Acousto-optic (e.g., Bragg Cell, Etc.) Patents (Class 348/754)
  • Patent number: 11442335
    Abstract: A laser light source for producing incoherent laser beams, in particular for speckle-free imaging and/or projection, with at least two different wavelengths, preferably with three different wavelengths, includes: at least two optical devices, in particular at least two optical parametric oscillators, which each have a nonlinear optical medium for respectively producing a signal beam and an idler beam, and a superposition device configured to respectively superpose either the signal beam or the idler beam of each of the at least two optical devices for producing an incoherent laser beam with the at least two different wavelengths. A laser projector for producing an image, in particular a speckle-free image, on a projection surface, can include such a laser light source.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: September 13, 2022
    Assignee: Q.ant GmbH
    Inventors: Klaus Mantel, Michael Foertsch
  • Patent number: 8147067
    Abstract: A laser projection system includes at least one laser light source, a projection screen and a spatial light modulator for projecting a laser beam of the laser light source to form an image on the projection screen. The projection screen includes a luminescent layer which upon excitation by the laser beam emits blue light. The luminescent layer contains MSi6?aAlaN8?aOx+a:Eu2+ (with M=Sr, Ba,; 0?x?1; 0?a?1) as a luminescent material. With this material laser light of a laser diode emitting in the wavelength region of 405 nm can be converted to blue light of 450 nm with high efficiency. The proposed projection system, therefore, is suitable for RGB projection using laser diodes as laser light sources.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: April 3, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ulrich Weichmann, Peter Schmidt, Gero Heusler
  • Patent number: 8038299
    Abstract: A light source apparatus includes a light source emitting light, an optical deflection element deflecting and exciting the emitted light, and a light conversion member cyclically outputting source light components having a plurality of hues in accordance with irradiation positions in a time-sharing manner based on the irradiation using the light deflected by the optical deflection element.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 18, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Hideaki Inoue
  • Patent number: 7993017
    Abstract: A projection display apparatus 101 in which the light quantity adjusting means has a simple and readily interchangeable structure, and which can improve image quality by adjusting the quantity of light received by a light valve continuously, without causing illuminance irregularities, and without having unwanted light radiated onto the screen, the light quantity adjusting means 9 having light blocking members 91L, 91R for blocking light in transit to a second lens array 22, and rotational axes 91LA, 91RA for turnably supporting each of the light blocking members on an xy plane, the light blocking members 91L, 91R and rotational axes 91LA, 91RA being positioned so that the rotational axes 91LA, 91RA are disposed in positions symmetric with respect to the optical axis AX on the xy plane, and the turning range from the light blocking initiation position at which the light blocking members 91L, 91R, by being turned, start to block light in transit toward the second lens array 22 to the maximum light blocking posi
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 9, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akihiro Yamada, Motoo Takahashi, Akira Daijogo, Tomohiro Bessho, Kenji Samejima
  • Patent number: 7891818
    Abstract: A projection system that includes a singe light modulation device and a plurality of light sources of different wavelengths. Each wavelength of light is incident on the light modulation device at a spatially distinct location and a temporally distinct time. The use of a scanning mirror allows the projection system to sequentially form, in full-color, each of the columns or rows of an image. The projection system is characterized by the reduction of color separation or the rainbow effect due to the rendering of each column or row in full color.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Evans & Sutherland Computer Corporation
    Inventors: Robert R. Christensen, Bret D. Winkler, Dennis Elkins, Allen H. Tanner
  • Patent number: 6636339
    Abstract: An optical scanner, a laser image projector using the optical scanner, and a method of driving the laser image projector are provided. The optical scanner includes: a base substrate; a plurality of parallel stationary comb electrodes arranged on the base substrate extending upwards at right angle; a stage having a mirror side at its top side, being separated a predetermined distance above the base substrate; a plurality of parallel driving comb electrodes arranged on the bottom of the stage extending at right angle interdigitated with the stationary comb electrodes; torsion bars formed at both side edges of the stage with a predetermined length to support such that the stage pivots; and supports for supporting the torsion bars such that the stage is suspended above the base substrate.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: October 21, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jin-ho Lee
  • Patent number: 6483556
    Abstract: A full color, pulsed laser video system having solid state red (R), green (G) and blue (B) lasers (10, 12, 14) as a source, and with a projection screen having a two-channel image (24) for the screen, and with optical fiber remote image delivery (30).
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: November 19, 2002
    Assignee: Corporation for Laser Optics Research
    Inventors: Masayuki Karakawa, Robert J. Martinsen, Stephen R. McDowell
  • Patent number: 6426781
    Abstract: A laser video projector for modulating light from a laser light source by an acousto-optic modulator (AOM) according to a video signal and projecting video information to a screen using a scanner is provided. The laser video projector includes a light source for outputting a beam of white light formed of first, second, and third main wavelengths, a light separator for separating the beam of the white light into beams of monochromatic lights having first, second, and third main wavelengths in a predetermined transmission factor and a predetermined reflectivity, light modulator for modulating the beams of the monochromatic lights according to a chrominance signal, light combiner for combining the monochromatic lights modulated by the light modulator into a beam, and light scanner for scanning the combined beam of the modulated monochromatic lights, thus forming an image.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: July 30, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jin-ho Lee
  • Patent number: 6188507
    Abstract: A variable acousto-optic spectrum projector is disclosed. The invention may include a radiation source, an entrance slit, a lens or mirror, a Bragg cell, an arbitrary function generator for driving a transducer of the Bragg cell, another lens or mirror, an exit slit, and a collimating lens. In a first embodiment of the invention, the Bragg cell comprises a Tl3AsSe3 crystal and emits light in the 7 to 11 &mgr;m range (long-wave infrared) with a spectral resolution of between 4.5 and 7 cm−1. In a second embodiment of the invention, the Bragg cell comprises a TeO2 crystal and emits light in the 420 to 720 nm range (visible) with a spectral resolution of between 50 and 80 cm−1.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: February 13, 2001
    Assignee: Mission Research Corporation
    Inventor: Matthew C. Thomas
  • Patent number: 6046724
    Abstract: Method and apparatus for the conversion of sound waves to electromagnetic wave forms, preferably light, whereby sound waves are converted to an electrical signal and processed by a number of filters, the distribution between the filters being a result of the frequency of the sound wave and in which the filters are subsequently connected to their respective color display and where the individual color display's activation is directly proportional to their filter's amount of signal processing and where the color display visualization in a display means is in the form of a single color or a mixture of two or more color displays.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: April 4, 2000
    Inventor: Claus Hvass
  • Patent number: 5959702
    Abstract: A video projector employs an acousto-optic deflector for moving a horizontal line of pixels vertically to form an image on a remote screen. Because the pixel images are formed from parallel beams, rather than by reimaging a line of pixel images on a vertical deflector, the image formed is in focus at all screen distances. The horizontal line of pixels is formed from a single laser beam which is expanded laterally and passes through individual intensity modulators before being aimed at the vertical deflector. The horizontal line of beams may be divided into zones, one above the other, and later reorganized into a single line at the vertical deflector, in order to reduce the size of the projector.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: September 28, 1999
    Inventor: John Mott Goodman
  • Patent number: 5828424
    Abstract: In a process for generating at least three laser beams of different wavelengths for displaying color video pictures, a pulsed laser is used to generate light. The light output of the pulsed laser is released in a pulse and is introduced into a medium with nonlinear optical characteristics for generating a laser beam. In addition to the laser beam generated by excitation, this medium releases an additional laser beam whose frequency is given by the sum or difference frequencies of the exciting laser beam and the excited laser beam due to the nonlinear optical characteristics of the medium. The laser beams generated by the medium in this way and the exciting laser beam are used directly, or after frequency conversion, to display monochromatic partial images of a color video picture. An apparatus according to the invention contains suitable devices for carrying out the process.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: October 27, 1998
    Assignee: LDT GmbH & Co. Laser-Display-Technologie KG
    Inventor: Richard Wallenstein
  • Patent number: 5546139
    Abstract: A projection system for projecting computergraphic images onto a domed or spherical viewing surface. An intense beam of coherent light is color and intensity modulated and deflected in a pair of cartesian axes prior to being projected through a wide angle lens array. Because the light beam is deflected before entering the wide angle lens array, greater angles of deflection are possible. The images are generated by rapidly changing the deflection of an intense spot of light which is projected onto the viewing surface at a rate above the viewer's flicker rate. This wide angle lens array may include a scan flattening lens array by which the image can be focused onto a spatial image focal plane before it is projected through a wide angle lens.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: August 13, 1996
    Inventors: Aron Bacs, Jr., Ward H. Davis, Douglas A. McCullough
  • Patent number: 5410371
    Abstract: An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with an RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: April 25, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: James L. Lambert