Plural Radar Patents (Class 342/59)
  • Publication number: 20100079330
    Abstract: Certain embodiments provide a network waveform system that can include multiple radars disposed at different geographical positions within an environment. The multiple radars may be configured to transmit a network waveform. The network waveform may include multiple radar waveforms. Each radar waveform of the multiple waveforms may be transmitted by a specific radar of the multiple radars. The system can also include a computer system coupled with the multiple radars that can include a processor and a memory. The memory may be configured to store information including data received from the multiple radars, data processed by the processor, and processing code executable by the processor. The processing code may include instructions to receive output data from the multiple radars resulting from the transmitted network waveform instructions to jointly process the output data from the multiple radars to determine a measurement of the environment based on the network waveform.
    Type: Application
    Filed: May 7, 2009
    Publication date: April 1, 2010
    Applicant: Colorado State University Research Foundation
    Inventors: Chandrasekaran Venkatachalam, Nitin Bharadwaj
  • Patent number: 7679562
    Abstract: A target detection apparatus that includes a transmission/reception device for generating a transmission signal for detection of a target, and extracting distance information about the target from a received signal; a number of sensors each of which transmits the transmission signal to respective different angle ranges, receives a signal reflected by the target, and transfers the received signal to the transmission/reception device; and a switch device for switching in a time division manner a connection between the transmission/reception device and one of the sensors to a connection between the transmission/reception device and another one of the sensors, where the switch device selects a first of the sensors for transmitting the transmission signal in a time slot and a second of the sensors for receiving the signal reflected by the target in the time slot.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Limited
    Inventor: Kazuo Shirakawa
  • Patent number: 7675458
    Abstract: Various embodiments are described herein relating to a radar system and associated methods for detecting targets in the presence of certain types of clutter. The radar system generally comprises hardware operatively configured to obtain first and second sets of radar return signals concurrently, first circuitry operatively configured to detect targets in the first and second sets of radar return signals, and second circuitry operatively configured to identify detected targets due to clutter.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: March 9, 2010
    Assignee: Raytheon Canada Limited
    Inventors: Oliver Hugh Hubbard, Jian Wang
  • Patent number: 7671784
    Abstract: Techniques for detecting contraband are described, as are techniques for generating an image of living tissue. A location of interest relative to a target space is received, and a radar signal is transmitted in the direction of the location of interest. Portions of the radar signal are detected with multiple receiving structures. The detected portions are processed to generate information corresponding to dielectric or loss properties, the properties corresponding to particular positions within the target space. A determination is made as to whether contraband is present in the target space based on the determined properties.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 2, 2010
    Assignee: L-3 Communications CyTerra Corporation
    Inventors: William Steinway, David H. Fine, Stephen Cole, Ravi K. Konduri, Douglas O. Carlson, Yuriy Pylypenko
  • Patent number: 7664600
    Abstract: Each of plural detection units performs a signal transmission-reception operation responding to at least one of a plurality of kinds of operation timing signals repeated at a predetermined periodicity. The number of continuous reception times of the reflection signal is counted and used to determine obstacle detection when the number of counts is larger than or equal to a predetermined value. The transmission-reception operations are controlled by an operation timing signal having a periodicity shorter than the predetermined periodicity.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: February 16, 2010
    Assignee: Denso Corporation
    Inventors: Masakazu Takeichi, Masahisa Makino, Kenichiro Horikawa
  • Publication number: 20100013697
    Abstract: A method of tracking an object including the steps of: collecting N measurements of range Ri and Doppler velocity Di associated with the object from a plurality M of radar sensors Si each measurement being assigned a time stamp ti; time aligning each Range Ri measurement to a common time stamp tN to provide a corresponding time aligned range Pi for each of the N measurements; using each time aligned Range measurement Pi to define a corresponding spherical equation such that N spherical equations are defined; and deriving analytical solutions from three of the N spherical equations to determine the position vector of the object.
    Type: Application
    Filed: September 14, 2007
    Publication date: January 21, 2010
    Applicant: THALES NEDERLAND B.V.
    Inventors: Huub De Waard, Piet Griffioen, Henk Regtop, Gert Van De Brug
  • Patent number: 7642949
    Abstract: Methods and apparatuses of scene illumination for millimeter wave sensing are presented. One embodiment features illuminating a subject with millimeter wave radiation produced by at least one fluorescent light, generating an image with a passive sensor using the millimeter wave radiation reflected from the subject, and analyzing the image to detect representations corresponding to concealed objects associated with the subject. Another embodiment features at least one fluorescent light which illuminates a subject with millimeter wave radiation, and passive millimeter wave sensor which receives the millimeter wave radiation effected from the subject, and generates an image which is analyzed to detect image representations corresponding to concealed objects. Another embodiment features at least one florescent light behind an optically opaque medium which is transparent to millimeter wave radiation, and illuminating a subject with millimeter wave radiation produced by the fluorescent light.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: January 5, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Albert N. Pergande, Lee A. Mirth, Lawrence T. Anderson, Michael A. Tomcsak, William S. McKinley
  • Patent number: 7609198
    Abstract: A radar imaging system is provided that directly measures the spatial frequency components of a scene via digital-beam-forming techniques applied along the cross-track dimension. Separate transmit and receive antennas provide increased integration time for the receive function, thus improving the signal-to-noise ratio. A segmented receive antenna is employed and processed as a series of interferometers sensitive to spatial frequency components of the scene corresponding to the separation between pairs of antenna elements. Range gating is used in the along-track dimension to divide the return from an illuminated swath into multiple range bins that may be processed independently. The system provides an improved signal-to-noise ratio and lends significant flexibility to the image formation process, improving the quality of the radar imaging. An embodiment having multiple transmit antennas is also provided that enables the generation of three-dimensional stereoscopic radar images.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: October 27, 2009
    Assignee: Spatial Digital Systems, Inc.
    Inventor: Donald Chin-Dong Chang
  • Patent number: 7592944
    Abstract: A system and method for highly selective intrusion detection using a sparse array of ultra wideband (UWB) radars. Two or more UWB radars are arranged in a sparse array around an area to be protected. Each UWB radar transmits ultra wideband pulses that illuminate the area to be protected. Signal return data is processed to determine, among other things, whether an alarm condition has been triggered. High resolution radar images are formed that give an accurate picture of the area to be protected. This image is used to detect motion in a highly selective manner and to track moving objects within the protected area. Motion can be distinguished based on criteria appropriate to the environment in which the intrusion detection system operates.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 22, 2009
    Assignee: Time Domain Corporation
    Inventors: Larry W. Fullerton, James L. Richards, Mark D. Roberts, Brandon S. Dewberry
  • Patent number: 7592945
    Abstract: A collision avoidance system for reducing false alerts by estimating the elevation of a target, includes short and long range single-dimensional scanning radar sensors having differing ranges and beam angles of inclination, and a digital fusion processor, and preferably includes a locator device, an inclinometer, and a memory storage device cooperatively configured to further perform trend analysis, and target tracking.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 22, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Joseph S. Colburn, Osman D. Altan, Kevin Geary, Hui-Pin Hsu
  • Patent number: 7589665
    Abstract: A multistatic detection device for measuring a distance to an object includes a transmitter and a receiver, each having a high-frequency oscillator and a pulse generator. The pulse generators can be supplied with synchronisation signals emitted by signals generators, the synchronisation signals being transmitted by a data bus common to the transmitter and the receiver. The relation of the deterministic phases of high-frequency signals can be produced by the high-frequency oscillator. The method includes feeding two synchronisation signals to the transmitter and the receiver by the common data bus, the transmitter signal is transmitted towards an object, the signal passing through the receiver and contained in the data bus being mixed with a reception signal reflected by the object, thereby producing a measuring signal thereby making it possible to compare the phases of clock signals.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: September 15, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Patric Heide, Martin Vossiek
  • Patent number: 7570196
    Abstract: A method, computer program product, apparatus and system are provided. In one exemplary embodiment, a method includes: receiving at a second unit periodic energy bursts transmitted by a first unit; blanking a transmitter of the second unit in accordance with the received periodic energy bursts such that the transmitter is unable to transmit when the second unit is receiving a periodic energy burst; and transmitting a plurality of instances of a same data from the second unit to the first unit.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: August 4, 2009
    Assignee: L-3 Communications Corporation
    Inventors: Vaughn L. Mower, Larry S. Thomson, David H. Robbins, James J. Boesch
  • Publication number: 20090174591
    Abstract: The present invention relates to system for detecting obstacles (13, 55, 56, 57) on the ground (15) onboard a carrier (1). The detection system comprises at least two continuous-wave radars (2, 3, 4). The radars (2, 3, 4) are linked to a system (15) for utilizing the detection data arising from the radars (2, 3, 4). The detection system performs localization of an obstacle (13, 55, 56, 57): along a radial axis (12) between a radar (2, 3, 4) and the obstacle (13, 55, 56, 57), by calculating the distance between the radar (2, 3, 4) and the obstacle (13, 55, 56, 57); along a vertical axis (14) with respect to a radar (2, 3, 4), by calculating the elevation of the obstacle (13, 55, 56, 57) using monopulse deviation-measurement processing; The detection system performs localization of an obstacles along a horizontal axis (18) transverse with respect to a sighting axis (11) of a radar (2, 3, 4), by calculating the azimuthal position of the obstacle (13, 55, 56, 57).
    Type: Application
    Filed: March 14, 2008
    Publication date: July 9, 2009
    Applicant: THALES
    Inventors: Pascal CORNIC, Patrick Le Bihan, Yves Audic, Philippe Lacomme
  • Publication number: 20090167591
    Abstract: A precision radar registration (PR2) system and method that employs highly accurate geo-referenced positional data as a basis for correcting registration bias present in radar data. In one embodiment, the PR2 method includes sample collection and bias computation function processes. The sample collection process includes ADS-B sample collection, radar sample collection, and time alignment sub-processes. The bias computation function process includes bias computation, quality monitoring and non-linear effects monitoring sub-processes. The bias computation sub-process results in a bias correction solution including range bias b?, azimuth bias b?, and time bias bT parameters. The quality monitoring sub-process results in an estimate of solution quality. The non-linear effects monitoring sub-process results in detection of the presence of non-linear bias, if any, in the bias correction solution.
    Type: Application
    Filed: November 24, 2008
    Publication date: July 2, 2009
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Michael R. Abbett, Sergio Torres
  • Patent number: 7554484
    Abstract: An object detection system, in particular for a motor vehicle, has multiple object detectors and/or operating modes with which different detection ranges and/or detection zones are detected. In this case, an object detector is preferably a radar sensor which has a relatively large detection range with a relatively small angular detection zone in a first operating mode and has a detection range that is small relative to the first with an enlarged angular detection zone in a second operating mode.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: June 30, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Uwe Zimmermann, Achim Pruksch, Werner Uhler
  • Patent number: 7551121
    Abstract: The multi-target tracking and discrimination system (MOST) fuses with and augments existing BMDS sensor systems. Integrated devices include early warning radars, X-band radars, Lidar, DSP, and MOST which coordinates all the data received from all sources through a command center and deploys the GBI for successful interception of an object detected anywhere in space, for example, warheads. The MOST system integrates the optics for rapid detection and with the optical sensor array delivers high-speed, high accuracy positional information to radar systems and also identifies decoys. MOST incorporates space situational awareness, aero-optics, adaptive optics, and Lidar technologies. The components include telescopes or other optical systems, focal plane arrays including high-speed wavefront sensors or other focal plane detector arrays, wavefront sensor technology developed to mitigate aero-optic effects, distributed network of optical sensors, high-accuracy positional metrics, data fusion, and tracking mounts.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 23, 2009
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Daniel G. O'Connell, Ken C. K. Cheung
  • Patent number: 7541968
    Abstract: An intrusion detection system and method are provided that can utilize impulse radio technology to detect when an intruder has entered a protection zone. In addition, the intrusion detection system and method can utilize impulse radio technology to determine a location of the intruder within the protection zone and also track the movement of the intruder within the protection zone. Moreover, the intrusion detection system and method can utilize impulse radio technology to create a specially shaped protection a one before trying to detect when and where the intruder has penetrated and moved within the protection zone.
    Type: Grant
    Filed: October 29, 2006
    Date of Patent: June 2, 2009
    Assignee: Time Domain Corp.
    Inventors: David J. Hall, Scott M. Yano, Hans G. Schantz
  • Patent number: 7541973
    Abstract: A radar apparatus is provided which correctly combines and displays detected data obtained from a plurality of radar antennas. Detected data obtained from a radar antenna 11 is subjected to a correlation process in a correlator 91A. Detected data obtained from a radar antenna 21 is subjected to a correlation process in a correlator 91B. A mask image which designates the same address as that of the correlated data from the radar antenna 21 is set by a mask area generator 32 and is written into a mask image memory 62. For the correlated data from the correlators 91A and 91B, addresses corresponding to installed positions of the radar antennas 11 and 21 are set. For a process image memory 902B of the correlator 91B and the mask image memory 62, a common address is set. Correlated data input in accordance with mask data is stored in a display image memory 61 in accordance with an address set in a display screen and is also output to a display device 10.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: June 2, 2009
    Assignee: Furno Electric Company Limited
    Inventors: Takumi Fujikawa, Sae (Shibata) Takemoto, Ichiya Ogino, Takashi Inaoka, Motoji Kondo
  • Patent number: 7522092
    Abstract: A radar apparatus including units for transmitting and receiving an electric wave to detect a target, a unit for detecting wave interference caused by surroundings, a unit for controlling the modulation state of the transmitted wave, a communication unit for acquiring modulation state information being used by the other radar apparatuses, and a unit for selecting such a modulation state as to avoid interference with the modulation state information when the wave interference detecting unit detects the wave interference.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 21, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Fumihiko Okai, Hiroshi Kuroda
  • Patent number: 7518544
    Abstract: Radar beams are generated with radars disposed at different positions within an environment that attenuates at least a portion of one of the radar beams. A measured reflectivity of the environment is determined along a path of each of the radar beams. An intrinsic reflectivity is determined from different volume elements within the environment from the measured reflectivity.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: April 14, 2009
    Assignee: Colorado State University Research Foundation
    Inventors: Chandrasekaran Venkatachalam, Sang Hun Lim
  • Patent number: 7518543
    Abstract: A method for determining the positions of targets by bistatic measurements using signals scattered by the targets is provided in which the velocities of the targets can also be determined. The range of the transmitters is selected so that a target at an arbitrary point can be measured, by scattering in the target, by at least four cooperating measuring facilities. First the targets are associated by calculating, in two independent ways, two sets of sums of distances between transmission points and targets and, respectively, targets and reception points. Subsequently, the two sums are sorted with respect to distance, compared with each other, and the sums that correspond with each other within a predetermined margin of error are stated to correspond to conceivable targets. The association of targets is improved and completed by corresponding calculations being carried out for Doppler velocities.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: April 14, 2009
    Assignee: Totalforsvarets Forskningsinstitut
    Inventor: Lars Magnus Herberthson
  • Patent number: 7518545
    Abstract: Driver assistance system of a land or water vehicle that encompasses a long-range radar apparatus for the detection of distant objects and at least one short-range detection apparatus for the detection of objects in the vehicle's close proximity. The system further includes an operation control apparatus for control of operation at least of the long-range radar apparatus depending on a motion state of the land or water vehicle. The operation control apparatus is configured to deactivate the long-range radar apparatus at least at standstill of the land or water vehicle or switch it to an essentially powerless standby mode, while keeping the short-range detection apparatus activated.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 14, 2009
    Assignee: Infineon Technologies AG
    Inventor: Jürgen Minichshofer
  • Patent number: 7515091
    Abstract: A method and system for communicating using pulsed radar signal data links is disclosed. The method comprises encoding downlink data with a signature sequence as a secondary function onto a continuous wave pulse signal having a primary function at a master device. The data-encoded pulse signal from the master device is interpreted at one or more slave devices configured to receive the pulse signal within a first communications bandwidth of the primary and secondary functions. The master device synchronizes returning communication transmissions from each of the one or more slave devices for the secondary function within a prescribed return interval of the primary function.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 7, 2009
    Assignee: Honeywell International Inc.
    Inventors: David W. Meyers, Michael R. Franceschini, James A. Freebersyser
  • Patent number: 7515092
    Abstract: A method of using a wireless communication system to determine locations is provided. The method including exchanging communication frames between at least two synchronized nodes in the communication system, wherein each communication frame includes at least one of data signals and radar signals. Determining distances of at least one of nodes and reflective sources based in least in part on at least one of direct and reflected radar signals and determining locations of at least one of the nodes and the reflective sources based on the determined distances.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: April 7, 2009
    Assignee: Honeywell International Inc.
    Inventor: Philip J. Zumsteg
  • Patent number: 7508335
    Abstract: A method of multiple sensor processing includes receiving, at a first sensor system, track data from a second sensor system, comparing track data from the first sensor system to the track data from the second sensor system to determine if a track will be within a field of view of the first sensor system during a time period, determining, at a first sensor system, predicted quality of tracks based on the track data and broadcasting the predicted quality of tracks. The method also includes receiving predicted quality of tracks from the second sensor system and determining a first set of tasks based on the predicted quality of tracks determined by the first sensor system and the predicted quality of tracks received from the second sensor system.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 24, 2009
    Assignee: Raytheon Company
    Inventors: Steven T. Cummings, George A. Blaha, Larry L. Stern
  • Patent number: 7504992
    Abstract: A system and method for monitoring topological changes in a defined area. A grid of sensors is arranged in the area, with known distances between them. The sensors communicate wirelessly with a host computer, which individually addresses each sensor to instruct that sensor to be in an interrogate mode or responder mode. When a sensor is in interrogate mode, it measures distance from a neighboring sensor using radar (continuous wave phase difference) measurements. When a sensor is in responder mode, it receives, delays, and returns a signal received from a neighboring sensor.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 17, 2009
    Assignee: Southwest Research Institute
    Inventors: Michael Eugene Pilcher, Jr., Brian Earl Campion, Ben Allen Abbott
  • Patent number: 7504984
    Abstract: A system for locating earth cavities, or items in a building, or structural characteristics having a plurality of transmitters that generate at least a portion of a waveform. Each transmitter divides the waveform into sub-chirp intervals and transmits a known sub-chirp interval from a known location to contact an article of interest. The resulting sub-chirp intervals become a leakage signal that is then received and processed by a receiver. The receiver therein approximates a cavity size, article size, article composition, article location, earth cavity location, or other structural characteristic.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 17, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Atindra K. Mitra
  • Patent number: 7504988
    Abstract: A radar device has a long range radar sensor having a first transmission and receiving section for transmitting and receiving radio wave to a first detection range and a first signal processing section for detecting an object existing in the first detection range; a short range radar sensor having a second transmission and receiving section for transmitting and receiving a radio wave to a second detection range of which width is wider and of which distance is shorter than the first detection range and a second signal processing section for detecting an object existing in the second detection range; and a processing section for integrating information supplied from the first and second signal processing sections. And one of the long range radar sensor and the short range radar sensor stops a detection operation of the object to an overlapped range of both the detection ranges.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: March 17, 2009
    Assignees: Fujitsu Ten Limited, Fujitsu Limited
    Inventors: Masataka Tsuchihashi, Nobukazu Shima, Kazuo Shirakawa
  • Patent number: 7492282
    Abstract: The present invention relates to a method and a device for determining the size and position of a parking space in relation to the position of a vehicle while the vehicle is driving past the parking space, the parking space extending longitudinally to the traffic lane and transversely to the traffic lane. It is the objective of the present invention to provide an ultrasound-based system for parking space measurement that operates more precisely than the known ultrasound-based systems for parking space measurement, even when passing the parking space at high speed and given high sensing depth of the parking space.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 17, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Christian Danz, Michael Seiter
  • Patent number: 7492303
    Abstract: Methods and apparatus for early detection and identification of a threat such as individuals carrying hidden explosive materials, land mines on roads, etc. are disclosed. One method comprises illuminating a target with radiation at a first polarization, collecting first radiation reflected from the target which has the same polarization as the first polarization, illuminating a target with radiation at a second polarization, and collecting second radiation reflected from the target which has the same polarization as the second polarization. A threat determination is then made based on the difference between the energy values of the first and second collected radiations. In other embodiments, the difference between energy values is used in conjunction with an evaluation of the returned energy in comparison with returned energy from other targets in order to additionally assess whether the primary target is a threat.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 17, 2009
    Assignee: Personnel Protection Technologies LLC
    Inventors: Arthur C. Levitan, Lester Kosowsky
  • Publication number: 20090040094
    Abstract: An object detecting apparatus for detecting an object by a plurality of radars, with improved accuracy of identity determination and acquisition of position information in fusion of detection results. The object detecting apparatus is arranged to obtain a moving path of a detected point by a radar and to perform pairing as follows: if a detected point by a radar exists in a region based on the moving path and if a relative velocity thereof is matched with that of the detected point of interest, the detected point is paired as a corresponding detected point.
    Type: Application
    Filed: February 28, 2007
    Publication date: February 12, 2009
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoaki Harada, Hisashi Satonaka
  • Patent number: 7466261
    Abstract: A RADAR system including a set of RADAR apparatuses is disclosed. Each apparatus includes a processor, a pulse unit in signal communication with the processor, a waveform signal generator in signal communication with the pulse unit, and a set of radar antennas in signal communication with the waveform signal generator. The waveform signal generator is capable of generating a waveform signal in response to pulses provided by the pulse unit. The set of antennas is capable of transmitting a burst of microwave energy in response to each waveform signal and to receive a plurality of reflected bursts associated with the transmitted bursts. An acquisition unit is configured to develop and amplify a finite window integral associated with each reflected burst, the acquisition unit in signal communication with the set of antennas and a pre-processor configured to digitize and store information relating to each finite window integral for subsequent processing.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Ralph Thomas Hoctor, Jeffrey Michael Ashe, Vincent Paul Staudinger, Kenneth Brakeley Welles
  • Patent number: 7460056
    Abstract: The invention discloses a radar system (100) for the detection of low RCS-objects (110, 140, 150, 160, 190) such as forest fires, said system comprising a first plurality of stations (120) for transmitting radar energy, said stations having mechanically fixed antennas (220), and a second plurality of receive stations (130) for receiving reflections of radar energy transmitted from the transmit stations, said stations having mechanically fixed antennas (220). The antennas (220) of said transmit and receive stations have a main beam (221) which is essentially parallel to the ground, and at least a sub-set of the receive stations is equipped with means for recording a first and a second received signal, and means for subtracting one of said signals from the other of said signals. Said transmit and receive stations are arranged to function within the frequency range of 10-100 MHz.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: December 2, 2008
    Assignee: Telefonaktiebolaget L M Ericsso (Publ)
    Inventors: Conrado Rivas, Patrik Rivas, Anders Hook
  • Publication number: 20080291077
    Abstract: A radar imaging system is provided that directly measures the spatial frequency components of a scene via digital-beam-forming techniques applied along the cross-track dimension. Separate transmit and receive antennas provide increased integration time for the receive function, thus improving the signal-to-noise ratio. A segmented receive antenna is employed and processed as a series of interferometers sensitive to spatial frequency components of the scene corresponding to the separation between pairs of antenna elements. Range gating is used in the along-track dimension to divide the return from an illuminated swath into multiple range bins that may be processed independently. The system provides an improved signal-to-noise ratio and lends significant flexibility to the image formation process, improving the quality of the radar imaging. An embodiment having multiple transmit antennas is also provided that enables the generation of three-dimensional stereoscopic radar images.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 27, 2008
    Inventor: DONALD CHIN-DONG CHANG
  • Publication number: 20080284638
    Abstract: A radar device includes a generation unit, a transmission unit, and a control unit. The generation unit selectively generates a set of a plurality of transmission signals whose center frequencies are different from one another within an assigned frequency band. The transmission unit emits the transmission signals. The control unit controls the generation unit so as to vary the center frequencies for each emission of the transmission signals.
    Type: Application
    Filed: January 23, 2008
    Publication date: November 20, 2008
    Inventors: Hiroshi Kajio, Toshio Nanba
  • Patent number: 7439903
    Abstract: A radar system mounted on a vehicle includes a first radar and a second radar, each having a transmitter-receiver and a signal processor. The transmitter-receiver transmits radar waves to detect objects such as another vehicle or other obstacles. An operating cycle period T1, T2 and a transmission time X1, X2 during which the radar waves are transmitted are set in both radars to satisfy the formula: K·T2+X2+X1?T1?(K+1)·T2?X2?X1 under a condition that T1>T2, where K is a positive integer. By setting both radars in this manner, interference between two radars is avoided without using additional devices in the radar system, and a high detection accuracy is realized.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: October 21, 2008
    Assignee: Denso Corporation
    Inventors: Yuu Watanabe, Kazuma Natsume
  • Publication number: 20080231496
    Abstract: A method for a radar for detecting a noise floor level of an electric signal corresponding to an incident radio wave received by the radar, the incident radio wave including a return of a radar wave that is transmitted from the radar toward a measuring range of the radar to detect target object characteristic including presence of a target object within the measuring range of the radar, a distance between the target object and the radar, and a relative speed of the target object to the radar is provided. The method includes steps of: calculating a histogram of intensities of frequency components, the frequency components exceeding a predetermined value relating to the measuring range, and extracting an intensity having the maximum height in the histogram as the noise floor level of the electric signal.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Applicant: DENSO CORPORATION
    Inventor: Mai Sakamoto
  • Patent number: 7427943
    Abstract: A method of displaying real-time, three-dimensional weather information is disclosed. A first representation of a weather event along a first plane is generated from data obtained from a first radar scan. A second representation of the weather event along a second plane is generated from data obtained from a second radar scan. The first and second planes are non-coplanar. The first and second representations are combined to form a three-dimensional model of the weather event. A three-dimensional shape of the three-dimensional model is constructed. The three-dimensional shape is displayed on an avionics display.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: September 23, 2008
    Assignee: Rockwell Collins, Inc.
    Inventors: Kevin M. Kronfeld, Mathew S. Chackalackal
  • Patent number: 7423578
    Abstract: A phased array radar system comprising a plurality of radiating elements configured in a common array aperture for detecting and tracking targets; and a transmit and receive arrangement responsive to a first control signal for configuring the plurality of radiating elements to define a plurality of sub-apertures from the common array aperture for detecting and tracking short range targets, wherein the plurality of sub-apertures are independently steerable array apertures.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 9, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Byron W. Tietjen
  • Patent number: 7417581
    Abstract: A system and method for highly selective intrusion detection using a sparse array of time modulated ultra wideband (TM-UWB) radars. Two or more TM-UWB radars are arranged in a sparse array around the perimeter of a building. Each TM-UWB radar transmits ultra wideband pulses that illuminate the building and the surrounding area. Signal return data is processed to determine, among other things, whether an alarm condition has been triggered. High resolution radar images are formed that give an accurate picture of the inside of the building and the surrounding area. This image is used to detect motion in a highly selective manner and to track moving objects within the building and the surrounding area. Motion can be distinguished based on criteria appropriate to the environment in which the intrusion detection system operates.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 26, 2008
    Assignee: Time Domain Corporation
    Inventors: Larry W. Fullerton, James L. Richards
  • Patent number: 7414569
    Abstract: The radar sensor system includes a radar module, a plurality of antenna units, and a signal carrier. The plurality of antenna units are in communication with the radar module and distributed across a sensing region. The antennas may be connected in a series configuration and, further, may form a loop configuration with the radar module. As such, the radar module may include a centralized signal processor unit configured to receive analog signals from each antenna unit.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: August 19, 2008
    Assignee: Autoliv ASP, Inc.
    Inventor: Bernard Guy De Mersseman
  • Publication number: 20080191927
    Abstract: A phased array radar antenna includes at least two antennas (11, 12, 13, 14) adapted for simultaneous operation at different non-mutually interfering frequencies. The phased array radar antenna may be fitted to an aircraft having a fuselage supporting first and second radar side antennas (11, 12) on opposite sides thereof, a nose portion supporting a first radar end antenna (13), and a tail portion supporting a second radar end antenna (14). Respective radomes cover the first and second radar end antennas so as to provide a smooth aerodynamic contour, and a radar control unit (15) is disposed within the fuselage and coupled to the first and second radar side antennas and to the first and second radar end antennas for operating the first or second radar side antenna simultaneously with the first or second radar end antenna at respective first and second different frequencies.
    Type: Application
    Filed: May 9, 2005
    Publication date: August 14, 2008
    Applicant: Elta Systems Ltd.
    Inventors: Jehezkel Grizim, Alexander Lomes, Yacob Wagman, Shmuel Ron, Haim Richman, Abraham Reich, David Rabia
  • Publication number: 20080165048
    Abstract: In a passive radar system a space-borne transmitter broadcasts wide-band digitally modulated signals over a region and illuminates the region. A receiver antenna is oriented to receive radiation from at least one portion of the region. The portion is an area viewed by the receiver antenna. A reference antenna is oriented toward the transmitter, the reference antenna receives a portion of the wide-band digitally modulated signal. A coherent processing time duration is selected based on: a radar cross-section of a target within the viewed area, a bandwidth of the wide-band digitally modulated signal, and the viewing angle of the receiver antenna. The received signal from the receiver antenna is coherently processed with a reference signal from the reference antenna, over a time interval greater than the coherent processing time duration.
    Type: Application
    Filed: May 25, 2006
    Publication date: July 10, 2008
    Inventor: Dan Abraham Shklarsky
  • Patent number: 7397415
    Abstract: A method of classifying radar emitters includes the steps of: (a) receiving pulses from multiple radar emitters; (b) categorizing received pulses based on pulse data descriptors (PDWs); (c) forming clusters of received pulses based on the PDWs; and (d) de-interleaving pulses from the cluster using one of a differential time of arrival (DTOA) histogram technique, a spectrum estimation technique, or a Hough transform technique. Step (a) includes receiving the pulses during a predetermined time interval and storing the received pulses as a snapshot representing the pulses present during the predetermined time interval.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: July 8, 2008
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Paul C. Wang, Matthew Orr, Mitchell Sparrow, Martin Apa
  • Publication number: 20080150787
    Abstract: A method of multiple sensor processing includes receiving, at a first sensor system, track data from a second sensor system, comparing track data from the first sensor system to the track data from the second sensor system to determine if a track will be within a field of view of the first sensor system during a time period, determining, at a first sensor system, predicted quality of tracks based on the track data and broadcasting the predicted quality of tracks. The method also includes receiving predicted quality of tracks from the second sensor system and determining a first set of tasks based on the predicted quality of tracks determined by the first sensor system and the predicted quality of tracks received from the second sensor system.
    Type: Application
    Filed: November 16, 2007
    Publication date: June 26, 2008
    Inventors: Steven T. Cummings, George A. Blaha, Larry L. Stern
  • Publication number: 20080106458
    Abstract: Provide an on-vehicle radar device that performs transmission control of a monitoring signal, following fixed rules, so that interference with other radar devices can be avoided with certainty. An on-vehicle radar device comprises a transceiver which transmits/receives a monitoring signal at a specified frequency band and transmits a priority order signal at a frequency within the above-mentioned frequency band, and a controller which switches the signals transmitted by the transceiver. The transceiver receives a priority order signal of another radar device, and when interference with the signal of the other radar device is detected, the controller, based on the priority order of that other device and on the priority order of the device itself, shifts, by a specified frequency amount, the frequency band of the monitoring signal transmitted by the transceiver.
    Type: Application
    Filed: March 30, 2007
    Publication date: May 8, 2008
    Applicants: FUJITSU TEN LIMITED, FUJITSU LIMITED
    Inventors: Kanako Honda, Osamu Isaji, Kazuo Shirakawa, Naofumi Ohkubo, Tetsuo Seki
  • Patent number: 7358892
    Abstract: Systems and techniques for coherent combining radars include generating a phase and range calibration and initialization values for adjusting a time delay and a phase of a transmitted pulse from one of the radars, resulting in received composite target echoes at each of the radars having contributions from monostatic and bistatic echoes. The method further includes predicting phase and range correction values for further adjusting the time delay and the phase of subsequent radar pulses transmitted by one of the radars to continue to result in received composite target echoes at each of the radars. The method further includes coherently summing the composite target echoes.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: April 15, 2008
    Assignee: Raytheon Company
    Inventors: George D. Thome, Robert P. Enzmann, Fritz Steudel
  • Patent number: 7358888
    Abstract: A system and method for highly selective intrusion detection using a sparse array of time modulated ultra wideband (TM-UWB) radars. Two or more TM-UWB radars are arranged in a sparse array around the perimeter of a building. Each TM-UWB radar transmits ultra wideband pulses that illuminate the building and the surrounding area. Signal return data is processed to determine, among other things, whether an alarm condition has been triggered. High resolution radar images are formed that give an accurate picture of the inside of the building and the surrounding area. This image is used to detect motion in a highly selective manner and to track moving objects within the building and the surrounding area. Motion can be distinguished based on criteria appropriate to the environment in which the intrusion detection system operates.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: April 15, 2008
    Assignee: Time Domain
    Inventors: Larry W. Fullerton, James L. Richards
  • Patent number: 7355545
    Abstract: A plurality of multi-tone CW radars are used to generate a swath of ranges to a moving object or individual behind a wall or building structure in which the overlap of the range swaths from spaced-apart radars determines the location of the moving object or individual. A histogram of the swath overlaps is used to generate a display of the path of the moving object or individual.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: April 8, 2008
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul D. Zemany, Eldon M. Sutphin
  • Patent number: 7339515
    Abstract: The invention relates to a distributed electronic counter measures solution, wherein jamming signals (JA; JB) may be emitted towards threats (X1, X2) from counter measures stations in multiple vehicles (A, B), which are physically separated from one another in order to improve the chances of survival the vehicles (A, B) as well as any other vehicles that are associated with these vehicles (A, B) in a group of vehicles. The vehicles in the group exchange messages (D) over a wireless data link (L), where the messages (D) sent from a particular station specify an availability status (Dres-status) for each electronic warfare resource in the station and a threat status (Dthr-status) registered by the station. A station in the group having a central planning function coordinates any jamming signals (JA; JB) emitted from the electronic warfare resources of the stations in the group, such that the resources are optimally used with respect to all of any registered threats (X1, X2).
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: March 4, 2008
    Assignee: Saab AB
    Inventors: Niklas Ferm, Thomas Lindvall