Triangulation Ranging To A Point With Two Or More Projected Beams Patents (Class 356/3.1)
  • Patent number: 8144311
    Abstract: A technique for selecting two or more wavelengths of output light by a simpler structure is provided. A laser apparatus includes a laser oscillation portion for oscillating laser light; a nonlinear crystal inputting the laser light from the laser oscillation portion as a fundamental wave, the nonlinear crystal converting the fundamental wave into a second harmonic wave and changing conversion efficiency according to a temperature thereof, the nonlinear crystal having a periodically poled structure; and a ratio control means for controlling a ratio of the fundamental wave and the second harmonic wave outputting from the nonlinear crystal by controlling the temperature of the nonlinear crystal.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Topcon
    Inventors: Taizo Eno, Masayuki Momiuchi
  • Patent number: 8139205
    Abstract: A compact optical payload for an unmanned aircraft includes two infrared cameras for wide and narrow field viewing, a daylight color camera, a laser pointer and a laser range finder.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: March 20, 2012
    Assignee: Flir Systems, Inc.
    Inventors: Stephen V. McKaughan, Philip A. Rombult, Robert J. Campbell, Jr.
  • Patent number: 8134691
    Abstract: A chromatically dispersive lens configuration including thermal compensation may be utilized in chromatic confocal point sensor optical pens for chromatic range sensing. The lens configuration may include a negative power doublet lens and a positive power lens portion. The positive power lens portion comprises at least two lens elements which compensate for the overall thermal sensitivity of a chromatic confocal point sensor optical pen. The lens elements of the positive power lens portion which compensate for thermal sensitivity have an average coefficient of thermal defocus which is in a range that is at lowest 10 ppm per 10° C. The lens configuration can be implemented with dimensions which fit a standard commercial chromatic confocal point sensor optical pen, while maintaining a level of optical performance sufficient for chromatic range sensing.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 13, 2012
    Assignee: Mitutoyo Corporation
    Inventors: Yong Xie, Bernadette T. Baqui, Benjamin K. Jones
  • Patent number: 8132728
    Abstract: A parcel dimension measurement system includes image sensors oriented to image a parcel, an imaging subsystem configured to stitch together outputs of the image sensors to produce at least one two-dimensional image comprised of a plurality of pixels, and a general dimension subsystem including general parcel dimension information. A fine dimensioning subsystem is configured to determine dimension measurements of the parcel using the at least one two-dimensional image and the general parcel dimension information.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: March 13, 2012
    Assignee: Sick, Inc.
    Inventors: John Dwinell, Long Xiang Bian
  • Publication number: 20120050712
    Abstract: A laser based coordinate measuring device measures a position of a remote target. The laser based coordinate measuring device includes a stationary portion, a rotatable portion, and at least a first optical fiber. The stationary portion has at least a first laser radiation source and at least a first optical detector, and the rotatable portion is rotatable with respect to the stationary portion. The first optical fiber system, which optically interconnects the first laser radiation source and the first optical detector with an emission end of the first optical fiber system, has the emission end disposed on the rotatable portion. The emission end emits laser radiation to the remote target and receives laser radiation reflected from the remote target with the emission direction of the laser radiation being controlled according to the rotation of the rotatable portion.
    Type: Application
    Filed: November 2, 2011
    Publication date: March 1, 2012
    Applicant: FARO TECHNOLOGIES INC.
    Inventors: Robert E. Bridges, Lawrence B. Brown, James K. West, D. Scott Ackerson
  • Patent number: 8115908
    Abstract: While position measurement of an edge position of a thermal shield takes place in a short time with high working efficiency, the edge position can be measured accurately without variation. First determination takes place while a distance is measured with a first scanning interval. When a change in a measured distance which can be determined as the edge position is determined as a result, an optical scanning position is returned by a predetermined amount reversely to the scanning direction (or reversely to the scanning direction), and while laser beam is scanned again from the returned optical scanning position, second determination takes place while measuring the distance with a second scanning interval shorter than the first scanning interval.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: February 14, 2012
    Assignee: Sumco Techxiv Corporation
    Inventors: Toshio Hayashida, Ayumi Kihara, Naoji Mitani
  • Patent number: 8115909
    Abstract: A sensor system with a lighting device and a detector device is specified. The lighting device is provided for emitting laser radiation of a first wavelength and laser radiation of a second wavelength different from the first. The detector device is provided for detecting electromagnetic radiation of the first and the second wavelength.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: February 14, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Martin Rudolf Behringer, Joerg Heerlein, Johann Luft
  • Patent number: 8102514
    Abstract: A laser beam and a servo beam are incident on a mirror and a transparent member, respectively, so that an angle direction A1 from an optical axis of the laser beam to be incident on the mirror to an incidence plane of the mirror and an angle direction A2 from an optical axis of the servo beam to be incident on the transparent member to an incidence plane of the transparent member are opposite to each other. With such layout of an optical system, scan loci of the servo beam corresponding to respective scan lines become closer to parallel. In the incidence plane and the outgoing plane of the servo beam of the transparent member, fine periodic structures tapered from the incidence plane and the outgoing plane are formed at pitches each equal to or less than a wavelength band of the servo beam. By this periodic structure, reflection of the servo beam on the incidence plane and the outgoing plane is suppressed.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: January 24, 2012
    Assignees: Sanyo Electric Co., Ltd., Sanyo Optec Design Co., Ltd.
    Inventors: Yoshiaki Maeno, Atsushi Yamaguchi
  • Patent number: 8089617
    Abstract: According to one embodiment, a laser detection and ranging system includes a beam forming element that is optically coupled to a light source. The light source generates a light beam that is split by the beam forming element into multiple beamlets and directed toward a target. At least one of the beamlets are reflected from the target as backscattered light that is received by a detector that generates a signal indicative of a characteristic of the target.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 3, 2012
    Assignee: Raytheon Company
    Inventor: David U. Fluckiger
  • Patent number: 8077294
    Abstract: Lidar systems and methods are provided. The lidar system includes an optical autocovariance receiver and one or more chemical composition sensors or processors, in addition to a Doppler signal processor for obtaining relative wind speed information. The additional processors may include a high spectral resolution lidar signal processor and/or a differential absorption lidar processor that receive input signals from the optical autocovariance receiver. Receivers that may be incorporated into the lidar system, in addition to the optical autocovariance receiver, include a depolarization receiver, a Raman receiver, and/or an Etalon receiver.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: December 13, 2011
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: Christian J. Grund, Robert M. Pierce
  • Patent number: 8077293
    Abstract: The present invention provides a surveying device, which comprises rotators 53, 56 and 61 for deflecting a distance measuring light in horizontal direction and for projecting the distance measuring light in rotary irradiation, at least one extension member 62 for increasing a spreading angle in vertical direction of the distance measuring light, and a means for attaching or detaching the extension member so that the extension member can be inserted and removed to or from a distance measuring optical axis.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: December 13, 2011
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Kunihiro Hayashi, Fumio Ohtomo, Kaoru Kumagai
  • Patent number: 8035806
    Abstract: Provided are a distance measuring sensor including a double transfer gate, and a three dimensional color image sensor including the distance measuring sensor. The distance measuring sensor may include first and second charge storage regions which are spaced apart from each other on a substrate doped with a first impurity, the first and second charge storage regions being doped with a second impurity; a photoelectric conversion region between the first and second charge storage regions on the substrate, being doped with the second impurity, and generating photo-charges by receiving light; and first and second transfer gates which are formed between the photoelectric conversion region and the first and second charge storage regions above the substrate to selectively transfer the photo-charges in the photoelectric conversion region to the first and second charge storage regions.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-gu Jin, Dae-kil Cha, Seung-hoon Lee, Yoon-dong Park
  • Patent number: 8031333
    Abstract: A method of determining a distance to an object is presented. A first photon and a second photon are simultaneously generated. The first photon is reflected off an object. The second photon is directed to an optical cavity. An arrival of the first photon is correlated with an arrival of the second photon, and the distance to the object is at least partially determined using the correlation.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: October 4, 2011
    Assignee: General Dynamics Advanced Information Systems, Inc.
    Inventor: Thomas Zaugg
  • Publication number: 20110211063
    Abstract: A geodetic apparatus for performing measurements using a target and a method for controlling the geodetic apparatus is disclosed. The apparatus comprises a detector for measuring a position of the target relative to a sighting axis of the apparatus, a light emitter for outputting to an outside of the geodetic apparatus a first cone of light having a first wavelength and a second cone of light having a second wavelength different from the first wavelength, and a controller connected to both the detector and the light emitter. The first cone of light overlaps with the second cone of light at the distance of one meter from the apparatus by at least 30%. The controller is configured to control said light emitter based on the detected position of the target to output at least one of the first cone of light and the second cone of light.
    Type: Application
    Filed: September 2, 2010
    Publication date: September 1, 2011
    Applicant: Trimble Jena GmbH
    Inventor: Torsten Kludas
  • Patent number: 7999924
    Abstract: Range binoculars capable of measuring a distance between the observation place and an object, the binoculars being made small-sized with keeping the functions as binoculars.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 16, 2011
    Assignee: Kamakura Koko Co., Ltd.
    Inventor: Naomi Watanabe
  • Patent number: 7995215
    Abstract: Monitoring the functioning and/or adjustment of an optoelectronic sensor arrangement (10) exhibiting at least two optical transmitters (S1, S2, S3), to each of which a laterally-resolving optical receiver is assigned, such that each of the optical transmitters (S1, S2, S3) and the corresponding optical receivers (E1, E2, E3) are so positioned relative to each other that a light ray (L1a, L2a, L3a) emitted from the optical transmitter (S1, S2, S3) can be detected by the corresponding optical receiver (E1, E2, E3) after being reflected by a boundary surface (F), which process involves the following steps: a) detecting the current position-proportional reception values for each optical transmitter (S1, S2, S3) and corresponding optical receiver (E1, E2, E3), b) determining the current relative positions for the reception values of any two adjacent optical transmitters (S1, S2, S3), p0 c) comparing the current relative positions for the reception values with stored reference values.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: August 9, 2011
    Assignee: Sick AG
    Inventor: Martin Wuestefeld
  • Patent number: 7990522
    Abstract: In a chromatic point sensor, distance measurements are based on a distance-indicating subset of intensity profile data, which is selected in a manner that varies with a determined peak position index coordinate (PPIC) of the profile data. The PPIC indexes the position a profile data peak. For profile data having a particular PPIC, the distance-indicating subset of the profile data is selected based on particular index-specific data-limiting parameters that are indexed with that same particular PPIC. In various embodiments, each set of index-specific data-limiting parameters indexed with a particular PPIC characterizes a distance-indicating subset of data that was used during distance calibration operations corresponding to profile data having that PPIC. Distance-indicating subsets of data may be compensated to be similar to a corresponding distance-indicating subset of data that was used during calibration operations, regardless of overall intensity variations and detector bias signal level variations.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 2, 2011
    Assignee: Mitutoyo Corporation
    Inventor: David William Sesko
  • Patent number: 7990521
    Abstract: In a distance/speed meter, first and second semiconductor lasers emit parallel laser light beams to a measurement target. A first laser driver drives the first semiconductor laser such that the oscillation interval in which at least the oscillation wavelength monotonically increases repeatedly exists. A second laser driver drives the second semiconductor laser such that the oscillation wavelength increases/decreases inversely to the oscillation wavelength of the first semiconductor laser. First and second light-receiving devices convert optical outputs from the first and second semiconductor lasers into electrical signals. A counting unit counts the numbers of interference waveforms generated by the first and second laser light beams and return light beams of the first and second laser light beams.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: August 2, 2011
    Assignee: Yamatake Corporation
    Inventor: Tatsuya Ueno
  • Patent number: 7978311
    Abstract: Methods and devices for calculating the position of a movable device are disclosed. The device may include multiple optical detectors (ODs) and the movable device may include light sources. Optics may be above the ODs. A controller may calculate the position of the light source based on data from the ODs and properties of the optics. The device may be a game console, and the light source may be a game controller. The roles of the OD and light sources may be interchanged. The rotation of the movable device may be determined using multiple light sources and/or multiple ODs on the movable device. The movable device may calculate its position and transmit it to a console. The light sources may be modulated by time or frequency to distinguish between the light sources. There may be two or more movable devices. There may be two or more consoles.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: July 12, 2011
    Assignee: Analog Devices, Inc.
    Inventor: Shrenik Deliwala
  • Publication number: 20110153082
    Abstract: An exemplary embodiment of the invention relates to a sensor system for detecting the surface structures of several packaged articles. An exemplary system comprises at least one laser distance detector that functions according to a triangulation principle and that determines the distance between the laser distance detector and a surface structure of a packaged article. The laser distance detector has at least one analog output via which a distance-proportional analog signal can be emitted. The analog output of at least one laser distance detector is in communication with an evaluation unit via an amplifier circuit. The amplifier circuit encompasses at least one operational amplifier that has two inputs, and the analog signal of the laser distance detector is present at a first input of the at least one operational amplifier. A variable reference voltage is present at the other input of the at least one operational amplifier.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Applicant: Deutsche Post AG
    Inventors: Hermann Franck, Wolfgang Echelmeyer, Ralf Beesner, Eckhard Wellbrock
  • Patent number: 7961300
    Abstract: The present subject matter include methods and apparatus for creating three dimensional digitized models of at least one ear impression, the apparatus comprising a frame, a linear axis mounted to the frame, the linear axis having an axis of motion, a first spindle axis mounted to the frame, the spindle axis having an axis of rotation, wherein the axis of rotation of the first spindle axis is parallel to the axis of motion of the linear axis, a first scanner mounted to the linear axis, the scanner includes a laser for projecting a narrowly localized spot of laser light at a target mounted on the first spindle axis and a sensor array for receiving at least a portion of the laser light reflected from the target and a controller configured to communicate with the first scanner.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: June 14, 2011
    Assignee: Starkey Laboratories, Inc.
    Inventors: Robert D. Remke, Todd L. Yilek, Craig A. Benson
  • Patent number: 7952687
    Abstract: The invention relates to measuring device, particularly a distance measuring device for contactlessly measuring distance, comprising a housing (12) made of at least one first material and with at least one electronic component (56), which is arranged inside an interior (48) of the housing (12), as well as with a second material that at least partially surrounds the housing (48). The invention provides that the second material also seals at least one opening (63) of the housing interior (48). The invention also relates to a method for producing a measuring device of the aforementioned type during which the second material is provided as a sealing element that seals at least one opening of the housing interior.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 31, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Uwe Skultety-Betz, Bjoern Haase, Joerg Stierle, Peter Wolf, Kai Renz
  • Patent number: 7948613
    Abstract: The invention relates to sensors of the speed of movement of a vehicle over the ground. The sensor comprises illumination means for illuminating the surface and at least one optical sensor able to detect the radiation returned by the surface. The illumination means and the optical sensor have one and the same optical axis, oblique in relation to the surface. This arrangement eliminates the risks of specular reflection dazzling the sensor while avoiding disturbance of the measurement by variations in the height of the sensor relative to the ground.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: May 24, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: William Fourcault, Viviane Cattin, Bernard Guilhamat
  • Patent number: 7936449
    Abstract: Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 3, 2011
    Assignee: Microsoft Corporation
    Inventors: Cyrus Bamji, Hakan Yalcin
  • Patent number: 7920247
    Abstract: A distance measurement system includes: an projection apparatus (1) which projects measurement beams (PL1, PL2) at least at first and second projection angles (?3, ?15, ?, ?) towards a detection area; an image pick-up apparatus (2) which picks up an image of a first reflected light (LB1) and an image of a second reflected light (LB2) from the detection area. The system further includes: a distance calculation unit (32) which calculates a first distance (d1) to a first measurement point (P2, P5) and a second distance (d2) to a second measurement point (P4, P7); a judgment unit (33) which judges that specular reflection is caused; and an operation unit (34) which, when it is judged by the judgment unit (33) that the specular reflection is caused, calculates a distance (d4) to a detection object (MB1, MB2) causing the specular reflection.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: April 5, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shogo Kitano
  • Patent number: 7916898
    Abstract: A method and system for identifying an edge of a crop facilitates guidance of an agricultural machine or other work vehicle along an edge of a crop at an interface between harvested and unharvested portions of a field. A transmitter emits a plurality of a transmitted radiation pattern of one or more generally linear beams spaced apart within a defined spatial zone. A receiver collects an image of the defined spatial zone. A detector detects a presence of crop edge between a harvested and unharvested portion of a field based on an observed illumination radiation pattern on the unharvested portion formed by at least one of the generally linear beams. A data processor identifies coordinate data, in the collected image, associated with the detected crop edge.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 29, 2011
    Assignee: Deere & Company
    Inventor: Noel Wayne Anderson
  • Publication number: 20110037963
    Abstract: A multi-plane scanner support system includes a bracket and a mirror block. The bracket is configured to be secured in a fixed orientation with respect to a scanner. And the mirror block is arranged to receive a scanning signal from the scanner and to reflect the scanning signal into a plurality of directions to create multiple scanning planes. The scanner can be a laser scanner. The scanner and multi-plane scanner support system can be attached to a material transport vehicle, for example, to provide safety functions. The vehicle can be manned or unmanned.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Applicant: SEEGRID CORPORATION
    Inventors: Mitchell Weiss, William R. Bosworth
  • Patent number: 7889324
    Abstract: A projector includes a light source unit, a light source-side optical system for guiding light from the light source unit to a display device, the display device, a projection-side optical system for projecting an image emitted from the display device on to a screen, and a distance measuring system 1 and has a projector control unit for controlling the light source unit and the display device. In addition, the distance measuring system 1 has a laser beam emitter 2 for emitting a laser beam to a distance measurement target object, a receiving lens 4 for concentrating reflected light from the distance measurement target object and a receiving element 3 for receiving the reflected light from the distance measurement target object which has passed through the receiving lens 4, and optical axes of the receiving lens 4 and the receiving element 3 are made to be aligned with an optical axis of the emitted laser beam.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 15, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Kyo Yamamoto
  • Patent number: 7869005
    Abstract: A device for determining a distance from an object may include a light emitter for emitting an emission light beam, a light receiver for receiving a reception light beam, and an evaluation unit for determining the distance on the basis of a propagation time of the emission and reception light beams. The reception light beam may arise as a result of reflection of the emission light beam at the object. The light receiver may have a reception optical unit comprising a first lens element and a pinhole diaphragm. A light-impermeable element may shade a central region of the reception optical unit in such a way that the reception light beam is incident in the form of a light ring on the pinhole diaphragm. A second lens element, which is substantially hat-shaped in cross section, is arranged between the first lens element and the pinhole diaphragm.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 11, 2011
    Assignee: Faro Technologies, Inc.
    Inventors: Martin Ossig, Philipp Schumann
  • Patent number: 7855778
    Abstract: Embodiments of the invention comprise an apparatus for use with a laser range finder configured to direct a laser beam toward a scene to measure the distance to a target in the scene and having a range finder display for displaying data, including data that is indicative of the distance to a target, wherein the apparatus comprises a protective housing, a camera module in the housing, the camera module including a lens mounted in a front end portion of the housing, and a light path through the lens to image sensor, an image sensor operatively connected to the camera module for receiving images acquired by the camera module, electronic memory for selectively storing data of images from the image sensor, circuitry for controlling the operation of the image sensor and the memory, a camera display in the housing operatively connected to the image sensor for receiving the image data and providing a visual display of the image, and a switch for storing image data in the memory.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 21, 2010
    Assignee: Robert Bosch Company Limited
    Inventors: Wai Lam Yung, Wilfried Alois Anton Bittner, Yat Wah Lam, Sai Chak Chan, Wah Pong Chan, Kwong Lam Ng, Thomas Paul Richard Zimmermann
  • Patent number: 7852461
    Abstract: Dual mode depth imaging system and method is provided, the system comprising a first and second image sensors and a processor able to switch between a first mode of depth imaging and a second mode of depth imaging according to at least one predefined threshold. The method comprising providing depth sensing by Time of Flight if the distance of the sensed object from the camera is not below a first threshold and/or if a depth resolution above a second threshold is not required, and providing depth sensing by triangulation, if the distance of the sensed object from the camera is below the first threshold and/or if a depth resolution above the second threshold is required.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 14, 2010
    Assignee: Microsoft International Holdings B.V.
    Inventor: Giora Yahav
  • Patent number: 7839490
    Abstract: A single-aperture passive rangefinder and a method of determining a range. In one embodiment, the single-aperture passive rangefinder includes: (1) an imaging system configured to form a first image that includes a point of interest at a first position and a second image at a second position that includes the point of interest and (2) a processor associated with the imaging system and configured to acquire and store the first image and the second image and determine a range to the point of interest based on a separation between the first position and the second position and a position of the point of interest relative to virtual axes of the imaging system at the first position and at the second position.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 23, 2010
    Inventor: Richard H. Laughlin
  • Patent number: 7812932
    Abstract: A test station for testing a laser range finder is disclosed. The test station may be a mobile test station. The test station may include an optical system having a first portion which aligns an eyepiece of the test station to the laser range finder, a second portion which aligns the eyepiece to a first range target spaced apart from the test station, and a third portion which aligns the laser range finder to the first range target.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 12, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Larry G. Bedwell, Michael E. Zimmer
  • Patent number: 7812931
    Abstract: A method for measuring the distance of an object is provided that includes irradiating a plurality of light beams having predetermined wavelengths and then in a first round, picking up an image under irradiation of the plurality of light beams and in another round picking up the image without irradiation using a camera. The difference of the image between the first and other round is fed to an observation region part and to an irradiation angle computing part and then the distance to the object is computed.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: October 12, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Hidekazu Nishiuchi
  • Patent number: 7804585
    Abstract: The most difficult problem in the creation of a range image with stereo cameras is the establishing of the correspondence of the points. For this, the scene is illuminated twice; thereof at least once with a random or pseudo random pattern. For both cameras, an image is taken for each of the illuminations and the quotient of brightnesses is calculated pixelwise. The correspondence is established on the basis of a comparison of the quotient of pixels on epipolar lines of different cameras. The illumination pattern is preferably highly modulated along the epipolar line; transversally or diagonally to it, it is not or only slightly modulated. For illumination, a projection unit is used which in a preferred arrangement comprises two superposed grating patterns which have a distance (d) to each other, with at least one varying in a pseudo random manner, and with two closely neighboring light sources which shine through the gratings and thereby generate different pseudo random patterns, especially moiré patterns.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: September 28, 2010
    Assignee: VisionTools Bildanalyse Systeme GmbH
    Inventor: Hermann Tropf
  • Publication number: 20100228421
    Abstract: The invention is generally related to the estimation of position and orientation of an object with respect to a local or a global coordinate system using reflected light sources. A typical application of the method and apparatus includes estimation and tracking of the position of a mobile autonomous robot. Other applications include estimation and tracking of an object for position-aware, ubiquitous devices. Additional applications include tracking of the positions of people or pets in an indoor environment. The methods and apparatus comprise one or more optical emitters, one or more optical sensors, signal processing circuitry, and signal processing methods to determine the position and orientation of at least one of the optical sensors based at least in part on the detection of the signal of one or more emitted light sources reflected from a surface.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 9, 2010
    Applicant: EVOLUTION ROBOTICS, INC.
    Inventors: Enrico DiBernardo, Paolo Pirjanian
  • Patent number: 7787134
    Abstract: Systems and techniques for laser metrology. Two or more fanned probe beams are scanned relative to a surface including one or more targets. A position detection module receives return beam information from the fanned probe beams, and determines a position of at least a first target of the one or more targets based on the return beam information.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 31, 2010
    Assignee: The Boeing Company
    Inventors: Kirk Kohnen, Peter J. Sedivec, Douglas Bender, Gregory S. Becker, John Y. Liu, Richard W. Guthrie, Ketao Liu, Ray McVey, Mark A. Lundgren
  • Patent number: 7773200
    Abstract: The present subject matter include methods and apparatus for creating three dimensional digitized models of at least one ear impression, the apparatus comprising a frame, a linear axis mounted to the frame, the linear axis having an axis of motion, a first spindle axis mounted to the frame, the spindle axis having an axis of rotation, wherein the axis of rotation of the first spindle axis is parallel to the axis of motion of the linear axis, a first scanner mounted to the linear axis, the scanner includes a laser for projecting a narrowly localized spot of laser light at a target mounted on the first spindle axis and a sensor array for receiving at least a portion of the laser light reflected from the target and a controller configured to communicate with the first scanner.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: August 10, 2010
    Assignee: Starkey Laboratories, Inc.
    Inventors: Robert D. Remke, Todd L. Yilek, Craig A. Benson
  • Patent number: 7751033
    Abstract: The invention relates to a method for measurement of a line (S), in particular, an optical distance measurement method, whereby an input means (24,42) of a distance measuring device (20,22) is operated, which triggers a measuring sequence of distance measurements, during which individual measurements (10-16) of distances from the distance measuring device (20,22) triggered by the distance measuring device (20,22) are carried out perpendicular to the line (s) for measurement. According to the invention, at least one maximum value (10,16) and at least one minimum value of the distances are determined from the measuring sequence and the length of the line (s) determined from the at least one maximum value (10,16) and the at least one minimum value (13). The invention further relates to a distance measuring device (20,22), in particular, a hand-held measuring device for carrying out said method.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: July 6, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Uwe Skultety-Betz, Bjoern Haase, Joerg Stierle, Peter Wolf, Gunter Flinspach, Cedric Pahud, Kai Renz, Clemens Schulte
  • Patent number: 7724352
    Abstract: A light beam receiver includes a plurality of light beam detector elements, a plurality of integrator circuits that receive signals from the light beam detector elements, and a signal integral limiting integration time controller that is in communication with at least two of the integrator circuits so that an analysis of the light beam reception is determined. One embodiment provides a self-calibration function, using a plurality of light beam detector elements that generate output signals when receiving a light beam upon the light beam detector elements, an evaluation/control circuit that receives the output signals and is configured to substantially determine a position where the light beam impacts on the light beam detector elements, and at least one calibration light source that emits at least one light pulse that is coupled to the light beam detector elements. The light beam receiver performs a self-calibration function using the calibration light source.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: May 25, 2010
    Assignee: AndroTec GmbH
    Inventor: Mirko Essling
  • Patent number: 7724353
    Abstract: A method for calculating a distance to an object is provided. In this method, whether luminances received by at least one light receiving elements of a plurality of light receiving elements are equal to or higher than a predetermined value is determined. When luminances received by at least one light receiving elements are equal to or higher than a predetermined value, whether the luminances change in a time-series manner or not is determined. When the luminances change in a time-series manner, information is acquired from the time-series change. Then, a size of a light receiving region is detected based on a ratio of a light receiving element having received luminance with a predetermined value or more to the plurality of light receiving element. Based on the size of the light receiving region and the acquired information, the distance to the object is calculated.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: May 25, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Nobuo Iizuka
  • Patent number: 7719662
    Abstract: Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: May 18, 2010
    Assignee: Canesta, Inc.
    Inventors: Cyrus Bamji, Hakan Yalcin
  • Patent number: 7710546
    Abstract: In a laser receiver receiving a laser beam from a laser transmitter and a laser receiving system composed of a plurality of laser receivers, a plurality of photo devices are arranged on an acceptance surface so that acceptance angles of the laser beam thereof are mutually different in order to detect distances between an acceptance position of a center point of a received laser beam on an acceptance surface and a reference point and an elevation angle of the received laser beam from a reference surface. Also, distance detection means respectively compare acceptance levels of the photo devices detected by the level detection means with thresholds, thereby detecting distance between the center point of the laser beam and the reference point of the acceptance surface by combination of comparison results thereof.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: May 4, 2010
    Assignee: Fujitsu Limited
    Inventor: Hiroki Akano
  • Publication number: 20100103404
    Abstract: The present subject matter include methods and apparatus for creating three dimensional digitized models of at least one ear impression, the apparatus comprising a frame, a linear axis mounted to the frame, the linear axis having an axis of motion, a first spindle axis mounted to the frame, the spindle axis having an axis of rotation, wherein the axis of rotation of the first spindle axis is parallel to the axis of motion of the linear axis, a first scanner mounted to the linear axis, the scanner includes a laser for projecting a narrowly localized spot of laser light at a target mounted on the first spindle axis and a sensor array for receiving at least a portion of the laser light reflected from the target and a controller configured to communicate with the first scanner.
    Type: Application
    Filed: December 31, 2009
    Publication date: April 29, 2010
    Applicant: Starkey Laboratories, Inc.
    Inventors: Robert D. Remke, Todd L. Yilek, Craig A. Benson
  • Patent number: 7679725
    Abstract: A laser scanner apparatus is disclosed herein for measuring the geometry and physical dimensions of one or more objects in a specified location or platform. The specified location or platform is within a range less than a predetermined maximum object distance. The laser scanner includes a waveform generator that generates a predetermined reference waveform to an analog laser that provides an modulated laser beam responsive to the reference waveform, an optical scanning system which 1) transmits and scans the object with the modulated laser light beam and 2) includes a means for receiving reflected the modulated laser light from the surface of an object on the platform or specified location, an avalanche photo-detector positioned to receive the processed modulated light from the optical processing system, and convert energy in the incident light into an amplitude-modulated range signal, a mixer is provided to down-convert the frequency of the range signal into a lower (LF) frequency.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 16, 2010
    Inventors: Dean Greenberg, David Lilly
  • Patent number: 7679562
    Abstract: A target detection apparatus that includes a transmission/reception device for generating a transmission signal for detection of a target, and extracting distance information about the target from a received signal; a number of sensors each of which transmits the transmission signal to respective different angle ranges, receives a signal reflected by the target, and transfers the received signal to the transmission/reception device; and a switch device for switching in a time division manner a connection between the transmission/reception device and one of the sensors to a connection between the transmission/reception device and another one of the sensors, where the switch device selects a first of the sensors for transmitting the transmission signal in a time slot and a second of the sensors for receiving the signal reflected by the target in the time slot.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Limited
    Inventor: Kazuo Shirakawa
  • Patent number: 7667823
    Abstract: A device and a method for measuring the sizes of a remote object, for example, concrete crack, without using a high-place work vehicle or a ladder. An optical apparatus (e.g. a measuring device (10) ) used for this purpose is provided with a telescope (16) having a reticule plate (46) . The reticule plate (46) is provided with a plurality of reference scales (52) used for comparison with the size (W) of the image (C?) of an object (C) projected onto the reticule plate (46). The size of the object can be measured using the size of the object image measured with the reference scales (52) and a distance (a distance from a reference point P0 a to the object) measured with a distance measuring unit (20) of the optical apparatus.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: February 23, 2010
    Assignees: Kansai Kouji Sokuryou Co., Ltd.
    Inventor: Kazuhide Nakaniwa
  • Patent number: 7652752
    Abstract: Pushbroom and flash lidar operations outside the visible spectrum, most preferably in near-IR but also in IR and UV, are enabled by inserting—ahead of a generally conventional lidar receiver front end—a device that receives light scattered from objects and in response forms corresponding light of a different wavelength from the scattered light. Detailed implementations using arrays of discrete COTS components—most preferably PIN diodes and VCSELs, with intervening semicustom amplifiers—are discussed, as is use of a known monolithic converter. Differential and ratioing multispectral measurements, particularly including UV data, are enabled through either spatial-sharing (e. g. plural-slit) or time-sharing.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: January 26, 2010
    Assignee: Arete' Associates
    Inventors: Gregory J. Fetzer, David N. Sitter, Jr., Douglas Gugler, William L. Ryder, Andrew J. Griffis, David Miller, Asher Gelbart, Shannon Bybee-Driscoll
  • Patent number: 7652754
    Abstract: A visual sensor for generating an array of binarized feature signals based on a visual field is provided. The visual sensor comprises an array of photoreceptor circuits capable of generating photoreceptor signals based on the visual field, an array of feature detectors capable of generating feature signals based on the photoreceptor signals, and a reconfigurable binary generator array capable of generating binarized feature signals based on the feature signals.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 26, 2010
    Inventor: Geoffrey L. Barrows
  • Patent number: 7633633
    Abstract: Utilizing frequency-dependent diffraction (also referred to as dispersion) to determine the angular position of a retro-reflective object within a scanning space. The technique involves dispersing an electromagnetic beam into a scanning space by frequency. If a retro-reflective object is located within the scanning space, the object will retro-reflect a portion of the dispersed beam having a frequency that is associated with the angular position of the retro-reflective object within the scanning space. The frequency of the retro-reflected beam is used to determine the angular position of the retro-reflective object within the scanning space. When a second beam is dispersed into the scanning space and a portion of the second beam is retro-reflected in the manner just described, a second angular position of the retro-reflective object can be found. Coordinates of the retro-reflective object are determinable by triangulation using the two angular positions.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 15, 2009
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Douglas M. Baney, Marshall T. DePue, Tong Xie