Abstract: An image display to display a 2-dimensional image and a beam deflector to deflect the lights from the pixels constructing the image of the image display are provided. The beam deflector is arranged closely in front of the image display. A plurality of 2-dimensional images of different visual directions are sequentially displayed in the image display. The light from each pixel is deflected by the beam deflector synchronously with the display of the 2-dimensional image so that the light from each pixel is directed to the region in which the visual point has been set in order to obtain each image. The switching operation in this instance is executed at a high speed.
Abstract: A miniaturized electronic imaging chip has stratified layers wherein a base silicon layer has a peripheral edge defining an area and a thickness which allows passage therethrough of most UV, visible and IR light. A pixel layer is formed on the back side of this first silicon layer. At least one interconnect layer is bonded to the pixel layer. Electric leads are bump bonded to the bonding pads on the outermost interconnect layer and extend away from it within the area for attachment to means for sensing electrical signals generated by an image projected onto the pixel layer through the silicon layer. Preferably, the leads are perpendicular to the chip.
Abstract: This specification discloses a method of dividing a radiation beam into a first beam and a second beam differing in color from each other, modulating the first and second beams to thereby form first and second modulated beams indicative of images differing in color from each other, and projecting the images by the use of the first and second modulated beams. The radiation beam is divided into the first and second beams by a hologram.