device equipped in a movable body and for transmitting an electromagnetic wave at a first frequency, and a transponder device arranged in a beacon and for transmitting a response wave upon receiving the electromagnetic wave. The transponder device includes a response wave transmitting module for transmitting, when a radar classification of the radar transceiving device is a solid-state radar, a response wave at a second frequency different from the first frequency in response to receiving the transmitted electromagnetic wave. The radar transceiving device includes a transmitting module for transmitting the electromagnetic wave, a receiving module for receiving a radar echo at the first frequency and the response wave at the second frequency, and a display controlling module for displaying, on a predetermined radar display unit, locations of the beacon and another movable body existing around the movable body.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Furuno Electric Company Limited
    Inventors: Tatsuya Kojima, Jun Yamabayashi
  • Publication number: 20150054676
    Abstract: Methods of estimating vehicle location in a roadway using an automatic vehicle identification system are described. The methods involve receiving a set of response signals from a vehicle-mounted transponder at points in time and determining a range rate of the transponder relative to the antenna at each point in time; identifying a minima in the magnitude of the range rate; estimating a first position of the transponder at a first time corresponding to the occurrence of the minima; estimating a velocity of the vehicle based upon one or more of the determined range rates; and estimating a second position of the transponder based upon the first position and the velocity.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 26, 2015
    Inventors: Lila Vinski, Japjeev Kohli, Alastair Malarky
  • Publication number: 20150048966
    Abstract: A method for identifying and ranging a wireless device, comprising: transmitting an original radar signal from a detecting system; in response to the original radar signal, receiving a modulated radar signal at the detecting system, the modulated radar signal being backscattered from an antenna of the wireless device and containing information pertaining to the wireless device, and the modulated radar signal being a frequency offset version of the original radar signal; and, using a processor at the detecting system, determining an identity and a range of the wireless device from the modulated radar signal.
    Type: Application
    Filed: February 21, 2014
    Publication date: February 19, 2015
    Applicant: TAG-COMM INC.
    Inventor: TAJINDER MANKU
  • Publication number: 20150029051
    Abstract: A wearable radar reflector includes a retroreflector configured to reflect radiation received from a vehicle, and incorporated into a garment worn by a pedestrian.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 29, 2015
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Patent number: 8890684
    Abstract: An RFD reader includes a transceiver configured to receive a first radio frequency signal reflected off at least one surface to provide baseline signal information and a second radio frequency signal reflected off the at least one surface and an object to provide further signal information. A comparator is configured to compare the baseline signal information and the further signal information to provide a signal comparison. A processor is configured to detect the presence of the object in accordance with the signal comparison. A determination is made whether the object is in motion in accordance with the signal comparison. The determination whether the object is in motion is made in accordance with a continuous fluctuation of the second radio frequency signal. A determination whether the object is no longer in motion is made in accordance with an ending of the continuous fluctuation of the second radio frequency signal.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: November 18, 2014
    Assignee: Checkpoint Systems, Inc.
    Inventors: Artem Tkachenko, Petya Vachranukuniet
  • Patent number: 8823577
    Abstract: A distance separation tracking process is provided that includes the transmission of a periodic radio frequency original signal from a beacon transceiver. The original periodic signal from the beacon transceiver is received at a remote target transceiver as a target received periodic signal. The target retransmits the received periodic signal to the beacon transceiver as a return periodic signal. Data points of the return periodic signal are sampled and used to calculate a phase differential between the original periodic signal and the return periodic signal that correlates to the distance separation range between the beacon transceiver and the target transceiver.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 2, 2014
    Assignee: iTRACK, LLC
    Inventors: G. Edzko Smid, Thomas P. Stiglich
  • Publication number: 20140225761
    Abstract: A transponder, able to equip a cooperative target facing a Doppler radar, includes at least one receiving antenna able to receive a signal transmitted by said radar and a transmitting antenna able to retransmit a signal. The signal received by the receiving antenna is amplitude-modulated before being retransmitted by the transmitting antenna to produce a variation of the radar cross-section of the target, the variation triggering a frequency shift between the signal transmitted and the signal received by the radar comparable to a Doppler echo. The transponder applies notably to the field of radars, more particularly for collaborative systems also operating at low velocity or nil velocity. It applies for example to assisted take-off, landing and deck-landing of drones, in particular rotary-wing drones, as well as manned helicopters.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Inventors: Patrick GARREC, Pascal CORNIC, Régis LEVAUFRE
  • Patent number: 8723720
    Abstract: The wireless detection beacon is for use with a Radio Frequency (RF) interrogator transmitting at a first frequency and receiving at a second frequency. The wireless detection beacon includes a substrate, a power supply carried by the substrate, an antenna assembly carried by the substrate, and a local oscillator (LO) carried by the substrate and configured to be powered by the power supply to provide an LO signal at a third frequency. A mixer is carried by the substrate and coupled to the antenna assembly and the LO. The mixer is configured to generate an outgoing beacon signal to the antenna assembly at the second frequency based upon mixing an incoming signal from the RF interrogator at the first frequency with the LO signal at the third frequency.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: May 13, 2014
    Assignee: Harris Corporation
    Inventors: Christopher Douglas Moffatt, James G. Tonti
  • Patent number: 8626249
    Abstract: A charging station for mobile devices that acts as an intermediary device to facilitate communication between mobile devices and other proximate devices. The charging station may receive data with a mobile device via a first communication protocol (e.g., Bluetooth) or in a first data format and may transmit the received data to a proximate device via a second communication protocol (e.g., WiFi) or in a second data format. The charging station may then receive responsive data from the proximate device via the second communication protocol (e.g., WiFi) or second data format and transmit the responsive data the mobile device via the first communication protocol (e.g., Bluetooth) or first data format. In some embodiments, the charging station may communicate status data about a mobile device to other proximate devices.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 7, 2014
    Assignee: T-Mobile USA, Inc.
    Inventors: Joseph Ungari, Winston Wang, Robert Buck, Mike Kemery, Paulo S. T. Chow, Anthony Giardini, Valerie Goulart, Ming Ligh
  • Patent number: 8595018
    Abstract: The invention relates to a technique of operating a call control node controlling at least one section of a call path. The call path includes between two opposite edge nodes a multi-section harmonization path along which codec selection is to be harmonized. A method embodiment of the technique, wherein the call control node is a transfer node in the harmonization path between the edge nodes, comprises the steps of determining if the call control node is a transfer node of the harmonization path; determining if a codec used for the at least one section controlled by the call control node fulfills a predefined harmonization criterion; and providing, in case the used codec does not fulfill the harmonization criterion, a harmonization trigger indication to at least one of the edge nodes of the harmonization path for initiating harmonization.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 26, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Dirk Kampmann, Andreas Witzel, Karl Hellwig
  • Patent number: 8576114
    Abstract: In a radio location system for vehicles moving along a guideway, a transmitter for energizes a transponder beside the guideway. A first detector for detects a response signal from the energized transponder to determine the transponder identification. A second detector detects a positional signal received from the transponder that is decoupled from the first signal and contains precise positional information. In one embodiment, the second detector picks up a crossover signal from a crossover antenna.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Thales Canada Inc.
    Inventors: Abe Kanner, Pat Seitz
  • Publication number: 20130207831
    Abstract: An improved system and method for monitoring objects, people, animals, or places uses a passive Modulating Reflector (MR) tag where a characteristic of an antenna is modified according to a time-varying pattern by a modulating network thereby causing the reflective characteristics of the antenna to vary in accordance with the time-varying pattern. When an interrogator transmits an RF waveform that impinges on the antenna, the return signal reflecting off the antenna is modulated in accordance with the time-varying pattern allowing a remote receiver to demodulate information from the modulated return signal. The antenna is embedded in a dielectric material. The MR tag can be used with a wide variety of tag-interrogator configurations employing monostatic and/or bistatic radar techniques to allow monitoring, locating, and/or tracking of objects, people, animals, or place with which MR tags are associated.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 15, 2013
    Inventor: Cedar Ridge Research, LLC
  • Publication number: 20130181858
    Abstract: A radar system is provided. The system includes a radar transceiving device equipped in a movable body and for transmitting an electromagnetic wave at a first frequency, and a transponder device arranged in a beacon and for transmitting a response wave upon receiving the electromagnetic wave. The transponder device includes a response wave transmitting module for transmitting, when a radar classification of the radar transceiving device is a solid-state radar, a response wave at a second frequency different from the first frequency in response to receiving the transmitted electromagnetic wave. The radar transceiving device includes a transmitting module for transmitting the electromagnetic wave, a receiving module for receiving a radar echo at the first frequency and the response wave at the second frequency, and a display controlling module for displaying, on a predetermined radar display unit, locations of the beacon and another movable body existing around the movable body.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: FURUNO ELECTRIC CO., LTD.
    Inventor: FURUNO ELECTRIC CO., LTD.
  • Patent number: 8487809
    Abstract: A system for response to a signal transmitted by a radar includes: a passive antenna capable of receiving and then backscattering a signal transmitted by said radar; a microwave switch connected to said antenna; at least two microwave lines each having a distinct impedance and being connected to the microwave switch; and a generator capable of generating a parametrizable control signal and sending it to the microwave switch so that it switches onto one or other of the microwave lines, so as to modulate the signal backscattered by said antenna.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: July 16, 2013
    Assignee: Thales
    Inventors: Régis Lefauvre, Pascal Cornic
  • Patent number: 8441391
    Abstract: A secure communication topology can be used for communications between a locator and one or more transponders to determine the location of the transponders. An example system may include a locator that is configured to transmit an interrogation signal that is encoded for receipt by one or more of the transponders. When a transponder receives and correlates the interrogation signal with an internally stored reference sequence, the transponder can transmit one or more reply transmissions at precisely determined time delay intervals. The time delay intervals are secretly known by both the locator and the transponder. The reply transmissions can each correspond to previously sampled noise signals that are also secretly known by both the transponder and the locator.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 14, 2013
    Assignee: RoundTrip LLC
    Inventor: Lawrence J. Karr
  • Publication number: 20130080049
    Abstract: A system and method for monitoring and tracking the position of a subject comprises, in an exemplary embodiment, a transponder configured for being co-located with the subject and a means for enabling communication between the transponder and a remote GPS-enabled receiver, such as a cell phone or the like, for selectively triangulating the position of the transponder. In the exemplary embodiment, the means for enabling such communication is software that is installed in and executed by the receiver. The software allows the receiver to triangulate the geographic position of the transponder by fixing a first reference point based on the location of the GPS-enabled receiver, fixing a second reference point based on the location of a network broadcast site through which the receiver and transponder communicate, and calculating the location of the transponder based on the angular position of the transponder relative to the network broadcast site.
    Type: Application
    Filed: December 15, 2011
    Publication date: March 28, 2013
    Inventors: Barry Brucker, Nadeepuram K. Ranganathan
  • Patent number: 8405539
    Abstract: In a synthetic aperture radar system monitoring an area containing at least one moving target for identification, the target is equipped with an identification device, which receives the radar signal transmitted by the radar system, and transmits a processed radar signal obtained by modulating the incoming radar signal with a modulating signal containing target information, such as identification and status information, and by amplifying the modulated radar signal; the radar echo signal reflected by the monitored area and containing the processed radar signal is received and processed by a control station of the radar system to locate the target on a map of the monitored area, and to extract the target information to identify the target.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 26, 2013
    Assignee: Telespazio S.p.A.
    Inventors: Antonio Saitto, Franco Mazzenga, Lorenzo Ronzitti
  • Patent number: 8400279
    Abstract: A wireless communication tag according to the present invention includes a first antenna 8 previously set with predetermined identification information, and for wirelessly communicating various types of data with a reader/writer 6; a controller (IC chip 14) for controlling the data communicated through the first antenna; a second antenna 10 for receiving an electromotive radio wave 4e for causing electric power by a radio wave; and a charging unit (rectifying circuit 16 and a capacitor 18) for causing electric power by the electromotive radio wave received from the second antenna as well as for storing the caused electric power. With use of the electric power stored in the charging unit, the first antenna supplies data relating to the identification information to the reader/writer. The second antenna also can provide the reader/writer with the identification information.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: March 19, 2013
    Assignee: Universal Entertainment Corporation
    Inventors: Toshimi Koyama, Jun Fujimoto
  • Patent number: 8384584
    Abstract: Techniques are generally disclosed for communications between a locator device and a transponder device. The locator device may be located in a space based location such as on a surface of a remote celestial body, on a space craft or space station, on a satellite, or on a low earth orbit aircraft. The locator can encode an interrogation signal for receipt by one or more distant transponders. The transponder devices can receive the communications from the distant locator device and determine frequency, phase, cadence, and Doppler for encoding a reply transmission to the locator device. The encoding process estimates Doppler shift and adapts the reply transmission for a quantized reverse Doppler shifted frequency and cadence, which effectively pre-compensates for the Doppler shift that will be apparent to the locator due to the relative velocity. The locator can use the Doppler quantization scheme to reconstruct the actual relative velocity.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 26, 2013
    Assignee: RoundTrip LLC
    Inventor: Lawrence J. Karr
  • Publication number: 20130021193
    Abstract: A signal transponder for frequency conversion of signals from unknown signal sources is provided. The transponder includes an input for receiving a signal from an unknown signal source, an input filter for filtering the received signal, an input signal amplifier for amplifying the received signal, a mixer for converting the frequency of the amplified and filtered received signal to a predetermined frequency, a local oscillator for generating a clock signal supplied to the mixer for frequency conversion, an output filter for filtering the frequency converted signal, an output signal amplifier for amplifying the frequency converted signal, and an output for transmitting the filtered and amplified frequency converted signal.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: Astrium GmbH
    Inventors: Markus Hermsen, Andreas Schmitz-Peiffer
  • Patent number: 8350767
    Abstract: Described are a notch antenna and an array antenna based on a low profile stripline feed. The notch antenna includes a planar dielectric substrate having upper and lower surfaces. Each surface has a conductive layer with an opening therein. A notch antenna element is disposed on the conductive layer of the upper surface at the opening. A stripline embedded in the planar dielectric substrate extends under the notch antenna element. The stripline is adapted to couple an RF signal between the stripline and the notch antenna element. A conductive via is electrically coupled to the stripline and extends from the stripline to the opening in the conductive layer on the lower surface so that the RF signal is accessible at the lower surface.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 8, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Glenn A. Brigham, Marat Davidovitz, Zhanna Davidovitz, legal representative, Sean M. Duffy, Jeffrey Herd
  • Patent number: 8351856
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: January 8, 2013
    Assignee: Access Business Group International LLC
    Inventor: David W. Baarman
  • Patent number: 8346437
    Abstract: When a lane-width-direction lateral position (X2obst+X0) of a vehicle (MM) reaches a predetermined control start position (60) being a lane-width-direction lateral position (X2obst+X0) serving as an approach prevention indicator for the vehicle (MM), a control start is determined and a yaw moment (Ms) toward the center of a vehicle traveling lane (200) is applied to the vehicle (MM) to control the vehicle (MM). Then, when the lane-width-direction lateral position (X2obst+X0) of the vehicle (MM) moves from the outside to the inside of the control start position (60), the determination of control start is suppressed for a predetermined period, compared to a period before the movement to the inside of the control start position (60).
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: January 1, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasuhisa Hayakawa, Kou Sato, Masahiro Kobayashi
  • Publication number: 20120306683
    Abstract: This document describes a method and system for object localization. In accordance with the method an object (1) is illuminated by at least one first type of signal, and response of the signal is detected. In accordance with the invention the object (1) equipped with a transponder (2, 3) backscattering the first type of signal, the transponder (2, 3) is illuminated also by a second type of signal affecting to the backscattering frequency of the transponder (2, 3), and the backscattered signal from the transponder (2, 3) is detected in order to localize the object.
    Type: Application
    Filed: October 19, 2010
    Publication date: December 6, 2012
    Applicant: TEKNOLOGIAN TUTKIMUSKESKUS VTT
    Inventors: Ville Viikari, Heikki Seppä, Kaj Nummila, Timo Varpula
  • Patent number: 8326246
    Abstract: An apparatus, which may be configured as a receiver or transceiver, includes a plurality of super regenerative (SR) amplifiers coupled in parallel, wherein the SR amplifiers are tuned to distinct frequency bands, respectively. The apparatus may further include isolation amplifiers at the respective inputs and outputs of the SR amplifiers to prevent injection locking and reduce power leakage. The apparatus may include a circuit to reduce or substantially eliminate in-band jamming signals. The apparatus may form at least part of a wireless communications device adapted to receive signals from other wireless communications devices, adapted to transmit signal to other wireless communications devices, and adapted to both transmit and receive signals to and from other wireless communications devices.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: December 4, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Pavel Monat, David Jonathan Julian, Robert Keith Douglas, Prasad S. Gudem
  • Patent number: 8315561
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 20, 2012
    Assignee: Access Business Group International LLC
    Inventor: David W. Baarman
  • Patent number: 8301079
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 30, 2012
    Assignee: Access Business Group International LLC
    Inventor: David W. Baarman
  • Patent number: 8279109
    Abstract: An aircraft avian radar is implemented using an existing aircraft transponder, Mode S, or TCAS installation as the radar transmitter. To eliminate self jamming of low level avian target signals by high level transmitter signals, the ending period of the transmission signal is digitized and cross correlated with the ending period of reflected avian target signals received after the transmission signal has ended. In a first implementation, the current transponder antenna is used for both transmission and reception. In a second implementation, an external receive only antenna is mounted in a position that maximizes the transmit antenna to receive antenna isolation. In a third implementation, a signal canceller and sample of the transmit signal are used to cancel or null out as much transmit signal as possible that couples directly to the receive antenna.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 2, 2012
    Inventor: Gregory Hubert Piesinger
  • Patent number: 8274368
    Abstract: A chipless microwave identification tag (200) comprising: a dielectric substrate (210); and a plurality of antenna elements (220) made from a conductive material and disposed on at least one surface (205, 255) of the dielectric substrate (210); wherein when the tag (200) is excited by an incident microwave signal (131), a reflected wave (141) to identify the tag (200) is generated with a number of specific frequencies altered by microwave resonation of the antenna elements (220).
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 25, 2012
    Assignee: The Hong Kong Polytechnic University
    Inventors: Kai Leung Yung, Ching Yuen Chan, David Ki Wai Cheng
  • Patent number: 8228193
    Abstract: An application specific integrated circuit chip includes capacitors and antennas. The antennas receive energy from an outside source, and charge capacitors on the chip in order to provide power to the chip itself. The chip in turn communicates by antenna to outside receivers for the purposes of identification of the chip and hence a bag or article to which it is attached. The chip is attached to its article by means of glue which is in turn applied by an applicator which shoots the chip and the glue against the article.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: July 24, 2012
    Inventor: Tümay O. Tümer
  • Patent number: 8188908
    Abstract: Distance to a modulated backscatter tag is measured with a RFID reader that measures changes in phase with frequency of modulated backscattered RF signals. Measured distances are linked to a specific tag. The effects of other sources of reflected and interfering signals are mitigated. The techniques eliminate the need for high RF bandwidth used in time-of-flight methods, and may be used with linear, limiting or other types of amplifiers in the reader receiver. Unambiguous distance to a tag may be found using the derivative of phase with RF frequency of the modulated signal backscattered by a tag. The distance to a tag can be measured with an accuracy on the order of a centimeter. The techniques utilize the characteristics of cooperative backscatter tags (transponders, labels, etc.). New readers implement the techniques which may use unmodified tags.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: May 29, 2012
    Assignee: Amtech Systems, LLC
    Inventor: Jeremy A. Landt
  • Patent number: 8159367
    Abstract: A method and apparatus for validating a distance output of a phase ranging RFID location system, based upon the phase readings included in data sets obtained from monitoring reply signals corresponding to interrogation signals at multiple frequencies and a common interrogation signal beam direction; by comparison of measured phase and frequency data sets with theoretical phases calculated with respect to the same frequencies over a range of positions corresponding to a beam extent of the interrogation signal. The distance output validated by comparison with theoretical threshold data processed to generate an extreme values distribution from which a cumulative distribution function is extracted and against which a confidence level is applied.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 17, 2012
    Assignee: RF Controls, LLC
    Inventors: Russell Hofer, Graham P. A. Bloy
  • Patent number: 8154409
    Abstract: Method, systems, and articles of manufacture for assigning priority to antenna are disclosed. In accordance with a preferred embodiment of the invention, reader antenna (151, 152, 153) identify the location of an object by detecting a tag or other identifier associated with each object. Sensors (121, 122, 123) can be provided to provide additional information regarding the environment of the objects to their surroundings. A priority order is assigned to the reader antenna based on the location and other characteristics of the objects and/or their environment. A polling sequence for reading the reader antennae is determined according to the priority order.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: April 10, 2012
    Assignee: Sensormatic Electronics, LLC
    Inventors: Paul B. Rasband, Donald G. Bauer, Richard J. Campero
  • Patent number: 8149086
    Abstract: There is provided a method for identifying, at the moment of verification, the situation of a threat to a protected ground, airspace and/or sea limits by an approaching ground vehicle, aircraft or sea-going vessel. The method includes an authorized driver/pilot/captain to select first state in which the vehicle, aircraft or sea-going vessel is not considered to present a threat and a second state in which the vehicle, aircraft or sea-going vessel is considered to present a threat. The method further provides entering the first and second PIN codes into a smart card for generating a One Time Indicia (OTI) for each of the PIN codes and disclosing the state associated with each of the first and second OTI codes to at least one control center. Upon the control center receiving an OTI code, the control center obtains positive identification of the driver/pilot/captain and the degree of the threat that the vehicle, aircraft or sea-going vessel presents.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: April 3, 2012
    Assignee: Elbit Systems Ltd.
    Inventors: Dan Klein, Relu Rosenberg
  • Patent number: 8116681
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 14, 2012
    Assignee: Access Business Group International LLC
    Inventor: David W. Baarman
  • Patent number: 8116683
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: February 14, 2012
    Assignee: Access Business Group International LLC
    Inventor: David W. Baarman
  • Patent number: 8115600
    Abstract: A system is provided for identifying implanted medical devices, leads and systems, as well as objects in close proximity to a patient having an implanted active medical device, using a radio frequency identification (RFID) tag having retrievable information relating to the AIMD, lead system and/or patient. An RFID tag communicator includes a circuit for limiting the total continuous transmit time of an interrogation signal, and a time-out circuit for delaying a second and any subsequent interrogation of the RFID tag.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: February 14, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Geddes Frank Owen Tyers, Christine A. Frysz
  • Patent number: 8111672
    Abstract: A method for wireless data communication between a base station and at least one transponder by a high-frequency electromagnetic carrier signal, onto which information packets are modulated, wherein each information packet has a header section, a middle section, and a terminating end section, wherein the middle section has a data field, which contains the data necessary for the data communication, wherein at least one additional control field is inserted into the data field by which the structure of the information packets can be variably adjusted within the region of the data field. The invention relates further to a transponder, a base station, and a data communication system.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: February 7, 2012
    Assignee: Atmel Corporation
    Inventor: Ulrich Friedrich
  • Patent number: 8102304
    Abstract: A transponder (12) transmits a reply in response to an interrogation input thereto, the interrogation including twin pulses, and a monitoring processor (13) transmits to the transponder a pseudo interrogation identical in format to the interrogation, receives from the transponder a reply responding to the pseudo interrogation, and monitors a performance of the transponder, the monitoring processor (13) including a pulse spacing adjuster (131c) operable to adjust a pulse spacing of twin pulses along with generation of the pseudo interrogation, and a monitor (134b) operable to output an alarm in response to a failed reception or a delayed reception of a reply from the transponder after transmission of a pseudo interrogation with a compliant pulse spacing, and further to output an alarm in response to a reception of a reply from the transponder after transmission of a pseudo interrogation with an uncompliant pulse spacing.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: January 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaki Iwasaki, Yoshirou Aoki
  • Patent number: 8049624
    Abstract: To provide a wireless communication method in the case where communication of a wireless signal from a communication device to a semiconductor device can be ensured, communication of a wireless signal can be ensured without using a repeater even when communication of a wireless signal from a semiconductor device to a communication device is difficult due to an external factor such as an obstacle. A plurality of semiconductor devices operate in selectively switching between a first state in which the first wireless signal transmitted from the communication device is received and a second state in which the second wireless signal transmitted from the semiconductor device is received. The semiconductor device in the second state receives the second wireless signal from the semiconductor device in the first state and transmits to the communication device the second wireless signal including detection data for indicating that the second wireless signal is received.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Yutaka Shionoiri
  • Patent number: 7994918
    Abstract: A method and system for monitoring one or more objects by an electronic device are provided. The method includes defining a distance threshold between the electronic device and an object having a RFID tag, calculating a distance between the electronic device and the object, and generating alerts upon detecting that the distance is greater than the distance threshold.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 9, 2011
    Assignee: Chi Mei Communication Systems, Inc.
    Inventors: Jia-Jiang Lai, Chih-Lung Tsan
  • Patent number: RE45061
    Abstract: Communication between a remote locator and a transponder is used to determine the relative position of the transponder. The transponder and locator each include a transmitter and a receiver. The locator transmits an inquiry in the form of a relatively powerful cyclically encoded signal with repetitive elements, uniquely associated with a target transponder. Periodically, each transponder correlates its coded ID against a possible inquiry signal, determining frequency, phase and framing in the process. Upon a match, the transponder transmits a synthesized response coherent with the received signal. The locator integrates multiple cyclical response elements, allowing low-power transmissions from the transponder. The locator correlates the integrated response, determines round-trip Doppler shift, time-of-flight, and then computes the distance and angle to the transponder. The transponder can be wearable, bionically implanted, or attached to, or embedded in, some object.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: August 5, 2014
    Assignee: Santa Monica Semiconductor, LLC
    Inventor: Lawrence J. Karr