With Infrared Device Patents (Class 342/53)
  • Patent number: 8294608
    Abstract: A forward facing sensing system for a vehicle includes a windshield electronics module disposed in the vehicle cabin behind the windshield, a radar sensor device disposed within the windshield electronics module with a sensing direction forward of the vehicle, an image sensor disposed within the windshield electronics module with a viewing direction forward of the vehicle, and a control operable to analyze images captured by the image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel. The control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle. The radar sensor device and the image sensor collaborate in a way that enhances the sensing capability of the sensing system for the potentially hazardous condition in the path of forward travel of the vehicle.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: October 23, 2012
    Assignee: Magna Electronics, Inc.
    Inventor: Niall R. Lynam
  • Patent number: 8274027
    Abstract: A laser energy detector may include at least one photodetector device formed on a semiconductor substrate. The photodetector device may have an active area effective to detect laser energy at a laser wavelength. The active area of the laser energy detector may be substantially transparent for a first wavelength band within an infrared portion of the electromagnetic spectrum.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 25, 2012
    Assignee: Raytheon Company
    Inventors: Clarence C. Andressen, Robert C. Anderson
  • Patent number: 8258998
    Abstract: Device, system and method of protecting aircrafts against incoming threats. For example, a system for protecting an aircraft against an incoming threat includes: one or more electro-optic sensors to substantially continuously search for the incoming threat, and to generate a signal indicating that a possible incoming threat is detected; one or more radar sensors to be activated in response to the signal, and to search for the incoming threat; and a central computer to determine whether or not the incoming threat exists, based on a sensor fusion algorithm able to fuse data received from the one or more electro-optic sensors and data received from the one or more radar sensors.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: September 4, 2012
    Assignees: BIRD Aerosystems Limited, EADS Deutschland GmbH
    Inventors: Ronen Factor, David Dragucki, Ariye Yehuda Caplan, Zahi Ben Ari, Semion Zelikman, Colin Henry Hamilton, George Weiss, Erwin Franz Keller, Erhard Seibt
  • Patent number: 8217830
    Abstract: A forward facing sensing system comprises a windshield electronics module disposed in the interior cabin of a vehicle at and behind the windshield. A radar sensor device is disposed within the windshield electronics module and a forward facing image sensor is disposed within the windshield electronics module, and with both disposed behind or adjacent to an upper region of the windshield. A control comprising an image processor analyzes images captured by the forward facing image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel. The radar sensor device may utilize beam aiming or beam selection or may utilize digital beam forming or digital beam steering or may comprise an array antenna or a phased array antenna or the forward facing image sensor may comprise a pixelated imaging array sensor. The radar sensor device comprises a silicon germanium radar sensor.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: July 10, 2012
    Assignee: Magna Electronics Inc.
    Inventor: Niall R. Lynam
  • Patent number: 8212709
    Abstract: A countermeasure method for directing a mobile tracking device away from an asset is provided. The countermeasure method includes directing the output of a continuous wave laser source at a seeker head of the mobile tracking device. The countermeasure method causes the generation of localized sources within the mobile tracking device and confuses the mobile tracking device as to the true location of the asset.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 3, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Timothy Bradley
  • Patent number: 8188905
    Abstract: Embodiments of a target tracking system and method with jitter reduction suitable for directed energy systems are generally described herein. In some embodiments, the directed energy system includes a target tracking system to track one or more track points on a moving target, and a beam transmission unit to maintain a directed energy beam on a selected one of the track points in response to tracking control signals provided by the target tracking system. The track points may be smaller than a spot size of the directed energy beam maintained on the target.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 29, 2012
    Assignee: Raytheon Company
    Inventor: James R. Gallivan
  • Patent number: 8179299
    Abstract: A method, comprising: characterizing an electromagnetic radiation path based on at least a scattered electromagnetic radiation pattern resulting from propagation of electromagnetic radiation through the path; receiving a plurality of scattered portions of a modulated electromagnetic radiation at a plurality of receiver antennas; and processing, at a receiver, the plurality of scattered portions, in conjunction with the characterized electromagnetic radiation path, to determine a change in the electromagnetic radiation path over time. An apparatus comprises a transmitter which transmits modulated electromagnetic radiation along an electromagnetic radiation path subject to electromagnetic radiation scattering; a plurality of receiver antennas which receive scattered portions of modulated electromagnetic radiation; and a processor which analyzes respective scattered portions, to characterize the electromagnetic radiation path, and to determine a change in the scattered electromagnetic radiation path over time.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 15, 2012
    Inventor: James L. Geer
  • Patent number: 8154438
    Abstract: The present invention can find the exact location anywhere in the nautical world (latitude/longitude coordinates) by correlating or matching radar returns with maps produced by a digital nautical chart called a Chart Server, because each pixel location on the Chart Server maps can be traced back to a latitude/longitude coordinate. An obstacle avoidance module called a Chart Server provides digital nautical charts to create a map of the world. To determine the current world location of a vehicle, the invention combines the Chart Server maps with a radar return, which also appears to display prominent features such as coastlines, buoys, piers and the like. These return features from the radar are correlated or matched with features found in the Chart Server maps. The radar then reports its current location inside of its local map, which when translated to the Chart Server map, correlates to a latitude/longitude registration location.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: April 10, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jacoby Larson, Michael Bruch
  • Publication number: 20120062410
    Abstract: A seeker/receiver system for a moving body, such as for guiding the moving body to a target, includes an optics/receiver portion that tilts as a unit relative to other parts of the moving body. The optics/receiver portion includes a window which may be used to enclose and protect one or both of a pair of receivers or detectors, such as a laser energy detector or receiver, and an infrared energy detector or receiver. By moving the window and the receivers as a unit a set positional relationship is maintained between all of the elements of the optics/receiver portion. This simplifies the optics by obviating the need for all aspects of the window to present the same properties to energy detectors that tilt relative to it. The optics/receiver portion may be tilted using a tilt mechanism such as a gimbal.
    Type: Application
    Filed: June 4, 2009
    Publication date: March 15, 2012
    Inventors: Byron B. Taylor, Thomas J. Wetherell, Brian S. Scott, Ronald L. Roncone
  • Patent number: 8125371
    Abstract: The invention provides a system and method for reducing the instance of friendly fire by having the weapon aiming system include means for emitting an optical signal encoded with the identity of the targeting soldier. The encoded optical signal is received by an optical receiver on a targeted soldier where it is converted into a low power RF signal which is transmitted to a local repeater that retransmits it, optionally using at least one intermediate repeater, to a central monitoring station equipped with a computerized database. If the monitoring station determines that the doubly encoded signal includes the identities of two friendly troops, it transmits a “hold fire” signal back to the aiming system, and a suitable signal, such as a red LED indicative of a “hold fire” order is illuminated.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 28, 2012
    Inventor: Sayo Isaac Daniel
  • Patent number: 8120524
    Abstract: Whether or not the CW radar is utilized for through-the-wall detection, additional one or more sensors are used with the CW radar to confirm the motion detection result or to in fact turn on the CW radar once motion or the physical presence of an individual has been sensed, thereby to provide confirmation of a less-reliable sensor with the use of the more reliable CW radar. Thus, the addition of other sensors provides lower power consumption, lower false alarm rates and better discrimination and classification of moving objects.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: February 21, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Paul D. Zemany
  • Patent number: 8102305
    Abstract: According to one embodiment, a method comprises receiving sensor data generated by one or more sensors in response to sensing a structure. The sensor data is filtered to identify edge data and reverberation data each describing the same structural feature of the structure. Image data for a filtered image of the structure is generated from the edge data, but not from the reverberation data.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: January 24, 2012
    Assignee: Raytheon Company
    Inventor: Daniel W. Otts
  • Patent number: 8102306
    Abstract: Typical inventive practice provides for electronic communication of a computer with a display, an active radar device (for transmitting target-location data and environmental data), a light measurement device (for transmitting visual light data), and passive imaging devices covering bands in the visual, infrared (MWIR and/or LWIR), and millimeter wave regions of the electromagnetic spectrum. Inventive software in the computer's memory establishes “operational modes.” Each operational mode is defined at least by a predominant environmental (obscuration and lighting) character, ascribes “modal indices” to individual imaging devices, and carries its own multispectral image fusion algorithm (which, pursuant to the ascribed modal indices, attributes weights to the imaging data from the respective imaging devices).
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jerry Rosson Smith, Jr., Joseph R. Krycia
  • Patent number: 8102261
    Abstract: A method for detecting an intruder in a protected space that uses a microwave frequency sensor to determine an accurate distance measurement to the intruder. The accurate distance measurement reduces the false alarms typically associated with microwave frequency sensors due to motion outside the protected space and vibration within the protected space. The motion detector transmits three microwave frequency signals of different frequencies in order to eliminate an ambiguity problem when determining the accurate distance measurement. The accuracy of the intruder distance measurement may be determined with greater resolution by reiteratively transmitting and evaluating microwave frequency signals of different frequencies. The motion detector of the present invention may include a PIR sensor.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: January 24, 2012
    Assignee: Honeywell International Inc.
    Inventor: XiaoDong Wu
  • Patent number: 8026842
    Abstract: A land-based smart sensor system and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed smart sensor system is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) a supercomputer to process the collected data in real-time. The smart sensor system can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Vista Research, Inc.
    Inventors: Phillilp A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 8013780
    Abstract: A radar sensing system for a vehicle includes a radar sensor device, a cover panel and a control. The radar sensor device is disposed at a pocket established at an upper edge of the vehicle windshield and having a forward transmitting and receiving direction that is not through the windshield. The cover panel is disposed at the radar sensor device and is substantially sealed at the vehicle windshield at or near the pocket at the upper edge of the vehicle windshield. The cover panel has a material that is substantially transmissive to radar frequency electromagnetic radiation waves. The radar sensor device emits radar frequency electromagnetic radiation waves that transmit through the cover panel. The control is responsive to an output of the radar sensor device.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: September 6, 2011
    Assignee: Magna Electronics Inc.
    Inventor: Niall R. Lynam
  • Publication number: 20110187578
    Abstract: A conductive line radar comprising at least one signal surface wave launcher, which comprises a signal surface wave transceiver, which is physically attached to a power line. The signal surface wave transceiver transmits a wave signal along the power line with another signal radiating from the wave signal in a plurality of directions along the power line. The at least one signal surface wave transceiver receives reflected signals from a target within a distance of the power line. The at least one signal surface wave launcher includes at least one RF communications transceiver and can be inductively powered from the power line.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Applicant: SENSIS CORPORATION
    Inventors: Mike FARNETH, Stephen E. McMAHON, John A. ROUGAS, Edward M. VALOVAGE, Brian EDWARD
  • Patent number: 7982662
    Abstract: This scanning array scans an area around the array for nearby objects, collision obstructions, and terrain topography. The scanning array can scan for sounds emitted by objects in the vicinity of the scanning array, passive energy receipt sources, or it can also send out an energy beam and scan for reflections from objects within the energy beam. The energy beam can be optical, laser, radar or other energy emitting sources. The scanning array of the invention can be used for helicopter detection and avoidance of collision risk and can be used for other scanning purposes. Scanning of an entire hemisphere or greater is accomplished by manipulating the scanner platform through the coordination of either linear actuators or gimbals so as to produce nutation without rotation. This motion allows transceivers to be directly coupled to transmitting and sensing modules without the losses associated with slip rings and other coupling devices.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 19, 2011
    Assignee: Intellex, LLC
    Inventor: James Shaffer
  • Patent number: 7973696
    Abstract: Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 5, 2011
    Assignee: Nomadics, Inc.
    Inventors: Irina Puscasu, Edward A. Johnson
  • Publication number: 20110144829
    Abstract: Provided is a bird countermeasure system. The bird countermeasure system includes a bird countermeasure robot configured to be operated through a remote command while patrolling or moving in an area adjacent to a runway or taxiway along which airplanes take off, land or taxi so as to approach the runway or taxiway or to detect or repel birds located close to the runway or taxiway.
    Type: Application
    Filed: September 16, 2010
    Publication date: June 16, 2011
    Applicant: Korea Atomic Energy Research Institute
    Inventors: Chang Hwoi Kim, Seop Hur, Kwang Seop Son, Hyungki Cha, Jung-Woon Lee, Young-Soo Choi, Kyung-min Jeong, Sung-Uk Lee, Tong-Il Jang, Sung-Mo Nam, Se-Woo Cheon
  • Patent number: 7961135
    Abstract: A collision avoidance system according to one aspect of the present invention comprises a user interface, a plurality of sensors, and a computer system in communication with the user interface and the plurality of sensors. The computer system includes a processor and a memory storing instructions that, when executed by the processor, cause the processor to receive data pertaining to a target from one or more sensors of the plurality of sensors, determine a position of the target based on the data from the one or more sensors, and present (through the user interface) the position of the target using one or more visual indicators that identify the one or more sensors.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: June 14, 2011
    Assignee: Aviation Communication & Surveillance Systems LLC
    Inventors: Mark D. Smith, Michael F. Tremose
  • Patent number: 7961133
    Abstract: The disclosed system, device, and method for diverting a guided missile generally includes a ground-based sensor array generating tracking data of a guided missile tracking a target. A control node in communication with the ground-based sensor array generates targeting data from the tracking data. A phased array directed-energy unit in communication with the control node radiates the guided missile with variable beam width microwave radiation based on the targeting data received from the control node, where the microwave radiation disrupts an electronic component of the guided missile such that the guided missile discontinues tracking the target.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: June 14, 2011
    Assignee: Raytheon Company
    Inventors: Jeff L. Vollin, Frederick A. Ahrens, Kenneth W. Brown
  • Patent number: 7956794
    Abstract: A radar device is described, in particular a hand-held short-range radar for determining the location of objects enclosed in a medium, including at least one radar sensor, which generates a first, high-frequency detection signal for penetrating a medium to be tested in such a way that information about an object enclosed in the medium can be obtained by measuring and analyzing the reflected detection signal of the radar sensor. At least one additional sensor is provided for generating at least one additional, second detection signal for obtaining information about the object enclosed in the medium. The method on which this radar instrument is based is also described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: June 7, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Uwe Skultety-Betz, Bjoern Haase, Michael Mahler, Ulli Hoffmann, Reiner Krapf, Christoph Wieland
  • Patent number: 7952511
    Abstract: A method for detecting an object, comprising the steps of defining expected characteristics of scattered electromagnetic radiation to be received at a receiver; attenuating at least a portion of electromagnetic radiation received at the receiver by a presence of an object within a path of electromagnetic information; and detecting the attenuation to indicate a presence of the object. The object may be a low radar profile object, such as a stealth aircraft. The electromagnetic radiation is preferably microwave, but may also be radio frequency or infrared. By using triangulation and other geometric techniques, distance and position of the object may be computed.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: May 31, 2011
    Inventor: James L. Geer
  • Publication number: 20110125349
    Abstract: An airborne apparatus that employs an advanced computer to analyze bird and aircraft positioning data, programmed to issue a warning about an impending strike, thereby creating the ultimate Bird-Aircraft Strike Prevention System. This system will constantly process the bird positioning data gathered by the Radar/Infrared sensors. In case of a bird-aircraft strike danger the system will immediately alert the pilot as well as Air Traffic Control, and, compute the necessary course correction required to avoid the collision. The advantages of the system include the ability to prevent bird strikes and instantaneously compute an alternative course or action necessary to avoid the bird-aircraft impact. Additionally, because the IBSPS is capable of being airborne, the aircraft will be protected from bird-strikes throughout the entire flight, even in absence of ground systems.
    Type: Application
    Filed: November 21, 2010
    Publication date: May 26, 2011
    Inventor: Danny Ace
  • Publication number: 20110115668
    Abstract: A non-contact, distance traveled measurement system (DTMS) to calculate speed and distance traveled by a vehicle over rails—more specifically, by trains traveling on standard railroad tracks. Preferably, a pair of short range (near field) microwave-based transmitters/sensors (transceivers) are mounted on the underside of the train and used to key on rail-bed features such as cross ties or tie plates. Preferred embodiments also include infrared sensors as a redundant channel that is less sensitive to moisture in the track bed. Data from the sensors is correlated to determine the time delay between the first and second sensors' passage over objects on the rail bed such as cross-ties or tie-plates. From this time delay, nearly instantaneous velocity can be computed at each given target such as a tie plate (metal target) or a tie (dielectric contrast target). Velocity versus time curves can be integrated over time to derive distance traveled.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 19, 2011
    Applicant: SYSTEMS AND MATERIALS RESEARCH CORPORATION
    Inventors: ALAN V. BRAY, Sean McNeal, Jesse McDaniel
  • Patent number: 7940208
    Abstract: An image processor includes an optical processor and a microwave processor. The optical processor is configured to extract optical image information from optical image data provided by a sensor, the optical image data representing an optical image of an object. The microwave image processor is configured to produce microwave image data representing a microwave image of the object in response to the extracted optical image information and microwave measurements provided by a microwave imager based on illuminating the object with microwave radiation.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: May 10, 2011
    Assignee: Agilent Technologies, Inc.
    Inventors: Izhak Baharav, Robert C. Taber, S. Jeffrey Rosner
  • Patent number: 7896708
    Abstract: An electrical connector system provides both electrically conductive connection and infrared coupling, and includes at least one electrically conductive member adapted to provide electrically conductive connection to another electrically conductive member, an infrared member adapted to provide infrared member coupling with another infrared member, and wherein the at least one electrically conductive member and the infrared member being held in positional relation to each other to be positioned with respect to a further electrical connector for electrically conductive connection and infrared coupling with respect thereto. A method of connecting electrical signals uses a pair of electrical connectors, each having an electrically conductive connection portion and an infrared coupling portion to provide for both electrically conductive connection and infrared coupling between the electrical connectors. The invention may be used in portable electronic equipment, including mobile phones, for example.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: March 1, 2011
    Assignee: Sony Ericsson Mobile Communications AB
    Inventor: Markus Agevik
  • Patent number: 7889113
    Abstract: An inspection system that can detect contraband items concealed on, in or beneath an individual's clothing. The system employs millimeter wave radiation to detect contraband items. The system is described in connection with a check point security system that includes temperature controlled walls to enhance imaging of contraband items. Also, a millimeter wave camera is used in conjunction with a visible light camera that forms images. To address privacy concerns of displaying images of people made with millimeter wave cameras that effectively “see through” clothes, the millimeter wave images are not displayed directly. Rather, computer processing produces indications of suspicious items from the underlying raw millimeter wave images. The indications of suspicious items are overlaid on the image formed by the visible light camera.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 15, 2011
    Assignee: L-3 Communications Security and Detection Systems Inc.
    Inventors: Apostle G. Cardiasmenos, Paul J. DeLia
  • Publication number: 20110030538
    Abstract: Embodiments of an apparatus and method for defending a physical zone from airborne and ground-based threats are disclosed. In the various embodiments, an apparatus includes a detection component configured to detect and track a ground-based or airborne threat proximate to the physical zone, an integration component to receive data from the detection component and process the data to determine a threat assessment. A defensive component receives the determined threat assessment and disables the ground-based and airborne threat based upon the determined threat assessment. A method includes detecting an object proximate to the physical zone to be protected, identifying the object as a hostile threat, determining at least one of a path and a point-of-origin for the object, and actuating a defensive system in response to the hostile threat.
    Type: Application
    Filed: February 26, 2010
    Publication date: February 10, 2011
    Inventors: Frederick A. Ahrens, Jay A. Stern, Timothy K. Kirchhoff, Mark P. Slivinski, Terrence J. Wolfe, Vernon A. Mickle, Arthur D. Dilley, Daniel F. Cheeseman, Timothy M. Minahen
  • Publication number: 20110025549
    Abstract: A method and system for coordinating air-to-air tracking and air-to-ground tracking for an airborne tracked target that is landing or performing an airdrop. Air-to-air tracking data is analyzed to detect if the tracked target is landing, and a predicted landing location is computed. An air-to-ground sensor is activated, via a separate air-to-ground tracking module or via a mode change, and the air-to-ground tracking is initiated at the predicted landing location of a detected target. Both automated and manually-assisted air-to-ground activation are supported.
    Type: Application
    Filed: December 25, 2008
    Publication date: February 3, 2011
    Applicant: Elta Systems Ltd.
    Inventor: Yahali Merhav
  • Patent number: 7864096
    Abstract: An embodiment of the present invention provides a collision avoidance system for a host aircraft comprising a plurality of sensors for providing data about other aircraft that may be employed to determine one or more parameters to calculate future positions of the other aircraft, a processor to determine whether any combinations of the calculated future positions of the other aircraft are correlated or uncorrelated, and a collision avoidance module that uses the correlated or uncorrelated calculated future positions to provide a signal instructing the performance of a collision avoidance maneuver when a collision threat exists between the host aircraft and at least one of the other aircraft.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: January 4, 2011
    Assignee: Aviation Communication & Surveillance Systems LLC
    Inventors: Gregory T. Stayton, Mark D. Smith, Michael F. Tremose
  • Publication number: 20100283662
    Abstract: A land-based Smart-Sensor System and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed Smart-Sensor System is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) an IBM CELL supercomputer to process the collected data in real-time. The Smart Sensor System can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Application
    Filed: June 8, 2007
    Publication date: November 11, 2010
    Inventors: Phillilp A. Fox, Joseph W. Maresca, JR.
  • Patent number: 7800527
    Abstract: The system and method for standoff detection of human carried explosives (HCE) automatically detects HCE (112) up to a range of (200) meters and within seconds alerts an operator to HCE (112) threats. The system (100) has radar only, or both radar and video sensors, a multi-sensor processor (102), an operator console (120), handheld displays (122), and a wideband wireless communications link. The processor (102) receives radar and video feeds and automatically tracks and detects all humans (110) in the field of view. Track data continuously cues the narrow beam radar (118) to a subject of interest (110), (112) the radar (106), (108) repeatedly interrogating cued objects (110), (112), producing a multi-polarity radar range profile for each interrogation event. Range profiles and associated features are automatically fused over time until sufficient evidence is accrued to support a threat/non-threat declaration hypothesis.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: September 21, 2010
    Inventors: Robert J. Douglass, John D. Gorman, Thomas J. Burns
  • Patent number: 7796081
    Abstract: Vehicular arrangement for obtaining information about objects exterior to the vehicle includes at least one combined imaging and distance measuring system arranged along an edge or a side of the vehicle, each combined system including an infrared illuminator for directing infrared illumination outward from the vehicle, an imager sensitive to infrared illumination and visible light, the imager being arranged to form images of an environment around the vehicle and thereby enable identification of objects in the images, a radar or laser radar system arranged to simultaneously determine a distance between the vehicle and objects identified in images obtained by the imager with the identification of the objects in the images. A reactive system is arranged on the vehicle to consider both the identification of the objects and their distance from the vehicle and react accordingly.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 14, 2010
    Assignee: Intelligent Technologies International, Inc.
    Inventor: David S. Breed
  • Publication number: 20100175573
    Abstract: An apparatus for remote detection or neutralization of an explosively formed penetrator device. A LIDAR or LADAR unit may be used in conjunction with a RADAR unit to both detect the presence of an EFP and neutralize the EFP having an associated passive infrared sensor. The LIDAR unit's wavelength is selected to approximate the signature from the intended EFP target which then causes the safe remote detonation of the EFP. The detected EFP signature may be compared with known signatures and presented to a user via a display terminal. The display terminal may also present associated terrain or GPS data.
    Type: Application
    Filed: June 17, 2008
    Publication date: July 15, 2010
    Inventors: Alan Cornett, Robert C. Becker, Doug Carlson, David W. Meyers
  • Patent number: 7696919
    Abstract: A system and method for warning a helicopter of an approaching bullet using existing sensor systems is disclosed. The disclosed method including the steps of: detecting and providing bearing information for detected small arms weapon firing locations near the helicopter, determining a detection area and detection time window for the fired bullet, determining the antennas of the RF transmitting and RF receiving systems covering the bearing of the detected weapon firing; determining a timing sequence and allocating time segments for transmitting and receiving RF signals during the detection time window, commanding the RF emitting system to emit and the RF receiving system to receive RF signals during their allocated time segments, processing RF signals received and determining whether reflected RF signal pulses from the emitted RF signal pulses are present, and outputting a warning where reflected RF signal pulses are detected.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: April 13, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Stephen C. Moraites
  • Publication number: 20100085254
    Abstract: A system and method wirelessly communicates signals between a device on a gimbal and a stationary transceiver. An exemplary system has a gimbal with a moveable portion, a device affixed to the moveable portion, a gimbal transceiver coupled to the moveable portion, and a stationary transceiver, wherein the gimbal transceiver and the stationary transceiver are configured to communicate with each other using a wireless signal.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Applicant: Honeywell International Inc.
    Inventors: Brian P. Bunch, Steve Mowry, Paul Ferguson
  • Patent number: 7692571
    Abstract: An imaging system for a rotary aircraft having a millimeter wave imager with visible or infrared overlay. The system includes an active millimeter wave imaging system comprising a millimeter wave transmitter and a millimeter wave phased array receiver for producing millimeter wave images of a landing region, a second imaging system operating at visible or infrared wavelengths to produce visible or infrared images of the landing region, and a processor programmed with a see and remember algorithm for overlaying the visible or infrared images and the millimeter wave images and to save at least one good high-resolution visible or infrared image in case of a brownout event begins to obscuring the visible or infrared images wherein in case of the brownout event the millimeter wave images are overlaid on the at least one good visible or infrared image and not obscured visible or infrared images.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 6, 2010
    Assignee: Trex Enterprises Corp.
    Inventors: John Lovberg, Vladimar Kolinko
  • Patent number: 7668621
    Abstract: A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: February 23, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: David J. Bruemmer
  • Publication number: 20100007544
    Abstract: The invention proposes utilizing the known geometry of the measurements in order to assign them to one another and to resolve ambiguities, wherein the 3D position of an object (3) in space is determined by a spatial section at the same time.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 14, 2010
    Inventors: Marc Honikel, Hanspeter Berger
  • Publication number: 20090292468
    Abstract: A system and method for fusing depth and radar data to estimate at least a position of a threat object relative to a host object is disclosed. At least one contour is fitted to a plurality of contour points corresponding to the plurality of depth values corresponding to a threat object. A depth closest point is identified on the at least one contour relative to the host object. A radar target is selected based on information associated with the depth closest point on the at least one contour. The at least one contour is fused with radar data associated with the selected radar target based on the depth closest point to produce a fused contour. Advantageously, the position of the threat object relative to the host object is estimated based on the fused contour. More generally, a method is provided for aligns two possibly disparate sets of 3D points.
    Type: Application
    Filed: March 25, 2009
    Publication date: November 26, 2009
    Inventors: Shunguang Wu, Theodore Camus, Chang Peng
  • Patent number: 7619556
    Abstract: The present invention is a method for obtaining a localizer deviation and a glide slope deviation for an aircraft. The method may include directing electromagnetic signals from a weather radar system of an aircraft towards a runway. The method may further include receiving return signals in response to the directed signals. The method may further include, based on the received return signals, determining an azimuth angle for the aircraft relative to the runway, determining an elevation angle for the aircraft relative to the runway, and determining a range for the aircraft relative to the runway. The method may further include based on the azimuth angle, the elevation angle, and the range, calculating the localizer deviation and the glide slope deviation for the aircraft.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 17, 2009
    Assignee: Rockwell Collins, Inc.
    Inventor: Patrick Dennis McCusker
  • Publication number: 20090262012
    Abstract: A radiometer for measuring temperature data can include a data reader for reading target data associated with a measurement target and generating temperature data based on the target data. A temperature compensation system can include a radiometer with a data reader and one or more data tags placed proximate corresponding measurement targets. The data tags can contain target data including a target identifier and/or compensation data, among other data. The compensation data can include, for example, a target emissivity. In some embodiments the data reader can include an optical scanning device and/or an RFID reader.
    Type: Application
    Filed: April 16, 2008
    Publication date: October 22, 2009
    Inventors: Paul Carlson, Samir Jain, Jill Ryan, Jeffrey Elrod, Roger Schmidt, Larry Wilson, Medwin Schreher
  • Patent number: 7579979
    Abstract: An apparatus combining an optical sensor and a bomb impact assessment system, and corresponding method for facilitating bomb impact assessment, comprising means for receiving an optical signal, means for splitting off a portion of the optical signal from a primary optical path to form a secondary optical path, a lens in the secondary optical path, the lens comprising a plurality of facets generating a plurality of tertiary optical paths, means for combining signals from the primary and one or more of the tertiary optical paths, means for detecting the combined signals, and means for projecting onto a focal plane array bomb impact assessment data comprising detected signals from one or more of the tertiary optical paths.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: August 25, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Jennifer K. Park, Gene D. Tener, William H. Barrow, Gary E. Wiese
  • Patent number: 7576681
    Abstract: A method and system provide a multi-sensor data fusion system capable of adaptively weighting the contributions from each one of a plurality of sensors using a plurality of data fusion methods. During a predetermined tracking period, the system receives data from each individual sensor and each data fusion method is performed to determine a plurality of reliability functions for the system based on combining each sensor reliability function which are individually weighted based on the S/N (signal-to-noise) ratio for the received data from each sensor, and a comparison of predetermined sensor operation characteristics for each sensor and a best performing (most reliable) sensor. The system may dynamically select to use one or a predetermined combination of the generated reliability functions as the current (best) reliability function which provides a confidence level for the multi-sensor system relating to the correct classification (recognition) of targets and decoys.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 18, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Hai-Wen Chen, Teresa L. Olson
  • Patent number: 7551121
    Abstract: The multi-target tracking and discrimination system (MOST) fuses with and augments existing BMDS sensor systems. Integrated devices include early warning radars, X-band radars, Lidar, DSP, and MOST which coordinates all the data received from all sources through a command center and deploys the GBI for successful interception of an object detected anywhere in space, for example, warheads. The MOST system integrates the optics for rapid detection and with the optical sensor array delivers high-speed, high accuracy positional information to radar systems and also identifies decoys. MOST incorporates space situational awareness, aero-optics, adaptive optics, and Lidar technologies. The components include telescopes or other optical systems, focal plane arrays including high-speed wavefront sensors or other focal plane detector arrays, wavefront sensor technology developed to mitigate aero-optic effects, distributed network of optical sensors, high-accuracy positional metrics, data fusion, and tracking mounts.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 23, 2009
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Daniel G. O'Connell, Ken C. K. Cheung
  • Patent number: 7511253
    Abstract: An apparatus for detecting radiation includes an entry window configured to receive radiation from a target, the entry window having an outer surface and an inner surface, such that the outer surface is not parallel to the inner surface. The apparatus further includes a radiation transmission assembly configured to receive at least a portion of the radiation received by the entry window. The apparatus further includes a radiation sensor configured to receive at least a portion of the radiation from the radiation transmission assembly.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 31, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Turner
  • Patent number: 7504993
    Abstract: A coaxial bi-modal imaging system is produced by aligning a microwave transceiver, an optical camera and an antenna array in a coaxial configuration. The microwave transceiver is operable to emit microwave radiation to illuminate an object and to receive reflected microwave radiation reflected from the object to capture a microwave image of the object. The antenna array includes a plurality of antenna elements, each programmable with a respective transmit direction coefficient to direct the microwave radiation emitted from said microwave transceiver toward a target on the object, and each programmable with a respective receive direction coefficient to direct the reflected microwave radiation reflected from said target towards said microwave transceiver. The optical camera is configured to capture an optical image of said object.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 17, 2009
    Assignee: Agilent Technolgoies, Inc.
    Inventors: James E. Young, Gregory S. Lee, William Weems
  • Patent number: 7504982
    Abstract: The disclosed system, device and method for an anti-missile system generally includes a ground-based sensor array generating tracking data of a guided missile tracking a target. A control node in communication with the ground-based sensor array generates targeting data from the tracking data. A phased array directed-energy unit in communication with the control node radiates the guided missile with microwave radiation based on the targeting data received from the control node, where the microwave radiation disrupts an electronic component of the guided missile such that the guided missile discontinues tracking the target.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: March 17, 2009
    Assignee: Raytheon Company
    Inventors: Russell Berg, Keith Kato, Kenneth Brown, Reid Lowell, David Crouch