With Modulation Patents (Class 342/6)
  • Patent number: 10034655
    Abstract: Devices and methods for enhancing observability under ultrasound imaging of medical devices include temporal markers which are dynamic, producing a variable ultrasound image over time. Included are rotating markers which produce a Doppler shift visible through ultrasound imaging in a Doppler mode and which enhance visibility of the marker. Other devices and methods include alternating streams of fluid contrast agents and saline as well as destroying a fluid contrast agent stream with a high intensity ultrasound pulse.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 31, 2018
    Assignee: Muffin Incorporated
    Inventors: Peter S. McKinnis, Yun Zhou, Neal E. Fearnot
  • Patent number: 9882280
    Abstract: A dihedral shaped device is provided, which includes two plates forming between them an angle of [pi]?2[alpha], where 0<[alpha]<[pi]/4. Each plate has a ground plane, at least one dielectric layer and a network of radiating elements. An incident wave is reflected by the device by virtue of a double reflection from both plates. The network of radiating elements of each plate allows a phase shift to be generated, from the exterior towards the centre of the dihedron, along an axis perpendicular to an axis of intersection of the two plates, according to a set phase law, allowing a deviation to be introduced relative to a specular reflection for a given operating frequency.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 30, 2018
    Inventors: Raphael Gillard, Stephane Meric
  • Patent number: 9234978
    Abstract: Systems and methods for determining the position of a buoyancy element in a marine survey are described in which a passive reflecting material is disposed on the buoyancy element to enable a radar on the vessel to detect the position of the buoyancy element. The radar may emit a frequency modulated continuous wave or a sequence of frequency modulated or phase modulated sinusoidal waves.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 12, 2016
    Assignee: WESTERNGECO L.L.C.
    Inventors: Svein Arne Frivik, Vidar A. Husom
  • Patent number: 9194944
    Abstract: Disclosed is a measurement device that can accurately measure size, position, the presence of an object, and the like by means of a simple and low-cost method. Specifically, disclosed is a measurement device that is provided with: a transmitter that transmits radio waves; a vibrating surface that vibrates mechanically; a receiver that receives radio waves; and a controller that transmits radio waves from the transmitter, and on the basis of the signal of the radio waves reflected by the vibrating surface and received by the receiver, outputs information about a measured object on the pathway between the transmitter and the receiver with the vibrating surface therebetween.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 24, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Tatsuo Nakagawa, Akihiko Hyodo, Hideaki Kurata, Shigeru Oho
  • Patent number: 9136605
    Abstract: An antenna device includes antennas, each of which includes antenna elements arranged in a longitudinal direction, arranged side by side in a transverse direction intersecting the longitudinal direction, wherein an interval between the antennas arranged side by side in the transverse direction is approximately 2? where ? is a free space wavelength corresponding to an operating frequency, and each of the antenna elements includes a horn formed therein.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: September 15, 2015
    Assignee: Honda Elesys Co., Ltd.
    Inventor: Akira Abe
  • Patent number: 9000970
    Abstract: A reflector is arranged at a first position, which is assigned to a first end of the object. An antenna-system is arranged at a second position, which is assigned to a second end of the object. The antenna system contains a transmit antenna and a receive antenna, while the reflector and the antenna-system are coupled by a radio signal. The radio signal is sent from the transmit antenna via the reflector towards the receive antenna. The receive antenna is connected with an evaluation unit, which is prepared to measure the deflection between the first end of the object and the second end of the object based on the received radio signal.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 7, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jimmi Andersen, Per Egedal, Henrik Stiesdal, Andreas Ziroff
  • Publication number: 20150029051
    Abstract: A wearable radar reflector includes a retroreflector configured to reflect radiation received from a vehicle, and incorporated into a garment worn by a pedestrian.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 29, 2015
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Patent number: 8836569
    Abstract: A synthetic aperture radar's surveillance is defeated by electronic camouflage that employs a protective shield to cover an intended target. The shield intercepts and modifies the interrogating radar pulses by modulating incident radar pulses to produce radar echoes shifted in Doppler frequency, whereby the returned echoes give a false depiction of the target, even to smearing the radar display. New structures are presented that exhibit variable reflectivity and variable dielectric characteristics of particular use in the foregoing and other electronic systems.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: September 16, 2014
    Assignee: McDonnell Douglas Corporation
    Inventor: Jesse Clopton James
  • Patent number: 8674870
    Abstract: An electromagnetic reflector includes an antenna that receives an incoming signal and that transmits an outgoing signal. A three-port device, such as a circulator, has a first port electromagnetically coupled to the antenna. An RF circuit has an input that is electromagnetically coupled to the second port of the three-port device and an output that is electromagnetically coupled to the third port of the three-port device. The RF circuit changes at least one of a gain and a phase of the incoming signal to generate a desired outgoing signal that passes through the three-port device to the antenna.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: March 18, 2014
    Assignee: Photonic Systems, Inc.
    Inventors: David Paul Maunder, Charles H. Cox, III, David Morgan Kettner, Kevin M. Cuomo
  • Publication number: 20130113644
    Abstract: Disclosed is a measurement device that can accurately measure size, position, the presence of an object, and the like by means of a simple and low-cost method. Specifically, disclosed is a measurement device that is provided with: a transmitter that transmits radio waves; a vibrating surface that vibrates mechanically; a receiver that receives radio waves; and a controller that transmits radio waves from the transmitter, and on the basis of the signal of the radio waves reflected by the vibrating surface and received by the receiver, outputs information about a measured object on the pathway between the transmitter and the receiver with the vibrating surface therebetween.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 9, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Tatsuo Nakagawa, Akihiko Hyodo, Hideaki Kurata, Shigeru Oho
  • Patent number: 8289199
    Abstract: An antenna array for use within a microwave imaging system to capture a microwave image of a target is selectively programmed to optimize one or more parameters of the microwave imaging system. The array includes a plurality of antenna elements, each capable of being programmable with a respective phase shift to direct a beam of microwave radiation toward the target such that the microwave radiation from each of the plurality of antenna elements arrives at the target substantially in-phase. To optimize a parameter of the microwave imaging system, the phase shifts of selective ones of the antenna elements are altered, while still maintaining the substantially in-phase microwave radiation at the target.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: October 16, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Izhak Baharav, Robert C. Taber, Gregory S. Lee
  • Publication number: 20120200444
    Abstract: A reflector is arranged at a first position, which is assigned to a first end of the object. An antenna-system is arranged at a second position, which is assigned to a second end of the object. The antenna system contains a transmit antenna and a receive antenna, while the reflector and the antenna-system are coupled by a radio signal. The radio signal is sent from the transmit antenna via the reflector towards the receive antenna. The receive antenna is connected with an evaluation unit, which is prepared to measure the deflection between the first end of the object and the second end of the object based on the received radio signal.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Inventors: Jimmi Andersen, Per Egedal, Henrik Stiesdal, Andreas Ziroff
  • Patent number: 8190278
    Abstract: Control of a device including aiming a pointing device comprising a camera and a source of invisible light in the direction of an object associated with the device to be controlled, upon which object a number of retroreflective marker elements are positioned, which reflect at least a part of the invisible light emitted by the light source back to the pointing device; generating a first image of a target area aimed at by the pointing device whereby the light source is inactive; generating a second image of the target area aimed at by the pointing device whereby, invisible light is emitted by the light source in the direction of pointing; processing the target area images to determine the presence of retroreflective marker elements; using information pertaining to the retroreflective marker elements to identify the device to be controlled and/or to determine a control signal for the identified device.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: May 29, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Jan Kneissler
  • Patent number: 8164308
    Abstract: There is provided an apparatus for capturing cosmic background radiation and for converting cosmic background radiation into electricity. An antenna is configured so as to capture cosmic background radiation. An electrostatic electron multiplier is connected to the antenna. A high voltage power supply is connected to the electrostatic electron multiplier whereby cosmic background radiation is converted to electricity.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 24, 2012
    Inventor: Stefan Juchnowycz
  • Patent number: 8066218
    Abstract: A system and method for an aircraft (10) that provides an IR decoy (12) for an incoming missile (18) to track instead of an engine (14) of the aircraft (10) is disclosed. The IR decoy (12) is deployed during or just after take off, and prior to landing to provide a signature (16) for any incoming missile (18). The IR decoy (12) provides a heat source (16) that has a higher radiant intensity than the hottest heat source on the aircraft (10), which is typically the engine (14), thereby providing a more attractive heat source for the missile (18). In another embodiment, a warning system (20) for an aircraft (10) detects an incoming missile (18), and deploys IR decoy (12) and creates an engine mask (22) by injecting an additive into the exhaust stream of the engine (14), thereby obscuring the radiation emanating from the engine (14).
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: November 29, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Eugene S. Rubin
  • Patent number: 8017217
    Abstract: A material of variable emissivity includes a first metallic layer having a first aperture, a second metallic layer having a second aperture, and a variable dielectric layer interposed between the first metallic layer and the second metallic layer.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 13, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel J. Gregoire, Deborah J. Kirby
  • Patent number: 7965220
    Abstract: A chaff element for interfering with radar signals. The chaff element has a dielectric substrate and a pair of elongate electrically conductive elements, having a total length of approximately one-half wavelength of the radar signals or otherwise tuned to the radar signals, disposed on the dielectric substrate. A switch is arranged to electrically couple the pair of elongate elements together in response to a control signal generated by an oscillator circuit and a battery. The chaff element can be used in a method of providing a countermeasure against radar signals. A plurality of chaff elements can be deployed in an airspace above a radar unit emitting a radar signal and interfere with the radar signal by opening and closing the switches of the chaff elements while deployed in said airspace above the radar unit.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 21, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Matthew W. Ganz, James H. Schaffner, Daniel F. Sievenpiper, Richard P. Berg
  • Patent number: 7847721
    Abstract: The present invention relates to a decoy for deceiving radar systems, especially Doppler radar systems. The decoy comprises a corner reflector, where at least one of the surfaces (1) is arranged to be able to obtain a varying reflectivity for radar radiation, especially with a modulation frequency which in the reflected radiation causes Doppler sidebands of an extent that is usual for the radar application.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: December 7, 2010
    Assignee: Forsvarets Materielverk
    Inventors: Conny Carlsson, Björn Jägerström
  • Patent number: 7808420
    Abstract: Method for organizing computer operations on a system of parallel processors to invert electromagnetic field data (11) from a controlled-source electromagnetic survey of a subsurface region to estimate resistivity structure (12) within the subsurface region. Each data processor in a bank of processors simultaneously solves Maxwell's equations (13) for its assigned geometrical subset of the data volume (14). Other computer banks are simultaneously doing the same thing for data associated with a different source frequency, position or orientation, providing a “fourth dimension” parallelism, where the fourth dimension requires minimal data passing (15). In preferred embodiments, a time limit is set after which all processor calculations are terminated, whether or not convergence has been reached.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 5, 2010
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: James J. Carazzone
  • Patent number: 7719462
    Abstract: A time-of-flight calibration system for a radar-based measurement device is provided. The time-of-flight calibration system includes a target antenna and a waveguide, e.g. a coaxial cable. The waveguide is coupled at one end to the target antenna and terminated at its other end by a wave-reflecting impedance.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: May 18, 2010
    Assignee: Siemens Milltronics Process Instruments, Inc.
    Inventors: Shaun Philip Harwood, George Quinton Lyon
  • Patent number: 7672480
    Abstract: The invention relates to a method for photographing on board of a flying rotating body and system for carrying out said method. According to said invention, pictures (V0, V90, V180, V270) are taken at predetermined angular positions of said flying body by a device which is rigidly fixed to the front thereof and are exposed to an image geometrical transformation required for the display thereof.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: March 2, 2010
    Assignee: MBDA France
    Inventors: Bernard Longuet, Bernard Teneze
  • Patent number: 7486226
    Abstract: The invention relates to a system, device, and method for using radar signals to measure the distance (h) to a surface from said device, the device comprising a transmitter and a transmitting antenna for transmitting radar signals, and a receiver and a receiving antenna for receiving a radar signal. The device may also comprise a first additional reflecting object separate from the receiving antenna, which additional reflector is designed so as to introduce a first predetermined alteration in radar signals upon reflection, with the device being equipped with means to differ between received signals with and without said predetermined alteration. The first predetermined alteration introduced by the first separate reflector can be, for example, a modulation shift or a shift in the polarization of the signal. In a typical embodiment the additional reflector is located close to the radar unit creating a double transition from radar unit to the surface.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: February 3, 2009
    Assignee: Rosemount Tank Radar AB
    Inventor: Olov Edvardsson
  • Patent number: 7283085
    Abstract: A scanning panel for use in a microwave imaging system captures a microwave image of a target using two complementary arrays of antenna elements. Each of the antenna elements in a first array is capable of being programmed with a respective phase delay to direct a transmit beam of microwave illumination toward the target in a transmit beam pattern, and each of the antenna elements in a second array is capable of receiving reflected microwave illumination reflected from the target in a receive beam in a receive beam pattern complementary to the transmit beam pattern. The microwave image of the target is formed at an intersection between the transmit beam and the receive beam.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: October 16, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Gregory Steven Lee, Robert C. Taber, Izhak Baharav
  • Patent number: 6798349
    Abstract: A system for identification and tracking of microwave responsive tags, the system comprising, a microwave responsive tag having a passive modulating element to uniquely backscatter directed microwave beams, a microwave base station for directing microwave beams in room sized areas, and a tag tracking system receiving input from the microwave base station, the tag tracking system storing state records of position and informational content of the microwave tag.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: September 28, 2004
    Assignee: Xerox Corporation
    Inventors: Edward A. Richley, Beverly L. Harrison
  • Patent number: 6792383
    Abstract: A system and method for ascertaining the range of a noise-jamming target. The system includes a receiver; a data processor coupled to the receiver; and software adapted for execution by the data processor for computing rage to a target transmitter using first and second assumptions with respect to the output power level thereof and interpolating with respect to an error term calculated with respect thereto. The method includes the steps of: making assumptions with respect to an output power level of a transmitter located at the target; measuring a level of power received form the transmitter by a receiver at first and second distances relative to the transmitter; calculating an error term with respect to the assumptions; interpolating with respect to the error term to make a range calculation; and outputting the range calculation when the error term reaches a predetermined threshold.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: September 14, 2004
    Assignee: Raytheon Company
    Inventors: Joseph R. Brouillard, David E. Bovey
  • Patent number: 6664916
    Abstract: A system containing a navigational marker, the navigational marker having the ability to reflect radar in such a manner that the navigational marker is identified. In one embodiment, a polarized radar-reflective material is affixed to the navigational marker. A radar signal is reflected by the polarized radar-reflective material, causing the reflected radar signal to be polarized. The reflected radar signal is received and the navigational marker is identified. The radar system contains a detector/decoder capable of distinguishing the type of navigational marker based on the reflected radar signal. The detector/decoder relays information about the navigational marker to a display. In another embodiment, a navigational marker contains a radio responder. When a radar signal illuminates the navigational marker, the radio responder transmits a signal containing encoded data. A receiver detects the signal from the responder and decodes the encoded data. The decoded data is relayed to a display.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: December 16, 2003
    Inventors: Todd R. Stafford, Dennis C. Higgins
  • Patent number: 6571714
    Abstract: There is provided an electrically powered augmenter device that has a silicon window. The silicon window emits the infrared radiation from the augmenter in a specific waveband, to attract heat seeking missles. Moreover, the augmenter may be mounted on the fuselage of an unpowered aerial towed target or other airborne vehicle.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: June 3, 2003
    Assignee: Meggitt Defense Systems
    Inventors: Roger D. Brum, David H. Smith
  • Patent number: 6570525
    Abstract: In a method and device for the encoding/decoding of power distribution at outputs of a system, a distribution encoder includes an element that receives a useful input signal and a piece of distribution information, and that superposes the piece of distribution information received on the input signal. The piece of information is used for the subsequent distribution of the total power of the input signal at an output or outputs of the system. A distribution decoder includes one or more inputs that receive an encoded signal or an encoded signal divided into several signals including the useful signal and the piece of distribution information. Further, one or more outputs are connected to the outputs of the system to which the useful signal is transmitted by distributing the total power received according to the piece of distribution information. The method and device enable, for example, fast, low-power switching of the outputs of a high-power system and the programming of a system with variable power outputs.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: May 27, 2003
    Assignee: Thales
    Inventors: Pierre Esposito, Patrick Quemin, Olivier Ruffenach
  • Patent number: 6559790
    Abstract: The invention is a radar decoy which electronically simulates objects by generating radar detectable signals over the entire microwave frequency range. The simulator includes a series of tuned, spaced diode networks for generating carrier suppressed doppler side bands. Each diode network operates at a single, different frequency. The diode networks are enclosed by a corner reflector which modulates the amplitude and the phase of an impinging radar signal. The diode networks are controlled by a switching network which turns the diodes on and off at a desire frequency to produce a doppler frequency shift and thereby simulate moving objects.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Walter E. Buehler, Kosal Svy
  • Patent number: 6529154
    Abstract: A method and apparatus are provided for sensing two-dimensional identification marks provided on a substrate or embedded within a substrate below a surface of the substrate. Micropower impulse radar is used to transmit a high risetime, short duration pulse to a focussed radar target area of the substrate having the two dimensional identification marks. The method further includes the steps of listening for radar echoes returned from the identification marks during a short listening period window occurring a predetermined time after transmission of the radar pulse. If radar echoes are detected, an image processing step is carried out. If no radar echoes are detected, the method further includes sequentially transmitting further high risetime, short duration pulses, and listening for radar echoes from each of said further pulses after different elapsed times for each of the further pulses until radar echoes are detected.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: March 4, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Harry F. Schramm, Jr., Donald L. Roxby
  • Patent number: 6456225
    Abstract: A reflector circuit is provided which responds to illuminating radiation with corresponding output radiation of increased magnitude relative to the illuminating radiation, while also providing a frequency selective limiting characteristic. The circuit comprises an antenna for receiving the illuminating radiation and emitting the corresponding output radiation, a delay line providing a frequency selective limiting and signal storage characteristic and an amplifier assembly. The antenna provides an input signal upon receipt of the illuminating radiation, a portion of which is amplified, frequency selectively filtered and then stored for a period after which it is emitted as the output radiation from the circuit. Switches are incorporated and are operable to counteract spontaneous oscillation within the circuit.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: September 24, 2002
    Assignee: Marconi Caswell Limited
    Inventor: Ian J Forster
  • Patent number: 6300894
    Abstract: An RF interface is configured as a laminate structure having a core layer of a ferromagnetic ceramic material, such as barium strontium titanate, whose permitivity is electrically controllable to modify the behavior of impinging electromagnetic energy, as one of minimally attenuated transmission, maximally attenuated absorption, and highly unattenuated reflection. Opposite surfaces of the ceramic core are coated with an electrically lossy material, such as indium tin oxide, to which a differential DC voltage is applied, and thereby imparting a DC electric field to the core layer. For an antenna application, during transmit/receive mode, the differential voltage has a magnitude that renders the laminate's core highly conductive, and thereby reflective to the RF wavelength being sourced from or received by an associated feed horn. During other times, the differential voltage renders the laminate effectively transparent to RF wavelengths in a prescribed band of interest (e.g.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: October 9, 2001
    Assignee: Harris Corporation
    Inventors: Michael J. Lynch, Charles M. Newton, George M. Walley
  • Patent number: 5841392
    Abstract: A pulse-echo ranging system includes an improved target and a ranging device which emits pulses of electromagnetic radiation toward the target and receives pulses reflected from the target. The target is provided with a modulating mechanism for modulating the reflected pulses in a predetermined manner. The modulating mechanism allows the ranging device to distinguish pulses truly reflected from the target from noise and pulses reflected from objects other than the target. More specifically, the modulating mechanism may include a reflector which reflects the pulses at plural distances from the ranging device. The reflector may include a single reflective surface coupled to an oscillating vibrator, or plural reflective surfaces spaced at different locations from the ranging device.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: November 24, 1998
    Assignee: Nikon Corporation
    Inventor: Hiroshi Kishimoto
  • Patent number: 5819164
    Abstract: A modulated retroreflection system for secure two-way communication and identification includes a transceiver at a first location and a transponder at a second location. The transponder receiving, modulating, and reflecting the signal back to the transceiver includes a retroreflector having a at least one reflective surface coated with an electro-responsive material. The electro-responsive material modulating the reflection coefficient of the reflective surface thereby modulating signals reflected by the surface. The transponder further includes a modulator electrically connected to the electro-responsive material for applying a modulated bias voltage thereby modulating the refractive index and consequently the electrical phase, and/or amplitude of the reflected signal.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: October 6, 1998
    Assignees: The United States of America as represented by the Secretary of the Army, Tracor Aerospace Electronic Systems, Inc.
    Inventors: Xiaoguang G. Sun, Richard W. Babbitt
  • Patent number: 5808577
    Abstract: The invention is an identification friend or foe system for an aircraft providing identification information when illuminated by an incident radar signal. In detail, the system includes at least a portion of the aircraft's surface incorporating magnetic material for absorption of at portion of the incident radar signal with the remainder reflected and scattered back in the direction of the incident radar signal. A electromagnetic coil assembly) is positioned behind the aircraft skin and is used to impress a biasing field on a portion of the aircraft's surface incorporating the magnetic material such that the biasing field modulates the reflected and scattered signal. A system is coupled to the coil assembly to modulate the biasing field such that the reflected and scattered signal from the portion of the aircraft's surface incorporating the magnetic material is modulated with an encoded signal incorporating the identification information.
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: September 15, 1998
    Assignee: Lockheed Martin Corporation
    Inventor: James W. Brinsfield
  • Patent number: 5796362
    Abstract: A post launch identification friend or foe fire control system for a munition has an identification and ranging interrogation unit for mounting on a munition. The interrogation unit transmits an interrogation unit which detects and verifies an incoming identification code from a remote transponder unit in reply to the interrogation code. The range of the remote transponder is determined and a decision signal is provided to the fire control circuit of the munition to enable it to avoid a friendly target; a transponder unit receives the rf carrier signal containing an incoming interrogation code from an interrogation unit on board a munition, validates the incoming interrogation code, and extracts a timing signal from it. An identification code is synchronously generated with the incoming interrogation code using the timing signal. The synchronized identification code is then transmitted back to the interrogation unit on board the munition to confirm the identification of the transponder unit and its range.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: August 18, 1998
    Assignee: Hittite Microwave Corporation
    Inventors: Yalcin Ayasli, Peter Katzin
  • Patent number: 5793413
    Abstract: A system and method for providing interactive multimedia services to subscriber premises utilizing wireless distribution within the subscriber premise. The service is provided via a communications link delivering to the subscriber premises broad band digital information including video and audio from a plurality of information providers and control signals in a multiplexed form. This multiplexed signal is then separated and processed on premise and distributed in a two-way fashion using frequency hopping code division multiple access (CDMA) spread spectrum using radio frequency signals preferably at UHF. Upstream control signals from the user installation are communicated from the individual user terminals in the same wireless manner.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: August 11, 1998
    Assignee: Bell Atlantic Network Services, Inc.
    Inventors: Denny L. Hylton, Steven Olsen, William Burton, Dave Lichtenwalner
  • Patent number: 5748138
    Abstract: A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: May 5, 1998
    Inventors: John M. Telle, Stutz A. Roger
  • Patent number: 5684490
    Abstract: A radar highway motor vehicle guidance apparatus for guiding a land vehicle along a roadway using a forward looking, lateral position sensing, monopulse tracking radar guidance apparatus which transmits radar pulses forward of the vehicle. The pulses are reflected back to the vehicle by a stripe distributed along the roadway. The stripe is a frequency selective surface which generates retro-reflective grating lobes at an operating frequency of the tracking radar. Operating the radar at two frequencies allows the radar to look at regions spaced at two different distances from the front of the vehicle. Highway related information may be encoded in the frequency selective surface by variations in the shape or dimensions of the frequency selective stripe morphology in order to modulate the reflected signal with highway information which is then also detected at the radar receiver. Target discrimination is enhanced by using pseudo random codes and matching antenna polarization with stripe polarization.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: November 4, 1997
    Assignee: The Ohio State University
    Inventors: Jonathan D. Young, Lee W. Henderson
  • Patent number: 5680136
    Abstract: A microwave radar reflector includes three, substantially planar networks whose reflectivity or transmissivity may be controlled. The three networks are arranged as a trihedron with an open angle. An additional network, whose reflectivity or transmissivity may be separately controlled, is located at said open angle of the trihedron. With the additional network controlled to be transmissive and the other networks having their characteristic modulated between reflective and transmissive, the reflector will return a modulated message when the reflector is illuminated.
    Type: Grant
    Filed: April 26, 1984
    Date of Patent: October 21, 1997
    Assignee: Contre Mesure Hyperfrequence CMH
    Inventor: Claude Chekroun
  • Patent number: 5673049
    Abstract: A method to confuse a police radar by moving a multiplicity of radar reflector antennas in the field of view of the radar. The moving radar reflector antennas present continuously changing doppler velocities to the police radar. The radar reflectors can be any of several reflective antennas such as dipoles, Yagies, horns, etc. The continuously changing doppler velocities are generated by mounting the radar reflector antennas on a moving disk. The moving disk is driven by an electric motor or by the wind. The radar reflector antennas can also be mounted on the rim or in the tread of a vehicle's tires.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: September 30, 1997
    Inventor: William J. Kitchen
  • Patent number: 5670959
    Abstract: An antenna reflector, which can reflect incoming radio waves, is formed as a corner of a cube by orthogonally connecting three reflectors which can reflect incoming radio waves. The reflectors are formed from semiconductor layers, conductive sheets scattered on one surface of the semiconductor layers, insulator films formed on both sides of the semiconductor layers, conductor films provided on the opposite surface of each of the insulator films, and switching elements that are formed on the semiconductor layers and which connect the conductive sheets. As a result, if direct current voltage is applied between the resistor films, the reflectors reflect radio waves while radio waves are absorbed when no direct current voltage is applied, and thus, the reflected radio wave is modulated by the application and non-application of the direct current voltage.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: September 23, 1997
    Assignee: Nippondenso Co., Ltd.
    Inventors: Michinaga Nagura, Tomohisa Kishigami
  • Patent number: 5590031
    Abstract: A system is disclosed for converting high frequency zero point electromagnetic radiation energy to electrical energy. The system includes a pair of dielectric structures which are positioned proximal to each other and which receive incident zero point electromagnetic radiation. The volumetric sizes of the structures are selected so that they resonate at a frequency of the incident radiation. The volumetric sizes of the structures are also slightly different so that the secondary radiation emitted therefrom at resonance interfere with each other producing a beat frequency radiation which is at a much lower frequency than that of the incident radiation and which is amenable to conversion to electrical energy. An antenna receives the beat frequency radiation. The beat frequency radiation from the antenna is transmitted to a converter via a conductor or waveguide and converted to electrical energy having a desired voltage and waveform.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: December 31, 1996
    Inventors: Franklin B. Mead, Jr., Jack Nachamkin
  • Patent number: 5583507
    Abstract: A method and apparatus for passive identification includes a series of elements preferably in the form of strips, bars or other geometric shapes, or as dipole antennas made of a material having variable EM retro-reflectivity characteristics. By varying the characteristics of individual elements (i.e. spatial, polarization, frequency response and angular extent of retro-reflection), the elements form an alterable pattern which can be used for identification. The characteristics can be changed remotely, the ability of the device to understand and implement the change being a criterion for identification.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: December 10, 1996
    Assignee: Martin Marietta Corporation
    Inventors: Thomas C. D'Isepo, David C. Lai, Donald L. Stiver
  • Patent number: 5570230
    Abstract: A cube-corner retroreflector for laser telemetry corrects speed aberration .delta. and has three substantially orthogonal mirror surfaces defining three substantially orthogonal edges converging at an apex. Each edge is associated with the surface substantially orthogonal to it. The shape of each surface is at least approximately that of a portion of a cone whose axis is coincident with the associated edge. The generatrices of this portion of a cone have a non-null average generatrix slope relative to a plane perpendicular to the axis of the portion. The average .alpha..sub.0 of the average slopes of the surfaces at least approximately satisfies the equation:.alpha..sub.0 .about.0.2.delta./kwhere k is a predetermined parameter dependent on the number, the geometry and the refractive index or indices or the media constituting the interior volume of the retroreflector.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: October 29, 1996
    Assignee: Aerospatiale Societe Nationale Industrielle
    Inventor: Glenn Lund
  • Patent number: 5508704
    Abstract: There is disclosed herein a system for reflecting electromagnetic radiation emanating from a doppler-based radar source toward the source whereby at least a portion of the difference between the emanating and reflected signal is continuously varied between preselected limits by causing the reflector to oscillate along the beam axis. The reflector is moved between approximately 0.001 and 0.250 inches and at a frequency mix ranging between about 2,000 Hz and 15,000 Hz. The reflector is mounted to a reciprocating system which is provided to drive the reflector.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: April 16, 1996
    Inventor: Lenn R. Hann
  • Patent number: 5501724
    Abstract: A coating composition for the attenuation of the reflection electromagnetic radiation and particularly electromagnetic radiation have a wavelength of greater than 800 nm including the near infrared is described. The composition comprises a chromophore capable of absorbing up to about 95% of the electromagnetic radiation having a wavelength greater than 800 nm. Optionally, the composition may comprise microbeads that serve the purpose of also scattering the electromagnetic radiation.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: March 26, 1996
    Inventor: Howard Loff
  • Patent number: 5493301
    Abstract: A technique for determining the spin history of kinetic energy penetrator projectiles. The method employs a special dihedral plug fitting in the rear (tracer well) of the penetrator projectile that produces a modulation of the tracking radar's signal. This signal is recorded and analyzed to yield the rotation rate of the projectile as it travels down range.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: February 20, 1996
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Robert Bossoli, Eugene Ferguson
  • Patent number: 5459470
    Abstract: A system (10) for friend-or-foe identification (IFF) comprises an interrogator unit (18) carried on a first platform (T1) for generating and transmitting a laser beam. A control unit (22) selectively directs the transmitted laser beam toward a second platform (T2). A coding/decoding unit (28) encodes an IFF interrogator message with which a portion of the transmitted laser beam is modulated. A laser reflector (30) carried on the second platform receives the coded laser beam. The reflector is a normally passive reflector which is activated by receipt of the transmitted laser beam. The reflector responds to the IFF message contained in the received laser beam by modulating the unmodulated portion of the transmitted laser beam. This newly modulated portion of the laser beam is reflected back toward the first platform. The coding/encoding unit decodes on the first platform receives and the response, and determines if it corresponds to a predetermined response which identifies the second platform as a "friend".
    Type: Grant
    Filed: June 22, 1993
    Date of Patent: October 17, 1995
    Assignee: Electronics & Space Corp.
    Inventors: John R. Wootton, Gary Waldman, David Holder
  • Patent number: 5459468
    Abstract: An apparatus for use, for example, as a runway radar signal reflector, for reflecting incoming radar signals, which includes a reflector for reflecting the radar signals, a chamber through which the incoming signals pass on the way to the reflector, and a mechanism for periodically creating a plasma in the chamber so as to prevent the incoming radar signals from being reflected.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: October 17, 1995
    Assignee: State of Israel-Ministry of Defense, Armament Development Authority-Rafael
    Inventor: Oren Hartal