Deformable Medium Patents (Class 348/770)
  • Patent number: 9897801
    Abstract: A scanning device includes a substrate, which is etched to define a recess in the substrate and to define the following structures contained in the recess: At least first and second mirrors are disposed along a common axis of rotation. Torsion hinges extend collinearly along the axis of rotation and connect the first and second mirrors to the substrate so that the first and second mirrors rotate on the torsion hinges about the axis of rotation. Rigid struts are disposed alongside the axis of rotation and connect the first mirror to the second mirror so that the struts rotate about the axis of rotation together with the first and second mirrors.
    Type: Grant
    Filed: November 15, 2015
    Date of Patent: February 20, 2018
    Assignee: APPLE INC.
    Inventors: Yuval Gerson, Alexander Shpunt
  • Patent number: 9824713
    Abstract: Provided is a light information device, and the like, that records header information on an information recording medium, after preventing screen burn of a spatial light modulator. One example of the solution in the present invention is a light information device that records two-dimensional page data on an information recording medium and is provided with a first information generation unit, a second information generation unit that generates a second bit string on the basis of a first bit string, and a spatial light modulation unit that displays a pattern corresponding to the second bit string.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: November 21, 2017
    Assignee: Hitachi Consumer Electronics Co., Ltd.
    Inventors: Atsushi Neo, Jyunya Iizuka
  • Patent number: 9001412
    Abstract: A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: April 7, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, William Cummings, Brian James Gally, Lior Kogut, Ming-Hau Tung, Yeh-Jiun Tung, Chih-Wei Chiang, Denis Endisch
  • Patent number: 8970939
    Abstract: A multi-state light modulator comprises a first reflector. A first electrode is positioned at a distance from the first reflector. A second reflector is positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector. In one embodiment, the three positions correspond to reflecting white light, being non-reflective, and reflecting a selected color of light. Another embodiment is a method of making the light modulator. Another embodiment is a display including the light modulator.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: March 3, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, William J. Cummings, Brian J. Gally
  • Patent number: 8659816
    Abstract: This disclosure provides mechanical layers and methods of forming the same. In one aspect, a method of forming a pixel includes depositing a black mask on a substrate, depositing an optical stack over the black mask, and forming a mechanical layer over the optical stack. The black mask is disposed along at least a portion of a side of the pixel, and the mechanical layer defines a cavity between the mechanical layer and the optical stack. The mechanical layer includes a reflective layer, a dielectric layer, and a cap layer, and the dielectric layer is disposed between the reflective layer and the cap layer. The method further includes forming a notch in the dielectric layer of the mechanical layer along the side of the pixel so as to reduce the overlap of the dielectric layer with the black mask along the side of the pixel.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 25, 2014
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Yi Tao, Hojin Lee, Fan Zhong
  • Patent number: 8531755
    Abstract: The present invention describes a micro-mechanical light modulator including a two-dimensional array of modulating elements, in which small modulating elements are organized into larger modulating areas. Using smaller elements organized into larger areas increases the resonant frequency of the modulators and the modulation speed. In some implementations, multiple modulating elements are driven by shared signals, allowing the number of elements driven and the resulting area to increase without increasing the data traffic. In some implementations, an anamorphic optical path is used that leaves individual modulating elements of the micro-mechanical light modulator that are operated as a single area unresolved at an image plane of the workpiece being patterned. Devices and methods are described.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: September 10, 2013
    Assignee: Micronic Laser Systems AB
    Inventors: Torbjörn Sandström, Per Askebjer
  • Patent number: 8508447
    Abstract: A pixel includes a primary element and a secondary element. At least a portion of the primary element is deformable between two positions. In one position, the light source is reflected such that the observer observes a dark pixel. In the other position, the light is reflected such that the observer observes a bright pixel. Gray levels of light are viewable by varying between the two positions.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: August 13, 2013
    Assignee: Microsoft Corporation
    Inventors: Anna Pyayt, Gary K. Starkweather, Michael J. Sinclair
  • Patent number: 8422108
    Abstract: An interferometric modulator (Imod) cavity has a reflector and an induced absorber. A direct view reflective flat panel display may include an array of the modulators. Adjacent spacers of different thicknesses are fabricated on a substrate by a lift-off technique used to pattern the spacers which are deposited separately, each deposition providing a different thickness of spacer. Or a patterned photoresist may be used to allow for an etching process to selectively etch back the thickness of a spacer which was deposited in a single deposition. A full-color static graphical image may be formed of combined patterns of interferometric modulator cavities. Each cavity includes a reflector, and an induced absorber, the induced absorber including a spacer having a thickness that defines a color associated with the cavity.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 16, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Mark W. Miles
  • Patent number: 8289613
    Abstract: A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 16, 2012
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Clarence Chui, William Cummings, Brian Gally, Lior Kogut, Ming-Hau Tung, Yeh-Jiun Tung, Chih-Wei Chiang, Denis Endisch
  • Patent number: 8213075
    Abstract: A multi-state light modulator comprises a first reflector. A first electrode is positioned at a distance from the first reflector. A second reflector is positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector. In one embodiment, the three positions correspond to reflecting white light, being non-reflective, and reflecting a selected color of light. Another embodiment is a method of making the light modulator. Another embodiment is a display including the light modulator.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: July 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, William J Cummings, Brian J Gally
  • Patent number: 8134772
    Abstract: A micromirror device includes an elastic hinge for supporting a mirror on a substrate, and an address electrode for deflecting the mirror. The device further includes a protective layer and an oriented monolayer laid to cover a stopper also functioning as an address electrode provided below the mirror and between the mirror and the substrate.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: March 13, 2012
    Assignees: Silicon Quest Kabushiki-Kaisha, Olympus Corporation
    Inventors: Yoshihiro Maeda, Fusao Ishii, Kazuhiro Watanabe, Hirotoshi Ichikawa
  • Patent number: 8115989
    Abstract: Anti-stiction systems may include one or more anti-stiction electrodes driven to provide an electrical force that counteracts a stiction force acting upon a moveable portion of an interferometric modulator. The anti-stiction electrode(s) may be disposed on a back glass or on another such substrate. The anti-stiction electrode(s) may be configured to apply an electrical force to substantially all of the interferometric modulators in a display device at once and/or may be configured to apply an electrical force only to a selected area. In some embodiments, the sum of an anti-stiction electrical force and a mechanical restoring force of a moveable part of an interferometric modulator is sufficient to counteract a stiction force.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 14, 2012
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventor: Manish Kothari
  • Patent number: 8098431
    Abstract: Various embodiments of the invention relate to methods and systems for generating the color white in displays created from interferometric modulators and more specifically, to the generation of the color white through the use of reflected light at two wavelengths. In one embodiment, a display device displays the color white. The color white is generated by reflecting light from two pluralities of interferometric modulator types. The first modulator type reflects colored light at a specific wavelength. The second modulator type reflects colored light selected to be at a wavelength complementary to the first. The combined light reflected from the two types appears white in the display.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: January 17, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Philip D. Floyd
  • Patent number: 8077377
    Abstract: The invention relates to methods to improve SLMs, in particular to reflecting micromechanical SLMs, for applications with simple system architecture, high precision, high power handling capability, high throughput, and/or high optical processing capability. Applications include optical data processing, image projection, lithography, image enhancement, holography, optical metrology, coherence and wavefront control, and adaptive optics. A particular aspect of the invention is the achromatization of diffractive SLMs so they can be used with multiple wavelengths sequentially, simultaneously or as a result of spectral broadening in very short pulses.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 13, 2011
    Assignee: Micronic MyData AB
    Inventor: Torbjorn Sandstrom
  • Patent number: 7999995
    Abstract: A full color range analog controlled interferometric modulation device is provided. The device includes a transparent substrate, and a transparent fixed-position electrically conductive electrode with a bottom surface overlying the substrate. A transparent spacer overlies the fixed-position electrode, and an induced absorber overlies the spacer. An optically reflective electrically conductive moveable membrane overlies the induced absorber. A cavity is formed between the induced absorber and the moveable membrane having a maximum air gap dimension less than the spacer thickness. In one aspect, the distance from the top surface of the fixed-position electrode to a cavity lower surface is at least twice as great as the cavity maximum air gap dimension. In another aspect, at least one anti-reflective coating (ARC) layer is interposed between the substrate and the fixed-position electrode, and at least one ARC layer is interposed between the fixed-position electrode and the spacer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 16, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Akinori Hashimura, Douglas J. Tweet, Apostolos T. Voutsas
  • Patent number: 7976172
    Abstract: Light emitted from a lamp enters a color wheel having a region for allowing a predetermined color to pass therethrough, is reflected on a mirror, and enters a DMD. After this, the light is reflected by the DMD and enters a color sensor, which then detects the color of the transmitting light. A projection apparatus automatically synchronizes the control on the rotation of the color wheel and the control on the proceeding direction of the transmitting light by the DMD, based on a color time-division pattern of the transmitting light detected by the color sensor.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 12, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Tetsuro Narikawa
  • Patent number: 7907319
    Abstract: An interferometric modulator (Imod) cavity has a reflector and an induced absorber. A direct view reflective flat panel display may include an array of the modulators. Adjacent spacers of different thicknesses are fabricated on a substrate by a lift-off technique used to pattern the spacers which are deposited separately, each deposition providing a different thickness of spacer. Or a patterned photoresist may be used to allow for an etching process to selectively etch back the thickness of a spacer which was deposited in a single deposition. A full-color static graphical image may be formed of combined patterns of interferometric modulator cavities. Each cavity includes a reflector, and an induced absorber, the induced absorber including a spacer having a thickness that defines a color associated with the cavity.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: March 15, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Mark W. Miles
  • Patent number: 7884988
    Abstract: A micromechanical device and system utilizing a supplemental reset pulse to ensure deflectable members deflect to the desired position. After loading data into a micromechanical device, a reset pulse is used to position the deflectable member to a position indicated by the data. A supplemental reset pulse is then applied to ensure the deflectable member is driven to the position indicated by the data. The method and system are also used to ensure the deflectable members are driven to a neutral position.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: February 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory J. Hewlett, Darren T. McCosky
  • Patent number: 7852546
    Abstract: The invention relates to methods and apparatus for forming a display apparatus. According to one aspect of the invention, the display apparatus includes a first substrate having an aperture layer formed thereon, a light guide for guiding light towards the aperture layer, a plurality of MEMS light modulators for modulating light passing through the aperture layer from the light guide, and a spacer substantially surrounding the light guide for keeping the light guide and the first substrate a predetermined distance apart from one another, thereby forming a gap between the first substrate and the light guide. Alternatively or in addition, the first substrate may have a control matrix formed thereon.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 14, 2010
    Assignee: Pixtronix, Inc.
    Inventors: John J. Fijol, Jignesh Gandhi, Mark J. Shufelt
  • Patent number: 7663794
    Abstract: Interferometric modulators having a separable modulator architecture are disclosed having a reflective layer suspended from a flexible layer over a cavity. The interferometric modulators have one or more anti-tilt members that inhibit undesirable movement of the reflective layer, such as curling and/or tilting. The stabilization of the reflective layer by the anti-tilt members can improve the quality of the optical output of the interferometric modulators, as well as displays comprising such interferometric modulators.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 16, 2010
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: William J Cummings
  • Patent number: 7616368
    Abstract: Improved apparatus and methods for displays are disclosed that utilize light concentration array between mechanical light modulators and the viewing surface of the display. The light concentration array includes an array of optical elements that concentrate light on respective ones of the light modulators to maximize the contrast ratio and off axis viewing of the display.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: November 10, 2009
    Assignee: Pixtronix, Inc.
    Inventor: Nesbitt W. Hagood, IV
  • Patent number: 7561334
    Abstract: Methods and apparatus for reducing back-glass deflection in an interferometric modulator display device are provided. In one embodiment, an interferometric modulator display is provided that includes a including a substrate, an optical stack formed on the substrate, a moveable reflective layer formed over the optical stack, and a backplate attached to the substrate. The moveable reflective layer includes one or more first posts extending therefrom, in which one or more of the first posts are operable to protect the moveable reflective layer by contacting at least a portion of the backplate if the backplate is deflected.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: July 14, 2009
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Qi Luo
  • Patent number: 7554711
    Abstract: An interferometric modulator comprising a substrate, a movable membrane and one or more stiction bumps disposed between the substrate and the movable membrane. The stiction bumps are configured to mitigate stiction between the substrate and the movable membrane.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: June 30, 2009
    Assignee: IDC, LLC.
    Inventor: Mark W. Miles
  • Patent number: 7545446
    Abstract: A projection system includes a modulator and an Offner relay. The modulator is to modulate light in accordance with sub-frames of a frame of image data. The Offner relay is to differently aim, in accordance with each sub-frame, the light as modulated.
    Type: Grant
    Filed: August 27, 2005
    Date of Patent: June 9, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Scott Lerner, Anurag Gupta, Wiatt E. Kettle
  • Patent number: 7492503
    Abstract: A display having a plurality of reflective display elements. In one embodiment, the display elements comprise at least one electrode having a plurality of active areas. In one embodiment, at least two of the sizes of the active areas are different with respect to each other, e.g., they are non-uniform in size. The interferometric modulators have a plurality of states, wherein selected ones of the interferometric modulators are configured to be actuated depending differing electrostatic forces in the interferometric modulators. The electrostatic forces in the interferometric modulators are different at least in part due to variations in the sizes of the active areas of the electrodes.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 17, 2009
    Assignee: IDC, LLC
    Inventor: Clarence Chui
  • Patent number: 7483043
    Abstract: A method and system for performing spatial temporal multiplexing using a multi-threshold mask. A mask generator (404) outputs a threshold value for each pixel of a display. The mask generator typically creates a blue noise mask for a given pixel array that is replicated over the face of the entire display. The blue noise mask generator (404) typically is implemented as a memory lookup table. An index generator (402) provides an offset into the memory lookup table that allows the table to be shifted from time to time. The output of the blue noise mask generator (404), which may be the threshold value itself or a signal representing which threshold is being used, is an input to a selective inverter (406). The selective inverter (406) provides the option of inverting the blue noise mask. To reduce artifacts, the mask is periodically shifted and/or inverted. The value from the mask generator (404), whether inverted or not, is compared to the LSBs of the input data word to yield the fractional bit values.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: January 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel J. Morgan, Jeffrey M. Kempf
  • Patent number: 7483200
    Abstract: A micro mirror device is described. The device has a tiltable mirror plate with a reflective surface configured to reflect incident light to form a reflected light beam. A controller is configured to cause the mirror plate to tilt from an un-tilted position to an “off” position, a first “on” position, or a second “on” position. An opaque aperture structure is configured to block substantially all of a reflected light beam from reaching a display surface when the mirror plate is tilted to the “off” position, allow a first portion of a reflected light beam to pass through when the mirror plate is tilted to the first “on” position and allow a second portion of a reflected light beam to pass through when the mirror plate is tilted to the second “on” position. The tilting positions determine a brightness of display pixels.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: January 27, 2009
    Assignee: Spatial Photonics, Inc.
    Inventor: Shaoher X. Pan
  • Patent number: 7471445
    Abstract: A spatial light modulator includes a mirror plate comprising a reflective upper surface, a lower surface, and a substrate portion comprising a cavity having an opening on the lower surface, a substrate comprising an upper surface, a hinge support post in connection with the substrate, and a hinge component supported by the hinge support post and in connection with the mirror plate, and one or more landing tips configured to contact the lower surface of the mirror plate to limit rotation of the mirror plate. The hinge component includes a protrusion that is anchored in a hole in the top surface of the hinge support post and the hinge component is configured to extend into the cavity to facilitate rotation of the mirror plate.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: December 30, 2008
    Assignee: Spatial Photonics, Inc.
    Inventor: Shaoher X. Pan
  • Patent number: 7453621
    Abstract: A spatial light modulator includes a substrate; a hinge in connection with the substrate; a mirror plate that is connected with the hinge and is configured to tilt about the hinge; and a piezoelectric device coupled with the substrate. The piezoelectric device is configured to produce an acoustic wave to assist the separation between the mirror plate and the object.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: November 18, 2008
    Assignee: Spatial Photonics, Inc.
    Inventor: Vlad Novotny
  • Patent number: 7446926
    Abstract: In various embodiments of the invention, a regenerating protective coating is formed on at least one surface of an interior cavity of a MEMS device. Particular embodiments provide a regenerating protective coating on one or more mirror surfaces of an interferometric light modulation device, also known as an iMoD in some embodiments. The protective coating can be regenerated through the addition of heat or energy to the protective coating.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 4, 2008
    Assignee: IDC, LLC
    Inventor: Jeffrey B. Sampsell
  • Patent number: 7446928
    Abstract: A micro-electro-mechanical systems element array device in which plural micro-electro-mechanical systems elements each having a movable portion are arranged in an array, said movable portion being to be displaced by a physical force which is generated by applying an electric signal to a conductive portion, and each of said micro-electro-mechanical systems elements drives and displaces said movable portion of said micro-electro-mechanical systems element on the basis of a displacement data for said micro-electro-mechanical systems element, wherein said device comprises: an electric signal generating unit as defined herein; a switching unit as defined herein; and a selecting unit as defined herein.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 4, 2008
    Assignee: FUJIFILM Corporation
    Inventors: Koichi Kimura, Shinya Ogikubo, Hirochika Nakamura
  • Patent number: 7400438
    Abstract: A transition time is a time from a state where a movable portion has been rotationally displaced in the first direction and stopped to a state where driving portions apply the physical action forces to the movable portion to rotationally displace the movable portion in the second direction, which is different from the first direction, and the movable portion reaches a final displacement position. An elastic force value of the elastic supporting portion and the transition time have such a relationship that when the elastic force value of the elastic supporting portion is equal to a certain value, the transition time takes a local maximum value. The elastic force value of the elastic supporting portion is equal to or less than the certain value at which the transition time takes the local maximum value.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 15, 2008
    Assignee: FUJIFILM Corporation
    Inventors: Shinya Ogikubo, Koichi Kimura, Fumihiko Mochizuki
  • Patent number: 7377653
    Abstract: A color display apparatus having a virtual single light origin is disclosed. The color display apparatus includes an illumination lens system, a combining system, a Fourier filter and a projection system. The illumination lens system converts a plurality of light beams, which are radiated from a plurality of light sources, into linear, parallel light beams. The combining system produces a plurality of diffracted light beams having a plurality of diffraction orders by modulating each of the parallel light beams incident from the illumination lens, and outputs the plurality of diffracted light beams so that the diffracted light beams have a same virtual light origin and are adjacently located. The Fourier filter passes only some of the diffracted light beams, which have desired diffraction orders, therethrough. The projection system focuses the diffracted light beams, which are passed through the Fourier filter, on an object, and then allows the focused diffracted light beams to scan the object.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: May 27, 2008
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Haeng Seok Yang, Dong Ho Shin, Kwan Young Oh, Jun Won An, Sang Kyeong Yun
  • Patent number: 7372613
    Abstract: A multi-state light modulator comprises a first reflector. A first electrode is positioned at a distance from the first reflector. A second reflector is positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector. In one embodiment, the three positions correspond to reflecting white light, being non-reflective, and reflecting a selected color of light. Another embodiment is a method of making the light modulator. Another embodiment is a display including the light modulator.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: May 13, 2008
    Assignee: IDC, LLC
    Inventors: Clarence Chui, William J. Cummings, Brian J. Gally
  • Patent number: 7370976
    Abstract: The device has flexure correcting means for operating to rotate a first eccentric cam provided at a central part of a first side of a reflecting mirror, thereby moving up and down the central part of the first side to correct the flexure of the reflecting mirror, torsion correcting means for operating to rotate a second eccentric cam or/and a third eccentric cam provided at the ends of a second side opposed to the first side of the reflecting mirror, thereby moving up and down both ends of the second side of the reflecting mirror to correct the torsion of the reflecting mirror, and a rotation operation portion provided at each of extended ends of camshafts provided at the eccentric cams to correct the flexure and torsion of the reflecting mirror.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 13, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tsuneo Fujinuma
  • Patent number: 7372620
    Abstract: There is provided a micromirror which includes a holding unit, a mirror that is held by the holding unit to be pivotable about a rotation axis of the mirror, a first fixed electrode group including a plurality of electrodes fixed to the holding unit, a second fixed electrode group including a plurality of electrodes fixed to the holding unit, a first movable electrode group including a plurality of electrodes fixed to the mirror and located adjacently to the first fixed electrode group, and a second movable electrode group including a plurality of electrodes fixed to the mirror and located adjacently to the second fixed electrode group.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: May 13, 2008
    Assignees: Tohoku University, PENTAX Corporation
    Inventors: Masayoshi Esashi, Naoki Kikuchi
  • Patent number: 7187487
    Abstract: A spatial light modulator includes a first region and a second region. A light-absorbing layer contacts at least a portion of the second region. The light absorbing layer includes a first layer and a second layer, the second layer having a reflectivity less than about 75%.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 6, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James R. Przybyla, Arthur R. Piehl, Michael G. Monroe
  • Patent number: 7081928
    Abstract: A full color video projector system using a light source and a single light valve. The output of the light source passes through a condenser lens. The lens is directed toward a splayed array of red, green, and blue dichroic reflector color filters. The reflected three primary color beams first pass through a lenticular lens array, comprised of a plurality of elongated cylinder lenses, arranged in parallel, co-planar relation. The lenticular array produces color stripe illumination pattern, which is redirected and focused by a relay optic upon a reflective micro-mirror light valve. The light valve includes three sub-pixels for every full-color screen pixel. The pixels are arranged in parallel stripes which correspond to the size and configuration of the color strip illumination pattern outputted by the lenticular array. Light valve address circuitry actuates appropriate sub-pixels to reflect incident light energy, in accordance with corresponding video image information.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: July 25, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Laurence M. Hubby, Jr.
  • Patent number: 7075506
    Abstract: A method and system for performing spatial temporal multiplexing using a multi-threshold mask. A mask generator (404) outputs a threshold value for each pixel of a display. The mask generator typically creates a blue noise mask for a given pixel array that is replicated over the face of the entire display. The blue noise mask generator (404) typically is implemented as a memory lookup table. An index generator (402) provides an offset into the memory lookup table that allows the table to be shifted from time to time. The output of the blue noise mask generator (404), which may be the threshold value itself or a signal representing which threshold is being used, is an input to a selective inverter (406). The selective inverter (406) provides the option of inverting the blue noise mask. To reduce artifacts, the mask is periodically shifted and/or inverted. The value from the mask generator (404), whether inverted or not, is compared to the LSBs of the input data word to yield the fractional bit values.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: July 11, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel J. Morgan, Jeffrey Kempf
  • Patent number: 6671005
    Abstract: A light display system for projecting digitally generated light beams onto a stage display, comprising a housing rotatable about at least one axis, a deformable mirror device (DMD) having a surface comprising an array of deformable mirror cells, the DMD being mounted in the housing, a light source mounted in the housing for directing a light beam in an optical path that impinges upon the surface of the DMD, and digital control signals to the DMD for digitally activating selected deformable mirror cells of the DMD to reflect digitally selected light beams onto the stage display having the optical effect of a continuous moving image or images. The housing is rotatable about a second axis transverse to the first axis. Coloring devices can be mounted in the housing.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: December 30, 2003
    Assignee: Altman Stage Lighting Company
    Inventors: Roger A. Pujol, Thomas P. Tyler
  • Patent number: 6601959
    Abstract: The thickness of the projector device can be reduced by making the direction of irradiation of a digital micromirror device (DMD) with illuminating light by an illuminating optical system variable depending on whether the projector device is used or not used. As an illuminating optical system is provided rotatably around an optical axis of a projecting optical system, the position of the illuminating optical system can be varied depending on whether the projector device is used or not used, and the overall thickness of the projector device can be thereby reduced.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 5, 2003
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Yasuyuki Miyata, Hitoshi Shimizu
  • Patent number: 6573951
    Abstract: A method for using pulse-width modulation in displays. A series of PWM sequences is established. Each subsequent sequence clears the previous sequence before it, eliminating the need for a separate clearing reset at the end of the previous sequence. This allows for use of spoke bits in color-sequential systems. In non-color sequential systems and rapid color-switching systems it allows the sequence for one frame to flow directly into the sequence for the next frame.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: June 3, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory J. Hewlett, Donald B. Doherty
  • Patent number: 6480177
    Abstract: A method of addressing an array of spatial light modulator elements. The method divides the array into blocks of elements, provides reset lines (MRST) to each of the block of elements, separate from the other blocks of elements, as well as address voltage supplies (VCCADDR) to each of the block of elements, separate from the other blocks of elements, addresses data to each of the blocks independent of the other blocks, resets each of the blocks, and steps address voltage to each of the block, where only blocks that are being reset receive the stepped address voltage. A spatial light modulator array (32) is also provided that has a layout to facilitate the method, including internal or external circuitry (34) to provide control of the stepped addressing voltages.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: November 12, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Donald B. Doherty, Henry Chu, James D. Huffman
  • Publication number: 20020051096
    Abstract: A spatial light modulation device capable of displaying a large number of gray scales is provided. The inventors of the present invention proposed a spatial light modulation device having: a first structure in which a switching transistor and an erasure transistor, each having its gate electrode connected to a different scanning line, are formed in each pixel, and whose switching is controlled separately; or a second structure in which two switching transistors, each having its gate electrode connected to a different scanning line, are formed in each pixel, and whose switching is controlled separately.
    Type: Application
    Filed: July 11, 2001
    Publication date: May 2, 2002
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 6188427
    Abstract: An illumination system (10) having an automated calibration system (62) for adjusting the light intensity of individual elements (14) of an array of light emitting elements (12). An optical sensor (30) can be positioned in several locations (A,B,C) to sense incident light from a spatial light modulator (20) as the modulator is sequentially actuated one zone (50) at a time. The light output from each zone (50) of the spatial light modulator is characterized and compared to a golden standard, and the light emitting elements of the array associated with illuminating the zones that are deficient in light are ascertained. Adjustment circuitry (62) responsively adjusts and increases the drive current to the associated light emitting elements (14) that are deficient in light output. A look-up table is utilized to determine which LEDs (14) need adjustment to their drive currents to insure uniform illumination in the process and cross-process direction at an image plane.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: February 13, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Charles H. Anderson, John B. Allen
  • Patent number: 6188426
    Abstract: An exposure method for a printer with a micromirror device as a spatial light modulator. In an exposure sequence of one color, each micromirror of the mirror array of the spatial light modulator is driven by N-bit mirror drive data sequentially from most to least significant bits. While the micromirrors are driven responsive to the most to Jth significant bits of the N-bit data, the micromirrors are illuminated continuously, and the driving time intervals are reduced half by half. While the micromirrors are driven responsive to the lower bits of the N-bit data, the driving time intervals are maintained at a constant shortest value, and the micromirrors are illuminated intermittently for shorter times than the shortest driving time interval, allowing for more tonal levels than possible by modulating mirror driving intervals alone.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: February 13, 2001
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Hiroaki Nakamura
  • Patent number: 6008929
    Abstract: An image displaying apparatus and method is provided which can provide a satisfactory display with a gradation of intensity even with a spatial light modulator which provides a binary light modulation. A light from a light source 1 is modulated by a spatial light modulator 3 which modulates a light at each pixel thereof correspondingly to a pixel data of an image to be displayed. When the pixel state of the spatial light modulator 3 is being changed, the light source 1 is turned off. When the pixel state of the spatial light modulator 3 is steady, a light pulse is irradiated from the light source 1 to the spatial light modulator 3 to display the image.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: December 28, 1999
    Assignee: Sony Corporation
    Inventors: Osamu Akimoto, Yoshinori Tanaka
  • Patent number: 5926309
    Abstract: A high intensity light modulator includes a micro-mirror light valve target with electrostatically-repelled micro-mirror elements. Each micro-mirror of the target array comprises a base electrode and an overlying micro-mirror element. In operation, charge is deposited upon the micro-mirrors to produce repulsive electrostatic forces that outwardly deflect the micro-mirror elements by an amount proportional to the deposited charge. In one embodiment, an array of micro-mirror light valves is formed directly upon the face plate of a vidicon tube and is addressed using a scanning electron gun.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: July 20, 1999
    Assignee: MEMSolutions, Inc.
    Inventor: Michael J. Little
  • Patent number: 5903323
    Abstract: A system and technique for directing intensity modulated electromagnetic energy. The inventive system (10) includes an intensity modulated source of electromagnetic energy (12). Individual elements (22) in an array of energy directing elements (15) are activated in sync with the modulation of energy source (12). In a particular implementation, the source (12) is a laser. The intensity of the laser is reduced during each successive field per frame. The energy directing elements (15), in this case--light directing elements, are implemented with an array of digital micromirrors. The light source (12) is modulated in intensity in accordance with a fixed modulation scheme. The mirrors (22) are selectively activated relative to the light source modulation scheme. Hence, the invention provides a gray scale output while allowing the time between mirror flips to be constant.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: May 11, 1999
    Assignee: Raytheon Company
    Inventors: Michael N. Ernstoff, George C. Valley, Steven E. Shields
  • Patent number: 5883614
    Abstract: A reflection type display device wherein the brightness of pixels is controlled by deflecting a reflecting surface corresponding to a pixel in the reflection type display device for a time proportional to a charge transmitted to the pixel. A reflecting surface capable of deflection is charged and a region adjacent the reflecting surface is charged with an initial charge which is proportional to the desired brightness of the pixel and of sufficient magnitude and polarity to deflect the reflecting surface to a reflection angle. The region adjacent the reflecting surface is discharged so as to maintain the magnitude of the charge of the region adjacent the reflecting surface above the magnitude of charge sufficient to deflect the reflecting surface so that the reflecting surface remains deflected for the time corresponding to the desired brightness of the pixel.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: March 16, 1999
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sang-Sik Park