Abstract: A first holding member holds a first optical system and a first mirror, and has a first junction surface. A second holding member holds a second optical system and a second mirror, and has a second junction surface. A junction portion is configured such that, in a state where the first junction surface and the second junction surface are aligned with each other, the second holding member is capable of being shifted in a direction of both the junction surfaces and rotated around an optical axis, and makes it possible to perform optical axis alignment. An emission-side optical axis of the first optical system and an incidence-side optical axis of the second optical system are aligned with each other, and thus a U-shaped optical path is formed by the first and second optical systems.
Abstract: A first holding member holds a first optical system and a first mirror, and has a first junction surface. A second holding member holds a second optical system and a second mirror, and has a second junction surface. A junction portion is configured such that, in a state where the first junction surface and the second junction surface are aligned with each other, the second holding member is capable of being shifted in a direction of both the junction surfaces and rotated around an optical axis, and makes it possible to perform optical axis alignment. An emission-side optical axis of the first optical system and an incidence-side optical axis of the second optical system are aligned with each other, and thus a U-shaped optical path is formed by the first and second optical systems.
Abstract: A method for controlling an imaging beam path which is tapped off from a film recording beam path of a movie camera and is interrupted periodically as a function of the image recording frequency of the movie camera is provided. The imaging beam path is interrupted at a constant or variable frequency by means of an optical switching element during the exposure phase of the movie film, or is deflected from a first imaging plane to at least one second imaging plane, or to a light trap. An apparatus comprising at least one DMD-chip which is arranged in the imaging beam path of the movie camera and has micromirrors which are arranged in the form of a raster, can be pivoted under electronic control, and deflect an incident beam path to a first or a second imaging plane, or into a light trap.
Type:
Grant
Filed:
March 15, 2005
Date of Patent:
March 8, 2011
Assignee:
Arnold & Richter Cine Technik GmbH & Co. Betriebs KG
Abstract: A snorkel lens system having a first tubular member and a second tubular member or vertical relay tube, disposed perpendicular with respect to the first tubular member. A first axis of rotation is centrally disposed through the first tubular member and a second axis of rotation is centrally disposed through the second tubular member. The first axis of rotation is perpendicular to the second axis of rotation. The second tubular member or vertical relay tube can be rotated about both of the two perpendicular axes in two perpendicular planes to provide a three dimensional filming special effect.
Abstract: A snorkel camera system has a light-admitting opening at one end of a housing and the prime lens of a camera connected to the other end of the housing, and the housing is rotatably mounted on the prime lens such that the housing can be rotated about the camera to any desired position, the optical system being such that the image seen in the view-finder of the camera is maintained in the correct attitude regardless of the position to which the snorkel housing is rotated.
Abstract: A snorkel camera system that has a prime lens connected to one end of the housing and a camera body connected to the other end of the housing, the optical axis of the prime lens and of the camera body being offset and parallel, and the housing is detachably mounted to the camera body such that the housing can be rotated about the camera body to a desired position and locked in place, the optical system being such that the image seen in the viewfinder maintains the correct attitude regardless of the position to which the prime lens is rotated.