With Optical Housing Moving To Follow Or Align Patents (Class 356/139.06)
  • Patent number: 10753723
    Abstract: The invention relates to a method for determining the distance to a movable target object and/or the position of said movable target object and comprises the steps of directing a coherent, focused measurement beam at the spherical target object, which has a convex reflective surface, in such a way that the center of the target object lies at the focus of the measurement beam, and determining a distance between the target object and a reference point by interferometrically superposing the measurement beam reflected by the target object with a reference beam.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: August 25, 2020
    Inventor: Björn Habrich
  • Patent number: 10338594
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computing software, including autonomy applications, image processing applications, etc., and computing systems, and wired and wireless network communications to facilitate autonomous control of vehicles, and, more specifically, to systems, devices, and methods configured to navigate autonomous vehicles under one or more fault conditions. In some examples, a method may include localizing an autonomous vehicle, accessing map data to identify safe zones, computing drive parameters and alternate drive parameters, detecting an anomalous event, and apply alternate drive parameters to a vehicle control unit.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 2, 2019
    Assignee: NIO USA, Inc.
    Inventor: Joseph William Long
  • Patent number: 9661232
    Abstract: Methods and apparatus enable an image-viewing system to automatically zoom in and out as target subset matter is tracked. A hand-held body with a lens gathers an image including target subject matter. An image sensor having a resolution in pixels receives the image, and a viewfinder displays at least a portion of the image received by the image sensor. By virtue of the invention, apparatus for automatically zooming out the image displayed in the viewfinder if relative movement is detected between the target subject matter and the body and, and automatically zooming in the image displayed in the viewfinder if the relative movement of the target subject matter slows down or becomes stationary. A power zoom lens may effectuate the automatic zooming, or the zooming may be accomplished digitally without moving parts. The body may form part of a camera, video recorder, binoculars or telescope.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 23, 2017
    Inventors: John G. Posa, Benjamin E. Posa
  • Patent number: 9523574
    Abstract: A surveying instrument includes a main body including a base and a pedestal rotating in a horizontal direction relative to the base, and a cover member which covers the main body, wherein the pedestal is provided with a support member which supports a lens barrel of a ranging optical system to be rotatable in a vertical direction, and the cover member covers the support member of the pedestal, the lens barrel, and a guide light irradiation unit which irradiates with guide light indicating a collimation direction of the main body to an operator.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 20, 2016
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Minoru Chiba, Yosuke Okudaira
  • Patent number: 9482532
    Abstract: A surveying instrument includes a pedestal provided with a guide light irradiation unit provided with a light source to irradiate with guide light indicating a collimation direction of the surveying instrument to an operator, a tracking optical system which locks a target, a ranging optical system which ranges a distance to the target, and a control circuit which calculates surveying data by a ranging result of the ranging optical system, and a transmitting and receiving unit which receives survey setting point data regarding a survey setting operation and sends the surveying data obtained by the control circuit.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: November 1, 2016
    Assignee: KABUSHIKI KAISHA TOPCON
    Inventors: Kaoru Kumagai, Minoru Chiba, Masaru Muraki
  • Patent number: 9210312
    Abstract: A surveillance camera system includes a camera that acquires images and that has an adjustable field of view. A processing device is operably coupled to the camera. The processing device allows a user to define a virtual mask within the acquired images. The processing device also tracks a moving object of interest in the acquired images with a reduced level of regard for areas of the acquired images that are within the virtual mask.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: December 8, 2015
    Assignees: Bosch Security Systems, Inc., Robert Bosch GmbH
    Inventors: Sezai Sablak, Geza Papp, Michael D Bolotine
  • Publication number: 20150124239
    Abstract: The invention relates to a system for measuring the position of the contact wire of an overhead power line, comprising a first measurement means including a vertical rangefinder capable of measuring the height of the contact wire and a second measurement means capable of measuring the offset of the contact wire. The system also comprises at least one first inclinometer that enables the inclination of the mounting of the system positioned on the rails to be measured, and a camera pointing upward and capable of capturing the image of the contact wire, and the second measurement means comprises a second inclinometer secured to the laser rangefinder, which is mounted on a motor-driven lateral-inclination pivot, and which is capable of measuring the angle of the beam thereof relative to the vertical when aimed at the contact wire.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 7, 2015
    Inventor: Edmond Briand
  • Publication number: 20150009493
    Abstract: Some embodiments include a laser tracker having: a base defining a standing axis; a beam steering unit for emitting a measurement radiation; a distance measuring unit for determining the distance to the target; and angle measurement functionality for determining an alignment of the beam steering unit. The beam steering unit can swivel around the standing axis and a tilt axis relative to the base. A measurement axis is defined by an emission direction of the measurement radiation. The laser tracker may include a target-seeking unit having lighting means and at least one target-seeking camera having a position-sensitive detector. The one target-seeking field can be illuminated by means of the lighting means. A search image for the position dependent identification of the target can be detected with the target-seeking camera and at least part of the lighting beam reflected on the target can be determined as a search image position.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 8, 2015
    Inventors: Tomasz Kwiatkowski, Burkhard Böckem
  • Patent number: 8908169
    Abstract: The invention provides a measuring method for performing monitoring measurement on a plurality of measuring points by using a measuring instrument, which comprises a telescope unit, a distance measuring unit, an image sensor, angle detecting units for detecting a directional angle in sighting direction, and an arithmetic unit. The monitoring measurement comprises a coarse monitoring measurement for acquiring a digital image in measuring direction and for performing angle measurement on the measuring point, and a precise monitoring measurement for performing sighting of the measuring point by the telescope unit and for performing distance measurement and angle measurement, and wherein the coarse monitoring measurement is executed on each of the measuring points, a deviation of a result of the coarse measurement by the coarse monitoring measurement from the initial value is determined, and the precise monitoring measurement is executed on the measuring point where the deviation exceeds a first threshold value.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha TOPCON
    Inventor: Katsuyuki Nagai
  • Patent number: 8842269
    Abstract: A beam deflection device including an aluminum disc containing a plurality of lasers, each laser projecting a laser beam substantially along one of the ‘X’, ‘Y’, and ‘Z’ axes of a structural beam to which the device is attached. Wiring is attached to each of the plurality of lasers to provide power and transmit data. Passageways are provided in the solid disc to route the wiring to the exterior. A suction cup on a surface of the device allows it to be attached to the beam by pressing the device against a flat surface area of the beam.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 23, 2014
    Inventor: Nicolai Taylor Blankers
  • Patent number: 8675186
    Abstract: Systems and methods for targeting a directed energy system are provided. A particular system includes a first laser and a second laser. The system also includes a scanning system coupled to the first laser and the second laser. The scanning system is adapted to movably direct the second laser in a pattern around a pointing location of the first laser.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 18, 2014
    Assignee: The Boeing Company
    Inventor: Richard W. Guthrie
  • Patent number: 8619251
    Abstract: A device for measuring the position of at least one moving object in a three-dimensional grid. The device comprises: at least one optical head comprising an independent laser sources array outputting collimated laser beams, arranged about a central photodetector with a single sensitive cell; at least one movable base with two rotational degrees of freedom whereto said array is secured; and control electronics.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 31, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Florent Souvestre, Moustapha Hafez
  • Patent number: 8536501
    Abstract: The present invention provides a position control system for a remote-controlled vehicle, a vehicle operated by the control system, and a method for operating a remote-controlled vehicle. An electromagnetic energy receiver is configured to receive an electromagnetic beam. The electromagnetic energy receiver is further configured to determine a position of the remote-controlled vehicle relative to a position of the electromagnetic beam. The vehicle is directed to maneuver to track the position of the electromagnetic beam.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: September 17, 2013
    Assignee: The Boeing Company
    Inventor: Minas Tanielian
  • Patent number: 8503044
    Abstract: An angle detection device includes a rotator including a shaft supported by and inside a case in a direction parallel to a horizontal plane of the case, a center of gravity positioned differently from the shaft, and a diagonal line formed on a surface along a circumferential direction around a rotation axis of the rotator, the line intersecting with a width direction orthogonal to the circumferential direction if the surface is spread into a plane along the circumferential direction; and a sensor including a group of imaging elements arrayed in a line parallel to the shaft direction. The sensor is fixed to and inside the case opposite to the surface. The group intersects with the diagonal line if the surface is viewed from the sensor toward the shaft, and a position of the intersection changes according to rotation of the case around the axis when viewed from the shaft.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: August 6, 2013
    Assignee: PFU Limited
    Inventor: Tomomi Wakaura
  • Patent number: 8311674
    Abstract: An Autonomous robot, that is for example, suitable for operations such as vacuuming and surface cleaning includes a payload configured for vacuum cleaning, a drive system including a steering system, a navigation system, and a control system for integrating operations of the aforementioned systems.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: November 13, 2012
    Assignee: F Robotics Acquisitions Ltd.
    Inventor: Shai Abramson
  • Patent number: 8279430
    Abstract: A measuring system includes a laser tracker (10), a target point marked by a reflector (12), a surveying apparatus (13), and an arithmetic and control unit (14). The laser tracker emits a measuring beam (M) which is reflected by the reflector, a process that is used for determining the distance between the laser tracker (10) and the reflector (12). The surveying apparatus has a known position and orientation relative to the measuring beam (M) while preferably being embodied as a survey camera. The inventive measuring system is designed so as to track the reflector (12) via the measuring beam (M). In a normal tracking mode (A), a measured value for controlling the orientation of the measuring beam (M) is derived from the detection of the measuring beam reflected by the reflector (12).
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: October 2, 2012
    Assignee: Leica Geosystems AG
    Inventors: Jurgen Dold, Daniel Moser, Roland Zumbrunn
  • Patent number: 8120764
    Abstract: A tilt sensor with power-saving mechanism is provided. The tilt sensor includes a light-emitting element, a blocking object displaceable in an accommodating space on a baseboard, at least two first light sensors, a second light sensor and a control module. The first and the second light sensors respectively sense a light amount and a light amount variation according to the relative position of the light-emitting element and the blocking object. During a power-saving mode, when the light amount variation is larger than a specific value, the control module makes the light-emitting element work in a working mode to emit light according to a first current. During the work mode, when the light amount does not change or the light amount variation is smaller than a threshold value, the control module makes the light-emitting element work in the power-saving mode to emit light according to a second current.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 21, 2012
    Assignee: Edison Opto Corporation
    Inventors: Chung-Ping Feng, Peng-Yu Chen
  • Patent number: 8049876
    Abstract: An object, such as a robotically controlled television camera undergoes alignment with a reflective target by directing a coherent beam of radiation, e.g., a laser beam, into an opening in an enclosure having a reflective interior such that the radiation strikes a reflector in axial alignment with the enclosure opening. Upon striking the target, the beam undergoes reflection through the enclosure opening back to the object for detection. Alignment between the object and the target occurs when substantially all of the radiation undergoes reflection from the target to the object.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 1, 2011
    Assignee: GVBB Holdings S.A.R.L.
    Inventor: Scott Raymond Matics
  • Patent number: 7577286
    Abstract: A method of setting-up machine vision equipment is disclosed. The equipment includes a camera defining a field of view, processing means for determining physical properties of a test object, and first supporting means for supporting a test object at a predetermined distance from the camera within the field of view. The method is characterised by providing second supporting means for supporting a reference object, placing a reference object having at least one known dimension on the second supporting means, moving one or more of the cameras, the first supporting means and the second supporting means to bring the reference object within the field of view at the predetermined distance from the camera, imaging the reference object to obtain an image, and processing the image to determine the optimum configuration of the imaging means, and adjusting the imaging means configuration to the optimum configuration.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: August 18, 2009
    Assignee: Molins PLC
    Inventors: Ronald F. Wilson, Gary J. Pitt, Timothy G. Irons, William A. H. Everitt
  • Patent number: 7330567
    Abstract: A human tracking apparatus and a human tracking method, a storing medium storing a program for executing the method, and a mobile electronic system including the apparatus. The human tracking apparatus includes: an upper body location detection module detecting at least one piece of upper body location for a human; a leg location detection module detecting at least one piece of leg location for a human; a tracking object selection module selecting a tracking object based on the at least one piece of upper body location and the at least one piece of leg location; a tracking speed and orientation calculator calculating tracking speed and orientation of the mobile electronic system for tracking the tracking object selected by the tracking object selection module; a module operating the mobile electronic system; and a motor controller controlling the motor based on the calculated tracking speed and orientation.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: February 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youngjin Hong, Sangmin Yoon, Hyoungki Lee
  • Patent number: 7120524
    Abstract: A carriage moves back and forth under a vehicle and three cameras or laser fixed along one axis pivot in a common plane, utilizing two cameras at time to locate a target fixed to a reference point on the undercarriage of the vehicle. Triangulation calculations, combined with the location of the cameras provide the location of the reference point in space in a three-dimensional coordinate system and compare that location with a stored designed location of the reference point prior to the crash, allowing the vehicle structure to be returned to its designed shape by other equipment.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: October 10, 2006
    Assignee: Matrix Electronic Measuring, L.P.
    Inventors: Robert W. Srack, Dwight Day
  • Patent number: 7110101
    Abstract: A method and a device are disclosed for establishing actual changes and intended changes of the spatial angle of a main axis (e) of a sensor or effector attached to a receiver (4.1). The receiver (4.1) is directly rotatable around the first axis of rotation (I) and indirectly rotatable around at least one further axis of rotation (b, a). An optical-electronic angular measurement device (5) having at least two measurement axes is attached to the receiver (4.1). For a first axis of rotation (I, b, a), a rotation is performed around this first axis of rotation (I, b, a), while any rotation around further axes of rotation is prevented. After each rotation step, a first actual change of the spatial angle of the main axis (e) is detected and stored by the angular measurement device (5), and a first intended change of the spatial angle of the main axis (e) is provided and stored by a coder device (10). During use of the device, a carrier base (8), onto which the receiver (4.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: September 19, 2006
    Inventor: Gabriel Schneider
  • Patent number: 6955324
    Abstract: The present invention provides a position control system for a remote-controlled vehicle, a vehicle operated by the control system, and a method for operating a remote-controlled vehicle. An electromagnetic energy receiver is configured to receive an electromagnetic beam. The electromagnetic energy receiver is further configured to determine a position of the remote-controlled vehicle relative to a position of the electromagnetic beam. The vehicle is directed to maneuver to track the position of the electromagnetic beam.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: October 18, 2005
    Assignee: The Boeing Company
    Inventor: Minas H. Tanielian
  • Patent number: 6907372
    Abstract: A device for position indication and the detection of guidance errors that includes a scale that has a position measuring graduation arranged in a position measurement direction. A first guidance error measuring graduation which is arranged perpendicularly with respect to the position measurement graduation and a second guidance error measuring graduation which is arranged perpendicularly with respect to the position measurement graduation, wherein the first guidance error measuring graduation and the second guidance error measuring graduation are arranged on both sides of and adjacent to the position measuring graduation. A position indication scanning unit movable with respect to the scale, wherein the position indication scanning unit scans the position measuring graduation for generating position measurement signals.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: June 14, 2005
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventor: Erwin Spanner
  • Publication number: 20030231299
    Abstract: A method and a device are disclosed for establishing actual changes and intended changes of the spatial angle of a main axis (e) of a sensor or effector attached to a receiver (4.1). The receiver (4.1) is directly rotatable around the first axis of rotation (I) and indirectly rotatable around at least one further axis of rotation (b, a). An optical-electronic angular measurement device (5) having at least two measurement axes is attached to the receiver (4.1). For a first axis of rotation (I, b, a), a rotation is performed around this first axis of rotation (I, b, a), while any rotation around further axes of rotation is prevented. After each rotation step, a first actual change of the spatial angle of the main axis (e) is detected and stored by the angular measurement device (5), and a first intended change of the spatial angle of the main axis (e) is provided and stored by a coder device (10). During use of the device, a carrier base (8), onto which the receiver (4.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 18, 2003
    Applicant: Oerlikon Contraves AG
    Inventor: Gabriel Schneider
  • Publication number: 20030227616
    Abstract: A device for use in conjunction with a coordinate measuring device, a three-dimensional coordinate measuring system and a method of measuring three-dimensional coordinates are described. The device includes a light source mounted substantially within the center of a spherical member having a spherical surface configured such that the distance from the light source to the outer contact surface of the sphere is substantially equal to the radius of the sphere regardless of sphere orientation. The three-dimensional coordinate measuring system further includes a coordinate-measuring device, the coordinate-measuring device configured to track the movement of the light source and to measure either azithmuth angles and zenith angles, or to spherically encode tracking information related to relevant positions of the light source.
    Type: Application
    Filed: February 24, 2003
    Publication date: December 11, 2003
    Inventor: Robert E. Bridges
  • Patent number: 6498959
    Abstract: An apparatus and method for controlling a mechanism for positioning video cameras for use in measuring vehicle wheel alignment includes optical targets for mounting to the wheels of a vehicle, at least one video camera for viewing said optical targets and producing at least one image thereof, a computer system for measuring said at least one image and for using said measurements to compute vehicle wheel alignment information, a positioning system for positioning said at least one video camera such that said optical targets are visible to said at least one video camera and such that said at least one video camera can produce said at least one image of said targets, and a controller for controlling said positioning system such that a user of said apparatus can cause said at least one video camera to be positioned in at least one desired position and such that said user can further cause said controller to remember said at least one desired position so that any user can, at a later time, cause said controller to
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: December 24, 2002
    Assignee: Hunter Engineering Company
    Inventors: Daniel B. January, Nicholas J. Colarelli, III
  • Publication number: 20020186366
    Abstract: An optical bench for processing laser light in a laser system, including an optical bench housing, steering optics mounted within the optical bench housing for directing the laser light in a path from a laser light input to an output, and a first mechanism for monitoring power output of the laser light regardless of shifts in wavelength of the laser light. The steering optics includes a sampling filter mounted to the optical bench housing and positioned in the path of the laser light, wherein a first portion of the laser light is reflected to the output and a second portion of the laser light is transmitted to the first mechanism.
    Type: Application
    Filed: June 8, 2001
    Publication date: December 12, 2002
    Inventors: Robert M. Trusty, Scott Allen Nield, William Conrad Stenton, John W. Bowron, John Robert Pursel
  • Patent number: 6307342
    Abstract: An apparatus capable of manually and electrically driving an optical unit comprising a manual operation unit for manually driving the optical unit, an electric drive unit for electrically driving the optical unit, a discrimination unit for discriminating whether the optical unit is electrically or manually driven on the basis of a drive command signal for driving the electric drive unit and a state changeover unit for switching the optical unit to an electrically driven state or a manually driven state on the basis of a discrimination result obtained with the discrimination unit.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: October 23, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeshi Idemura