Receiver Patents (Class 342/89)
  • Patent number: 6894635
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. When revisit times are computed for each receiver detecting method for an emitter, these revisit times may not be monotonically increasing or decreasing as expected due to discontinuities in the antenna model. A system and method are provided for detection and correction of such discontinuities.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 17, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6894641
    Abstract: To provide a radar system mounted on a vehicle that reliably detects the reception of the interference wave with high-performance and inexpensively. There is provided a radar system mounted on a vehicle for detecting a target object, including a transmitter for transmitting an electromagnetic wave, a receiver for receiving the electromagnetic wave reflected by the target object, a signal processor for measuring a distance between a vehicle of his/her own and the target object and a relative velocity on the basis of the transmitting electromagnetic wave and the receiving electromagnetic wave, and an interference detector for suspending a transmit operation of the transmitter under a control of the signal processor to detect an interference signal from another external device.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: May 17, 2005
    Assignee: Mitsubishi Denki Kabushiki
    Inventors: Naohisa Uehara, Koichi Kai
  • Patent number: 6894639
    Abstract: This application discloses a method for distinguishing targets from clutter, comprising the steps inputting data, calculating data statistics from said data and using said data statistics to select target specific feature information to distinguish specific targets from background clutter, generating said target specific feature information from said data statistics, extracting said target specific feature information from said data, using said target specific feature information to distinguish specific targets from background clutter, and outputting target and background clutter information. Classification systems, including hardware and software embodiments, are also disclosed.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: May 17, 2005
    Assignee: Raytheon Company
    Inventor: Alan Jerry Katz
  • Patent number: 6882301
    Abstract: A time domain communications system wherein a broadband of time-spaced signals, essentially monocycle-like signals, are derived from applying stepped-in-amplitude signals to a broadband antenna, in this case, a reverse bicone antenna. When received, the thus transmitted signals are multiplied by a D.C. replica of each transmitted signal, and thereafter, they are, successively, short time and long time integrated to achieve detection.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: April 19, 2005
    Assignee: Time Domain Corporation
    Inventor: Larry W. Fullerton
  • Patent number: 6879878
    Abstract: A system and method are described that use impulse radio technology to enhance the capabilities of a robot. In one embodiment, a system, a robot and a method are provided that use the communication capabilities of impulse radio technology to help a control station better control the actions of the robot. In another embodiment, a system, a robot and a method are provided that use the communication, position and/or radar capabilities of impulse radio technology to help a control station better control the actions of a robot in order to, for example, monitor and control the environment within a building.
    Type: Grant
    Filed: April 17, 2004
    Date of Patent: April 12, 2005
    Assignee: Time Domain Corporation
    Inventors: Susan J. Glenn, Gregory A. Shreve
  • Patent number: 6879280
    Abstract: An aircraft weather radar system is disclosed. The system comprises a radar antenna, aircraft sensors, and a database. The system also comprises a processing device receiving information from the radar antenna and from the aircraft sensors and able to retrieve information from the database. Further, the system comprises a cockpit display coupled to the processing device. The processing device is programmed to estimate storm system characteristics based on the received information from the aircraft sensors and the database and to display the storm system characteristics on a vertical weather profile display using a graphical representation.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 12, 2005
    Assignee: Rockwell Collins, Inc.
    Inventors: Ian J. Bull, Steve Paramore, Daniel L. Woodell
  • Patent number: 6876321
    Abstract: A pulse descriptor word (PDW) collector, including an extractor coupled to a computer, for passively collecting radio frequency (RF) data received by an electronic surveillance system (ESS). It is integrated into the ESS after a receiver (which converts RF pulse data to digitized PDWs) and parrallel to a presorter. Using two RAM circuits, the extractor forms a read/write loop to ensure that no PDWs are lost in the collection process. The extractor simultaneously writes onto one RAM while reading from the other RAM to the computer. The read/write functions of the RAMs are switched at predetermined interrupts. Collected data is stored on the computer hard drive. The computer controls the entire collection process by using data management software, graphical user interface software and sequencing software. Stored data is available on demand for analysis and is used to monitor, assess, and update the threat identification capabilities of the particular ES system.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: April 5, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Barry P. Slutzky, Andrew W. Kluender
  • Patent number: 6876324
    Abstract: To provide a filter cover which has little electromagnetic effect on a dielectric resonator and is able to lengthen the life of a press mold without impairing isolation between transmission and reception. A VCO comprising a dielectric resonator, a high-frequency oscillator, a base, a cover, in which the distance between the surface of the cover facing the dielectric resonator and the surface of the base facing the dielectric resonator is half or below of the effective wave length of the oscillator frequency, and the cover has periodic projections facing the dielectric resonator which are a quarter of effective wave length of the oscillator frequency, wherein the nearest distance between the surface of the dielectric resonator facing the cover and the surface of the cover facing the dielectric resonator is a quarter or over of the effective wave length of the oscillator frequency.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: April 5, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Yoshiyuki Sasada, Atsushi Koshizaka, Terumi Nakazawa, Shiro Oouchi
  • Patent number: 6873287
    Abstract: The present invention relates to a method and an arrangement suitable for embedded signal processing, comprising a number of computational units (100), each computational unit comprising a number of processing elements (20) capable of working independently and transmitting data simultaneously. Said computational units are arranged in clusters, work independently, and transmit data simultaneously, and that said processing elements (20) are globally and regularly inter-connected optically in a hypercube topology and transformed into a planar waveguide.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: March 29, 2005
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Häkan Forsberg
  • Patent number: 6873284
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. Typically, the minimum dwell duration of a dwell is the maximum pulse repetition interval (PRI) of the emitters that the dwell is intended to cover. However, it may be possible to reduce the minimum dwell duration when the overall probability of intercept of a particular dwell may be met with a shorter dwell duration. A system and method are provided to detect this condition and reduce the dwell duration of the dwell if appropriate.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: March 29, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6870502
    Abstract: An asynchronous pulse detector including a data estimator which estimates the return signal based on the corrected return signal, a detector for detecting an asynchronous pulse in the return signal, and a selector for selectively outputting the estimated return signal in place of the return signal as the corrected return signal in the event the detector detects an asynchronous pulse in the return signal.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: March 22, 2005
    Assignee: Raytheon Company
    Inventor: David A. Zaugg
  • Patent number: 6867728
    Abstract: Signals-of-interest are identified by distinguishing such signals from signals constituting environmental or internal receiver noise. A received signal is rapidly sampled in order to set a dynamic, system threshold. Signals above the threshold constitute signals-of-interest.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 15, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Hanna, James A. Johnson
  • Patent number: 6867727
    Abstract: A system-of-systems avionics architecture that is compatible with futuristic multi-function multi-platform sensor applications. The method and device of the invention is based on localized “adaptive” waveform and spectrum allocation for ultra-wideband radio frequency and microwave signals. The invention includes a plurality of system platforms with each platform comprising a common radio frequency front end for receiving ultra-wideband signals, a common radio frequency back end for transmitting ultra-wideband signals and a plurality of sensors for exchanging data between platforms.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 15, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Atindra Mitra
  • Patent number: 6864826
    Abstract: Radar apparatus and methods of use thereof for imaging and/or spectrometric analysis. The invention employs pulsed radar signals for magnifying, imaging, scale measuring, identifying and/or typecasting the composition of substances by radargrammetric imaging and/or statistical analysis of energy/frequency spectrums. The invention may be used to locate and/or distinguish a substance from other substances, to image a substance/feature and to monitor the movement of an imaged substance/feature. The systems and methods can be adapted for a variety of applications at a wide range of scales and distances, from large scale, long range applications such as geophysical imaging/analysis, to the small scale such as material typecasting applications and small scale (including microscopic) imaging/analysis, including biological and medical imaging and diagnostic applications. The invention includes novel antenna assemblies and novel data processing techniques.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: March 8, 2005
    Inventor: George Colin Stove
  • Patent number: 6859161
    Abstract: A system time thresholds dwells executed by an electromagnetic signal receiver. The system includes a detection module and a processing module. The detection module receives electromagnetic signals from a surrounding environment. The electromagnetic signals are chronologically segregated into a plurality of dwells each with a dwell time. The processing module controls the scanning of the surrounding environment. The processing module sets dwell parameters and determines whether to skip the execution of particular dwells. The processing module receives data about the signals from the detection module.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 22, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey K. Bricker, Anthony J. Gounalis
  • Patent number: 6859160
    Abstract: A system estimates the utilization of an electromagnetic signal receiver. The system includes a detection module and a processing module. The detection module receives electromagnetic signals from a surrounding environment. The electromagnetic signals are chronologically segregated into a plurality of dwells each with an elapsed time. The processing module controls the scanning of the surrounding environment. The processing module receives data about the signals from the detection module. The processing module computes a plurality of utilizations by dividing each individual elapsed time by a predetermined sample interval. The processing module further determines a total utilization by adding the plurality of utilizations.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 22, 2005
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 6859162
    Abstract: In an underground object locating system in which a modulated RF signal is applied to the underground object and an emitted signal is detected by a receiver, ambiguity in the direction of current flow in the underground object is resolved by modulating the RF signal with a modulation signal such that the modulated signal, f(t) has an average value of zero and is not equal to ?f(t+K) where K is any practical value. In specific embodiments, the modulation can be amplitude modulation where the modulating signal is lower in frequency than the RF signal and is related thereto by a rational number, such as one-half (½).
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 22, 2005
    Assignee: Geometrics, Inc.
    Inventor: Kenneth R. Smith
  • Patent number: 6856283
    Abstract: A power system for a phased-array radar system powers an antenna array with a single multiphase transformer. A plurality of AC/DC converters are connected in parallel between the single multiphase transformer and a common bus. The common bus is balanced with respect to chassis ground reducing noise and improving operating safety of the antenna. The AC/DC converters each has a multi-sloped characteristic which enables the converters to share power by modifying output impedance as a function of load without external control signals. The system also has several layers of fault detection.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: February 15, 2005
    Assignee: Raytheon Company
    Inventors: Boris Solomon Jacobson, John McGinty, Paul Christian Thomas
  • Patent number: 6850186
    Abstract: The present invention relates to a system for using signals scattered by targets to determine position and velocity for each of the targets and comprises a set of transmitters and receivers of electromagnetic or acoustic signals, said transmitters and receivers dispersed to known points. Each pair of transmitter and receiver, monostatic or bistatic, is named a measuring facility. The ranges of the transmitters are chosen so that a target at an arbitrary point within the position space can be measured via scattering in the target by at least four measuring facilities. For each measuring facility, target detection occurs with constant false alarm rate in the form of probabilities over resolution cells with regards to range and Doppler velocity and conceivable targets are placed in a 2-dimensional linear space belonging to the measuring facility.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: February 1, 2005
    Assignee: Totalforsvarets Forskningsinstitut
    Inventor: Hans Hellsten
  • Patent number: 6847324
    Abstract: Systems and methods for automated detection and removal of solar interference in real time from NEXRAD or other similar radar products. The radar site latitude and longitude and scan elevation time are extracted from the radar data and a position of the Sun is determined for the extracted latitude and longitude and scan time. A radial that has been contaminated with solar interference is determined and the solar interference is removed from that radial; The removal process does not impact the timeliness of critical products, and conservatively removes solar interference. In addition inaccuracies with NEXRAD clock time synchronization are accounted for to ensure accurate results.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: January 25, 2005
    Assignee: WSI Corporation
    Inventors: Steven John Honey, Dennis Andrew Lang
  • Patent number: 6844843
    Abstract: A signal from CW radar is received, and the received power detected by the CW radar's swinging in all directions is averaged in each direction. Then, the maximum value and the minimum value of the received power are detected for each direction, and the difference between the maximum value and the minimum value is computed. An average power value of obtained power is also computed. On a 2-dimensional plane on which the difference between the maximum value and the minimum value and the average power value are used for coordinate axes, slice processing is performed using a threshold indicated by a line graph or a curve.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: January 18, 2005
    Assignees: Fujitsu Limited, Fujitsu Ten Limited
    Inventors: Satoshi Ishii, Yoshikazu Dooi, Sadanori Matsui
  • Patent number: 6831589
    Abstract: A radar detector (10) includes a first period detector (76, 122), a second period detector (96, 120) and a third period detector (86, 124) within a multi-period periodicity validator 38. The first period detector (76, 122) detects radar pulses exhibiting one-half of an expected pulse period (48), the second period detector (96, 120) detects radar pulses exhibiting the expected pulse period (48), and the third period detector (86, 124) detects radar pulses exhibiting twice the expected pulse period (48). A plurality of pulse-train records (40) can simultaneously track a plurality of possible pulse trains. A control element (84, 136, 138) accounts for missing pulses and corrects the expected pulse period when missing pulses have caused the expected pulse period to be inaccurate.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: December 14, 2004
    Assignee: GlobespanVirata, Inc.
    Inventor: Daniel Davidson MacFarlane Shearer, III
  • Patent number: 6831592
    Abstract: An HF radar system comprises a transmitting system, a receiving system, a signal processing system and a frequency management/ionospheric sounding system. The transmitting system comprises a transmitting antenna array configured to transmit a beam in a near vertical direction and a transmitting device arranged to drive the transmitting antenna array at frequencies suitable for downward refraction by the ionosphere. The receiving system comprises a receiving antenna array configured to receive returning signals from a target area returning to the receiving antenna array via refraction at the ionosphere. The signal processing system comprises a digital data processing system. The frequency management/sounding system comprises cooperating transmitting and receiving systems sending HF signals to the ionosphere and analysing the returning signals. Alternatively, the system may have a duplexed antenna array.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 14, 2004
    Assignee: Alenia Marconi Systems Limited
    Inventor: Kenneth H Perry
  • Patent number: 6825792
    Abstract: The present invention is intended to provide a system for determining the precise launch point of ballistic missiles, and may additionally provide the capability of neutralizing said threats. The invention provides a mobile object information means configured to classify electromagnetic frequency activity within satellite and land based commercial and private broadcast and telecommunications spectra in a given geographical area, said means also configured to classify associated area weather normality and anomalies. The system includes a software algorithm configured to extract from said database, a missile launch in a given geographical zone by “tagging” an electromagnetic wave disturbance caused by the high intensity initial fuel burn of said missile launch.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: November 30, 2004
    Inventor: Howard Letovsky
  • Patent number: 6825799
    Abstract: Disclosed is a radar apparatus equipped with a function for detecting an abnormality of noise floor level. An abnormality of noise floor level is detected by measuring the level in a region not lower than 60 kHz when FM modulation is stopped or modulation width is made infinitely small by instruction from a CPU to a modulating signal generator.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: November 30, 2004
    Assignee: Fujitsu Ten Limited
    Inventor: Osamu Isaji
  • Patent number: 6822606
    Abstract: This invention relates to a spectral generator and a spectral generation method for receiving pre-processed range-doppler-sensor data and generating at least one noise-reduced high-resolution spectrum therefrom. The spectral generator comprises a window generator that generates a window which defines a plurality of range-doppler cells. The spectral generator further comprises a covariance matrix calculator that is in communication with the window generator to receive the range-doppler-sensor data within the window and calculate a covariance matrix estimate for a range-doppler cell of interest in the window. The spectral generator also includes a spectral calculator that is in communication with the covariance matrix calculator to calculate a high-resolution spectral vector based on a location matrix and a noise subspace matrix estimate.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: November 23, 2004
    Assignee: Raytheon Canada Limited
    Inventors: Tony Ponsford, Reza Dizaji
  • Patent number: 6816107
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: November 9, 2004
    Assignee: Raytheon Company
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6816109
    Abstract: A method for automatic association of moving target indications from at least one entity traveling along a route. A moving target indicator radar is used to detect a plurality of moving target indication data. The moving target indication data proximate to the identified route is selected and presented in a distance-time graph, such that each selected moving target indication data has a unique distance along route and a unique observation-time value. The selected moving target indication data are then transformed from the distance-time coordinate to a slope-intercept coordinate, such that co-linear moving target indication data in the distance-time coordinate are transformed into a plurality of points superposed together with nearly identical slope values and nearly identical distance intercept value. The superposed points are mapped back to the distance-time coordinate, and the moving target indication data corresponding to the superposed points are thus associated.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: November 9, 2004
    Assignee: Northrop Grumman Corporation
    Inventor: Steven A. Schwartz
  • Publication number: 20040178944
    Abstract: An RFID system using encoded digital information utilizing pulsed linear frequency modulation (LFM). The LFM waveform is sent from an24 aircraft or satellite and is received by a transponder. The LFM waveform is demodulated using both, an AM and an FM receiver. The demodulated data is compared to preprogrammed criteria tables, and after validation is decoded and utilized. Algorithms in the transponder are used to determine the frequency deviation and for calculating the direction of the slope of the LFM input signal. The valid RF signal is stored in a delay element, encoded with the transponder data using phase modulation (PM), and frequency modulation (FM). The tag transmission is synchronized to the input LFM waveform. The transmit/receive chopping signal prevents unwanted oscillations and is capable of randomization.
    Type: Application
    Filed: March 12, 2001
    Publication date: September 16, 2004
    Inventors: David L. Richardson, Andrzej Sobski, Kenneth D. Gorham, Scott A. Stratmoen
  • Patent number: 6791489
    Abstract: An RFID system using encoded digital information utilizing pulsed linear frequency modulation (LFM). The LFM waveform is sent from an aircraft or satellite and is received by a transponder. The LFM waveform is demodulated using both, an AM and an FM receiver. The demodulated data is compared to preprogrammed criteria tables, and after validation is decoded and utilized. Algorithms in the transponder are used to determine the frequency deviation and for calculating the direction of the slope of the LFM input signal. The valid RF signal is stored in a delay element, encoded with the transponder data using phase modulation (PM), and frequency modulation (FM). The tag transmission is synchronized to the input LFM waveform. The transmit/receive chopping signal prevents unwanted oscillations and is capable of randomization.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: September 14, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: David L. Richardson, Andrzej Sobski, Kenneth D. Gorham, Scott A. Stratmoen
  • Publication number: 20040155812
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Application
    Filed: April 1, 2003
    Publication date: August 12, 2004
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6768444
    Abstract: The invention relates to a method of interference suppression in a radar system (10) and also to a system (10) operating according to the method. The system (10) incorporates a first antenna (40) and associated electronic circuits for emitting interrogating radar radiation towards a remote scene (S). Moreover, the system (10) also incorporates a second antenna (45) and associated electronic circuits for receiving interrogating radiation reflected from the scene (S) and generating correponding first and second processed signals. The first and second processed signals correspond to a broader main beam response of the antenna (45) and to a narrower main beam response thereof respectively. By mutually comparing the first and second processed signals, the system (10) is operable to identify those second processed signals affected by interference from the scene (S).
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: July 27, 2004
    Assignee: Alenia Marconi Systems Limited
    Inventor: Peter Langsford
  • Patent number: 6765523
    Abstract: A stationary object detection method for a scanning radar wherein, of peaks generated based on a radar signal reflected from a target, peaks having substantially the same frequency are grouped together, and a decision is made as to whether or not the frequency of the grouped peaks is equal to/higher than a predetermined value, and wherein if the peak frequency is equal to or higher than the predetermined value, then a decision is made as to whether or not the number of grouped peaks is equal to or greater than a predetermined number and, if the number of peaks is equal to or greater than the predetermined number, it is decided that the target is an overhead bridge candidate or an overhead bridge.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: July 20, 2004
    Assignee: Fujitsu Ten Limited
    Inventor: Daisaku Ono
  • Patent number: 6763282
    Abstract: A system and method are described that use impulse radio technology to enhance the capabilities of a robot. In one embodiment, a system, a robot and a method are provided that use the communication capabilities of impulse radio technology to help a control station better control the actions of the robot. In another embodiment, a system, a robot and a method are provided that use the communication, position and/or radar capabilities of impulse radio technology to help a control station better control the actions of a robot in order to, for example, monitor and control the environment within a building.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 13, 2004
    Assignee: Time Domain Corp.
    Inventors: Susan J. Glenn, Gregory A. Shreve
  • Patent number: 6756934
    Abstract: Targets imaged by radar systems typically have shadows associated with them. Target detection and identification is enhanced by analyzing the shadow characteristics of a suspected target. Features of the shadow cast by the suspected target enhance the identification process. Authenticating the suspected target shadow as being indeed cast by the target comprises a) Generating a radar image using radar returns, the radar image containing both the target and its suspected target shadow; b) Forming a pentagonal perimeter adjacent to the target (within the radar image), the pentagonal perimeter chosen to contain the suspected target shadow, the pentagonal perimeter separating the target from its suspected target shadow; c) Testing the suspected target shadow within said pentagonal perimeter to authenticate that the suspected target shadow is cast by the target. One aspect of the testing performed on the suspect target shadow uses a 2 by 2 dilation and majority filter.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: June 29, 2004
    Assignee: Raytheon Company
    Inventors: Joe C. Chen, Albert Ezekiel
  • Patent number: 6753807
    Abstract: An N-way RF/microwave power divider/combiner utilizes one input and N outputs, or conversely N inputs and one output to divide (or combine) RF/microwave power while simultaneously and non-invasively measuring reflected power present due to mismatched loads or other failed components. The Gysel divider/combiner technique is used with the addition of N temperature measuring devices placed directly on the N isolation loads separated from the main divider/combiner lines. Because of high isolation between the N channels of the divider/combiner, the temperature above ambient of each isolation load is strongly correlated to the amount of power reflected back to an output port. The temperature is sensed external to the RF circuit whereby a measure of reflected power can be made without the use of invasive directional-coupler techniques. This is highly advantageous since directional-coupler techniques would increase the insertion-loss, cost, and complexity of the divider/combiner.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: June 22, 2004
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Scott Andrew McLaughlin, Daniel Christopher Law
  • Patent number: 6750804
    Abstract: A system and method for detecting a target. The inventive method includes the steps of receiving a complex return signal of an electromagnetic pulse having a real and an imaginary component; extracting from the imaginary component information representative of the phase component of the return signal; and utilizing the phase component to detect the target. Specifically, the phase components are those found from the complex range-Doppler map. More specific embodiments further include the steps of determining a power spectral density of the phase component of the return signal; performing a cross-correlation of power spectral density of the phase component of the return signal between different antenna-subarray (quadrant channels); and averaging the cross-correlated power spectral density of the low frequency components. In an alternative embodiment, the cross-correlation is performed on the phase component of the range-Doppler map directly.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: June 15, 2004
    Assignee: Raytheon Company
    Inventors: Hai-Wai Chen, Harry A. Schmitt, George T. David, Dennis C. Braunreiter, Alphonso A. Samuel
  • Patent number: 6738011
    Abstract: A method and system for suppression of ground returns in a vertical profile radar display. The method includes receiving radar returns each comprising a plurality of range bins collated to a vertical profile radar display. The received range bins are analyzed to locate ground returns. A plurality of range bins are selected based upon the located ground returns. The radar returns are modified based upon the selected range bins.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 18, 2004
    Assignee: Honeywell International Inc.
    Inventor: Joseph B. Evans
  • Patent number: 6734824
    Abstract: A method for determining a location of an emitter in a monitored area includes the step of providing an array representative of the monitored area, the array including a plurality of elements. Next, at least one first curve and at least one second curve is provided in the array. The first and second curves are representative of possible locations of the emitter in the monitored area. Then, possible emitter locations are identified at intersections of the first and second curves. The intersections are identified by determining locations in the array where an element having an assigned attribute corresponding to a first curve has a predetermined number of adjacent elements having an assigned attribute corresponding to a second curve.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: May 11, 2004
    Assignee: Lockheed Martin Corporation
    Inventor: Carl R. Herman
  • Publication number: 20040085241
    Abstract: System and method for detection and tracking of targets, which in a preferred embodiment is based on the use of fractional Fourier transformation of time-domain signals to compute projections of the auto and cross ambiguity functions along arbitrary line segments. The efficient computational algorithms of the preferred embodiment are used to detect the position and estimate the velocity of signals, such as those encountered by active or passive sensor systems. Various applications of the proposed algorithm in the analysis of time-frequency domain signals are also disclosed.
    Type: Application
    Filed: October 21, 2003
    Publication date: May 6, 2004
    Applicant: Altratek, Inc.
    Inventors: Orhan Arikan, Ahmet Kemal Ozdemir
  • Patent number: 6717545
    Abstract: This invention relates to an adaptive detection system and method for analyzing range-doppler-azimuth data for target detection. The detection system has a threshold calculator for calculating a threshold value that is based on the standard deviation of the range-doppler-azimuth data and a predetermined probability of detection. The detection system also has a detection module in communication with the threshold calculator to receive the threshold value. The detection module calculates an estimated target amplitude and an estimated noise floor amplitude based on the range-doppler data that is located in a detection window. The detection module detects a target when the difference between the estimated target amplitude and the estimated noise floor amplitude is larger than the threshold value.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: April 6, 2004
    Assignee: Raytheon Canada Limited
    Inventors: Reza Dizaji, Tony Ponsford
  • Patent number: 6707417
    Abstract: A radar system having a tactical mode and a calibration mode includes a transmitter section for providing high-power amplification of an RF pulsed waveform from an exciter during the tactical mode and the calibration mode. A circulator system has an input port connected to an output of the transmitter section and including first, second and third switchable junctions, and a high-power attenuator. The circulator system provides a transmit tactical mode signal path and a transmit calibration mode signal path of virtually identical electrical path lengths for a transmitter output signal, the tactical path passing through the first, second and third junctions in a first direction to an antenna I/O port, the calibration path passing through the first, second and third junctions in a second direction and through the high-power attenuator to an output port.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: March 16, 2004
    Assignee: Raytheon Company
    Inventors: Steven Edward Huettner, Steven Craig Rein, Douglas Richard Baker
  • Patent number: 6693578
    Abstract: A method to optimize a mixer (20) includes setting a DC bias current (24) at a predetermined level correlated to an RF frequency or band of interest, and varying the power output (32) of a local oscillator (36) until the DC voltage (66) of the mixer (20) is at a predetermined voltage. The setting for the local oscillator (36) is then stored, such as in volatile RAM (60), for use during normal operation of the receiver (10) to produce IF signals (40) correlated to the RF frequencies or band or interest. The process may be implemented on power-up of the receiver and/or periodically during use thereof in the field to reoptimize the mixer (20), and may be undertaken with different predetermined currents and voltages for different RF frequencies and/or bands.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: February 17, 2004
    Assignee: Beltronics USA, Inc.
    Inventor: Glen D. Martinson
  • Patent number: 6683561
    Abstract: A coherent radar detection system (2) comprises a radar signal transmitter (4) and a correlation receiver (6). The transmitter (4) comprises a waveform generator which generates a signal at an intermediate frequency. The signal is divided into two divided signals by a coupler, and then the divided signals are mixed together in a mixer to generate an output signal which has a wider bandwidth than the intermediate frequency. The bandwidth can be increased further by repeating the coupler/mixer stage. The system generates very wide bandwidth signals coherently, allowing coherent processing in high resolution range gates.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: January 27, 2004
    Assignee: BAE Systems Electronics Limited
    Inventors: Peter Donald Fraser Tait, Adrian Peter Kyte, Peter James Steward, David John Shephard, Timothy Edward Ffrench
  • Patent number: 6683557
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: January 27, 2004
    Assignee: Raytheon Company
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6677890
    Abstract: An airborne radar antenna system for detecting a target in a volume includes a tethered aerostat and an antenna that is supported above ground by the aerostat. The aerostat-based antenna is used for transmitting and receiving a radar beam into the volume to detect the target. Additionally, the system includes a ground-based transmitter that generates a beacon signal which monitors the antenna configuration at the aerostat. A computer then evaluates the beacon signal to create an error signal which is used to maintain a predetermined configuration for the antenna. The system also includes mechanisms for orienting the radar beam along preselected beam paths between the antenna and the volume.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: January 13, 2004
    Assignee: Information System Laboratories
    Inventors: J. Doss Halsey, James Boschma
  • Patent number: 6674390
    Abstract: A pulse Doppler radar receiver is disclosed wherein monopulse sum and difference signals are time-multiplexed and passed through a single gain-controlled amplifier channel for normalization, the sum signal being processed to provide both a D.C. gain control signal for such channel and a reference signal for demodulating the difference signal.
    Type: Grant
    Filed: July 28, 1977
    Date of Patent: January 6, 2004
    Assignee: Raytheon Company
    Inventor: William M. Murphy, Jr.
  • Patent number: 6670905
    Abstract: A GPS enabled radar detector (20) that aids in the management of unrelated or otherwise unimportant sources (16), permitting the detector to dynamically improve its handling of such sources based upon previously-stored geographically-referenced information on such sources. The detector includes technology (30, 32) for determining the location of the detector, and comparing this location to the locations of known stationary sources, to improve the handling of such detections. The detector may ignore detections received in an area known to contain a stationary source, or may only ignore specific frequencies or may handle frequencies differently based upon historic trends of spurious police radar signals at each frequency. A Global Positioning Satellite System (GPS) receiver (30, 32) is used to establish current physical coordinates. The detector maintains a list (50, 82) of the coordinates of the known stationary source “offenders” in nonvolatile memory.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: December 30, 2003
    Assignee: Escort Inc.
    Inventor: Steven K. Orr
  • Patent number: 6667710
    Abstract: The present invention comprises a system, method, and computer program product for generating various weather radar images. A weather radar display system includes a database, a display, and a display processor coupled to the database and the display. The display processor includes a first component configured to store radar return data in a three-dimensional buffer in the database based on aircraft position information, a second component configured to extract at least a portion of the data stored in the three-dimensional buffer based on aircraft position information, and a third component configured to generate an image of the extracted return data for presentation on the display.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: December 23, 2003
    Assignee: Honeywell International Inc.
    Inventors: Bill G. Cornell, Roland Y. Szeto
  • Patent number: 6664914
    Abstract: A ground penetrating radar includes a signal generator, a return signal processor, a gate and an antenna. The signal generator is a dual frequency synthesizer that generates a stepped frequency master signal and a tracking signal offset by an intermediate frequency. The return signal processor is a dual channel quadrature receiver that mixes down a return signal and a sample of the master signal to intermediate frequency using the tracking signal. The signal generator is pulsed by the gate and the return signal is gated at the same frequency. Hollow pyramidal antennas are also described that have an ultrawide band bowtie structure with antenna electronics located within one antenna element. A method of operating the radar is also described.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: December 16, 2003
    Assignee: Groundprobe Pty Ltd
    Inventors: Denis Longstaff, David Noon, Chris Leat, Glen Stickley, Mikhail Cherniakov