Conical Scan Patents (Class 342/78)
  • Patent number: 11264695
    Abstract: This invention concerns a multibeam antenna with adjustable pointing, comprising a single reflection arrangement and a plurality of radiating sources arranged opposite the reflection arrangement and suited to emit and/or receive radiofrequency (RF) signals, the reflection arrangement defining a centre, a focal plane, and a focal point located on the focal plane. The antenna is characterised in that at least one of the radiating sources (‘mobile source’) is movable substantially independently of the or each other radiating source on a scanning surface to adjust the pointing of the antenna, wherein the scanning surface coincides with the focal plane or is tangential to it at the focal point.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: March 1, 2022
    Assignee: THALES
    Inventors: Jérôme Brossier, Laurent Martin, Jean-Marc Bassaler
  • Patent number: 8761663
    Abstract: A multi-band low-profile, low-volume two-way mobile panel array antenna system is described. Operation of the antenna may automatically switch between bands based on various user-entered parameters.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 24, 2014
    Assignee: Gilat Satellite Networks, Ltd
    Inventors: Ilan Kaplan, David Gross, Daniel Francis DiFonzo, Kevin Arthur Bruestle, Victor Boyanov, Stanimir Dimitrov Kamenopolski
  • Patent number: 7633432
    Abstract: Methods, systems and devices are disclosed for positioning an antenna having a sub-reflector assembly. A conical scan processor receives a period for a reference time pulse and a time tag. The processor calculates a rotation angle of the sub-reflector assembly using the received period for the reference time pulse and the received time tag. The processor may also receive a power measurement associated with the time tag. The processor may calculate and then output antenna boresight errors based on the calculated rotation angle of the sub-reflector assembly and the power measurements associated with the time tag.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: December 15, 2009
    Assignee: The Boeing Company
    Inventor: Yeong-wei A. Wu
  • Patent number: 7515874
    Abstract: The present invention provides a short-range wireless mobile communication system with a first terminal and a mobile terminal that are each adapted for transmitting and receiving an information carrying signal wave, whereby at least the first terminal or the mobile terminal comprise a directional signal wave converter for transmitting and/or receiving the information carrying signal wave with a directional characteristic and a control means for controlling the directional characteristic according to a position of the mobile terminal relative to the first terminal.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: April 7, 2009
    Assignee: Sony Deutschland GmbH
    Inventors: Vladimir Nikolajevic, Masahiro Uno
  • Patent number: 7450068
    Abstract: A system and method for using a phased array antenna to concurrently receive an RF signal transmitted by a remote transmitter, to determine the angular location of the remote transmitter using the transmitted signal, and to use that angular location to direct a transmit antenna to transmit information in the direction of the transmitter is disclosed.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: November 11, 2008
    Assignee: The Boeing Company
    Inventors: Ming Chen, Mark A. Curry, Kenneth G. Voyce
  • Patent number: 7301497
    Abstract: A method for display of radar data includes performing a first radar scan to obtain, for at least one object (24), a first range reading, a first azimuth reading, and a first altitude reading. A second radar scan is then performed to obtain, for the at least one object (24), a second range reading, a second azimuth reading, and a second altitude reading. Position and travel direction of the at least one object (24) are computed within a predetermined cylindrical volume (20), according to readings from the first and second radar scans. An icon (34) is assigned to the at least one object (24). A reference point (R) is determined for the predetermined cylindrical volume. The icon (34) is then displayed within the predetermined cylindrical volume (20) in stereoscopic form.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 27, 2007
    Assignee: Eastman Kodak Company
    Inventors: James E. Roddy, William M. Barnick
  • Patent number: 7119732
    Abstract: Provided is a bistatic and multistatic system for detecting and identifying a target in close proximity to an orbiting satellite. An electromagnetic fence is established to surround the satellite, using a ground-based communication uplink from a gateway antenna. A contact or breach of the electromagnetic fence by the target is detected by the satellite, or at other sensor locations, and an exact position, range and ISAR image of the target is calculated using scattered RF energy from the fence. Identification data is transmitted to satellite system monitors, whereby the data is used to decide on a corrective course of action.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 10, 2006
    Assignee: Raytheon Company
    Inventors: Juan F. Lam, Theofanis Mavromatis
  • Patent number: 6535158
    Abstract: A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 18, 2003
    Assignee: Utah State University Research Foundation
    Inventors: Thomas D. Wilkerson, Jason A. Sanders, Ionio Q. Andrus
  • Patent number: 6181271
    Abstract: The invention comprises a mulli-wave radar system for obtaining first target position information of a flying object by capturing and tracking the flying object from a maximum detection distance, a stereo-camera system for taking over the tracking of the flying object in the vicinity of a landing point by acquiring the first target position information of the flying object from the milli-wave radar system, and obtaining second target position information having higher precision than the first target position information, and a controller for managing the first target position information of the milli-wave radar system and the second target position information of the stereo-camera system, controlling the milli-wave radar system to capture and track the flying object to the vicinity of the landing point, and controlling the stereo-camera system to capture and track the flying object at the time of landing of the flying object.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: January 30, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Hosaka, Masaaki Chiba
  • Patent number: 6119067
    Abstract: An object detecting system mounted on a conveyance such as a vehicle having a laser radar as an object detector mounted on the vehicle at a position offset from the vehicle longitudinal center line, for adjusting in a factory the radar mounting position in a software manner by utilizing a computer program. A reflective target is placed ahead of the vehicle on the line extending from the vehicle longitudinal center line at a position relatively close to the vehicle in the factory. The central axis of the transmitted beam is first aimed at the target reflector such that the axis is made equal to the direction of the target reflector, and is changed by an angle of offset such that the axis is aligned with an inherently desired direction which is parallel to the vehicle longitudinal center line.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: September 12, 2000
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Hayato Kikuchi
  • Patent number: 6087985
    Abstract: A tracking system for maintaining an alignment between a reflector antenna and a source of electromagnetic radiation, includes a reflector for reflecting electromagnetic radiation generated from a electromagnetic radiation source, a receiver, and a rotary sub-reflector which is positioned in front of the reflector for deflecting the radiation reflected by the reflector to the receiver and for generating triggering signals for measuring the strength of signals of the reflected radiation, whereby the sub-reflector is arranged at an inclination with respect to the reflector by an offset angle.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: July 11, 2000
    Assignee: RR Elektronische Gerat GmbH & Co. KG
    Inventors: Bernd Rummeli, Brian Scott
  • Patent number: 5774087
    Abstract: An electrical surveillance measures system for measuring direction of arrival (DOA), i.e., both azimuth and elevation, of a pulsed or continuous wave radar signal from a moving emitter. Either carrier frequency or pulse repetition interval (PARI) Doppler shift are used whereby the ratio of the Doppler shift is measured by a moving observer. The DOA is measured as a unit vector having basis vectors formed from a linearly independent set of observer's velocity vectors. The DOA unit vector has a linear part where the coefficients of the basis vectors are derived directly from the ratios of frequency or PARI measurements taken in three contiguous dwells. The DOA unit vector has a nonlinear part formed from the requirement that the DOA vector have unit magnitude. The unit vector is resolved in the system coordinates in which emitter azimuth and elevation are defined to allow computation of the latter two values.
    Type: Grant
    Filed: February 20, 1997
    Date of Patent: June 30, 1998
    Assignee: Litton Systems Inc.
    Inventor: Conrad M. Rose
  • Patent number: 5392048
    Abstract: A weather radar system is operable in an automatic mode for positioning the radar system antenna beam to scan an elevation axis between upper and lower scan limits in incremental steps as selected by a user while continuously scanning an azimuth axis for enhancing the analysis of weather conditions.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: February 21, 1995
    Assignee: AlliedSignal Inc.
    Inventor: Terry K. Michie
  • Patent number: 4922254
    Abstract: The present invention relates to a method for topographically mapping the surface of the Earth under utilization of measuring the altitude by means of radar, and under further utilization of a synthetic aperture for the radar, as well as an electronically controlled antenna lobe. In accordance with the preferred embodiment of the present invention, it is suggested to conically pivot the antenna lobe around a nadir, whereby pivoting of the center line follows a path such that the line constitutes the geneatrix of a cone.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: May 1, 1990
    Assignee: Dornier System GmbH
    Inventors: Harald Schuessler, Oswald Bender
  • Patent number: 4827265
    Abstract: A cooperative antenna tracking system for use at both ends of a radio link employs conical-scanning-type tracking at each end of the radio link to point a directional antenna guided by a continuous radio signal transmitted from an antenna at the other end of the link. A cooperative system between the two stations avoids pollution of the tracking in each station which might be caused by conical scanning at the other end of the link. Tracking pollution is avoided by time multiplexing tracking intervals between the two stations or by employing a tracker drive signal as a reference signal in a synchronous detector in each station to demodulate its own scanning frequency while sharply discriminating against signal variations produced by a scanning frequency at the other end of the link.
    Type: Grant
    Filed: April 13, 1983
    Date of Patent: May 2, 1989
    Assignee: General Electric Company
    Inventors: Aniruddha Das, Victor Navon, Daniel F. Reid