Resonant Cavity Patents (Class 356/480)
  • Patent number: 10495508
    Abstract: A sensor is provided. The sensor includes at least one optical waveguide and an optical reflector. The optical reflector is optically coupled to the at least one optical waveguide and includes a first portion and a second portion. The first portion is configured to reflect a first portion of light back to the at least one optical waveguide. The second portion is configured to reflect a second portion of light back to the at least one optical waveguide. The reflected second portion of the light differs in phase from the reflected first portion of the light by a phase difference that is not substantially equal to an integer multiple of ? when the second portion of the optical reflector is in an equilibrium position in absence of the perturbation.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 3, 2019
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Michel J. F. Digonnet, Onur Kilic, Wonuk Jo, Olav Solgaard, Behrad Habib Afshar
  • Patent number: 10444866
    Abstract: Examples are provided for measuring force applied to a device, such as a stylus tip. An example stylus includes a stylus body, a stylus tip, and the stylus tip including a light emitting device and a compressible light reflecting optic, the light emitting device comprising a light emitter and a light detector, and the compressible light reflecting optic comprising a first reflective layer configured to (i) allow a first portion of light from the light emitting device to pass and (ii) to reflect a second portion of light from the light emitting device, and a second reflective layer, more reflective than the first reflective layer, configured to reflect light from the light emitting device, the first layer being spaced from the second layer by a light-transmissive material. A force exerted on the stylus tip is measurable based at least on a parameter of light received at the light detector.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 15, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Nigel Stuart Keam, John Michael Lutian
  • Patent number: 10338328
    Abstract: A method, system, and apparatus are disclosed for a ruggedized photonic crystal (PC) sensor packaging. In particular, the present disclosure teaches a ruggedized packaging for a photonic crystal sensor that includes of a hermetic-seal high-temperature jacket and a ferrule that eliminate the exposure of the optical fiber as well as the critical part of the photonic crystal sensor to harsh environments. The disclosed packaging methods enable photonic crystal based sensors to operate in challenging environments where adverse environmental conditions, such as electromagnetic interference (EMI), corrosive fluids, large temperature variations, and strong mechanical vibrations, currently exclude the use of traditional sensor technologies.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 2, 2019
    Assignee: The Boeing Company
    Inventors: Michael A. Carralero, Eric Y. Chan, Dennis G. Koshinz
  • Patent number: 10274432
    Abstract: A guided mode resonance (GMR) sensor assembly and system are provided. The GMR sensor includes a waveguide structure configured for operation at or near one or more leaky modes, a receiver for input light from a source of light onto the waveguide structure to cause one or more leaky TE and TM resonant modes and a detector for changes in one or more of the phase, waveshape and/or magnitude of each of a TE resonance and a TM resonance to permit distinguishing between first and second physical states of said waveguide structure or its immediate environment.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: April 30, 2019
    Inventors: Robert Magnusson, Debra Wawro-Weidanz
  • Patent number: 10256917
    Abstract: Aspects are generally directed to receivers and methods for optically demodulating optical signals. In one example, a receiver includes an optical resonator to receive an optical signal, the optical resonator including an optical medium interposed between first and second semi-reflective surfaces, where the first and second semi-reflective surfaces are positioned to resonate optical signal energy, and the optical resonator is configured to disrupt the optical signal energy resonance responsive to a variation in the received optical signal. The receiver may further include a probe source positioned to provide an optical probe beam to the optical medium, the optical medium being configured to interrupt the optical probe beam during the optical signal energy resonance and to transmit at least a portion of the optical probe beam in response to the disruption of the optical signal energy resonance, and a detector to detect the transmitted portion of the optical probe beam.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: April 9, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Benjamin P. Dolgin, Gary M. Graceffo, Andrew Kowalevicz
  • Patent number: 10234444
    Abstract: A system and method includes nano opto-mechanical-fluidic resonators (nano-resonators), e.g., for identification of particles, e.g., single viruses and/or cells.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 19, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Gaurav Bahl, Kewen Han
  • Patent number: 9939254
    Abstract: The present invention provides the sensor for measuring the relative sliding between two interfaces based on the principle of EFPI. The sensor comprises two optical fibers and two slopes arranged on the reflective slope. Each surface of the slope is disposed with reflecting surface; and the bottom of each optical fiber is arranged with reflecting end surface. The reflecting surfaces are perpendicular to each of an optical axis of the fiber, thus the Fabry-Perot cavity is formed between reflective end surface and emitting surface to measure the sliding of object B relative to object A in a plane. A fiber and a slope can also be further added to measure the sliding of object B relative to object A in a three dimensional space. The sensor does not affected by the temperature and electromagnetic interference; and has the advantages of high accuracy, strong resisting interference capability and durability.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: April 10, 2018
    Inventor: Yizheng Chen
  • Patent number: 9890925
    Abstract: There is provided a device arranged to couple with an electromagnetic source. The device comprises an optical metamaterial arranged to increase the intensity of radiation at a predetermined optical wavelength. The optical metamaterial has a periodic reflective component having a dimension no greater than the predetermined wavelength.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 13, 2018
    Assignee: LAMDA GUARD TECHNOLOGIES LTD
    Inventors: George Palikaras, Themos Kallos
  • Patent number: 9880029
    Abstract: A fiber optic transducer is provided. The fiber optic transducer includes a fixed portion configured to be secured to a body of interest, a moveable portion having a range of motion with respect to the fixed portion, a spring positioned between the fixed portion and the moveable portion, and a length of fiber wound between the fixed portion and the moveable portion. The length of fiber spans the spring. The fiber optic transducer also includes a mass engaged with the moveable portion. In one disclosed aspect of the transducer, the mass envelopes the moveable portion.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: January 30, 2018
    Assignee: Avalon Sciences Ltd.
    Inventors: James Kengo Andersen, Eric Lee Goldner, Agop Hygasov Cherbettchian, Gerald Robert Baker, David T. Beatson
  • Patent number: 9823113
    Abstract: Disclosed is detecting changes in pressure in a medium, with an optical fiber having a core diameter at an immersion surface contact of the fiber of less than 10 ?m; a layer of material deposited on said end of the fiber, the material being of a thickness of from about 2 nm to about 10 nm. Also disclosed is detecting pressure waves in a medium comprising: contacting the medium with a fiber optic, the fiber integrated with a light source and a detector, the fiber optic having a diameter of less than 10 ?m at an immersion surface contact of the fiber; providing a thin layer of material on the immersion surface contact, wherein said thin layer of material is of a thickness in a range of from about 2 nm to about 10 nm; and detecting Fresnel back reflections from the immersion end of the fiber.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: November 21, 2017
    Assignee: Drexel University
    Inventors: Afshin S Daryoush, Peter A Lewin, Rupa Gopinath Minasamudram, Mahmoud El-Sherif
  • Patent number: 9810594
    Abstract: Certain example implementations of the disclosed technology include an optical-interferometer sensor assembly for measuring pressure or acceleration. The sensor assembly includes a diaphragm configured to deflect responsive to an applied stimulus, a diaphragm support structure in communication with the diaphragm, a sensing optical interferometer having a first optical cavity in communication with at least a portion of the diaphragm and the diaphragm support structure, and a reference optical interferometer having a second optical cavity in communication with the diaphragm support structure. The sensor assembly can include a sensing optical fiber in communication with the sensing optical interferometer and a reference optical fiber in communication with the reference optical interferometer. The sensor assembly can include a housing in communication with the diaphragm and the diaphragm support structure, and configured to reduce a thermal expansion mismatch in the sensor assembly.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 7, 2017
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Martin A. Sanzari
  • Patent number: 9766178
    Abstract: An optical sensor is described for distinguishing between liquids of different refractive index, through strength of interference caused by an optical cavity having an exposed optical boundary in contact with such liquids. The sensor may be used, for example, to distinguish between water and aviation fuel in an aircraft fuel tank.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: September 19, 2017
    Assignee: Oxsensis Limited
    Inventor: Ralf-Dieter Pechstedt
  • Patent number: 9722147
    Abstract: Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a semiconductor structure includes an insulator network. A plurality of discrete semiconductor nanocrystals is disposed in the insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: August 1, 2017
    Assignee: Pacific Light Technologies Corp.
    Inventors: Benjamin Daniel Mangum, Weiwen Zhao, Kari N. Haley, Juanita N. Kurtin
  • Patent number: 9703092
    Abstract: An optical filter includes: a lower substrate; a lower mirror provided to the lower substrate; a lower electrode provided to the lower substrate; an upper substrate disposed so as to be opposed to the lower electrode; an upper mirror provided to the upper substrate, and opposed to the lower mirror; and an upper electrode provided to the upper substrate, and opposed to the lower electrode, wherein the upper substrate has a groove surrounding the upper mirror in a plan view, the groove includes a first side surface section, a second side surface section, a bottom surface section, a first end section located between the first side surface section and the bottom surface section, and a second end section located between the second side surface section and the bottom surface section, in a cross-sectional view, and the first end section and the second end section each have a curved surface.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 11, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Susumu Shinto, Seiji Yamazaki
  • Patent number: 9696135
    Abstract: An optical sensor apparatus illuminates nested optical cavities by a broadband light source, such as a tunable laser. A composite interference signal is obtained from light reflected from the nested optical cavities, partial interference spectra are recovered from the composite interference signal, cavity depths are measured based on the partial interference spectra, and electrical signals are provided based on the final measured cavity depths.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: July 4, 2017
    Assignee: PETROSPEC ENGINEERING LTD.
    Inventors: Yi Yang, Trevor Wayne MacDougall
  • Patent number: 9507178
    Abstract: An electromagnetic waveguide assembly is disclosed, which includes a microresonator and a perturbative member. A gap is between the perturbative member and the nearest surface of the microresonator. The perturbative member is within a range for perturbing the electromagnetic wave supported by the microresonator.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 29, 2016
    Inventor: Charles Wesley Blackledge
  • Patent number: 9419715
    Abstract: The present invention relates to a system for interoperating a full-duplex radio-over-fiber (RoF) network in a fiber-to-the-home (FTTH) network and to a method associated with the system. The system comprises, at the central station (100), a laser diode (105a), a first optical circulator (105b), an optical carrier generating unit (105c), and a second optical circulator (105d). The system comprises, at a base station (101), a third optical circulator (101a) a band pass filter (101b) coupled to the third optical circulator (101a) and configured to select only the optical signal having a corresponding pass band in which is used for converting an uplink signal as a remote local oscillator signal. The unselected optical signal is transmitted as downlink data.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: August 16, 2016
    Assignee: TELEKOM MALAYSIA BERHAD
    Inventors: Norhakimah Md Samsuri, Amiza Rasmi, Norhapizin Kushairi, Mohd Azmi Ismail, Romli Mohamad
  • Patent number: 9372337
    Abstract: A movable substrate of a wavelength variable interference filter includes a movable portion and a groove which is provided outside of the movable portion, in a plan view when the movable substrate is seen from a substrate thickness direction, the groove includes a bottom surface having an even groove depth dimension and a side surface which is continued to the bottom surface, and the side surface is configured with arc-like first curved surface portion and second curved surface portion, in a cross-sectional view when the movable substrate is cut along the substrate thickness direction.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 21, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Katsuji Arakawa
  • Patent number: 9103727
    Abstract: A self-referencing composite Fabry-Pérot cavity sensor, including methods of use and manufacture. The cavity sensor comprises a substrate defining a first cavity portion juxtaposed to a second cavity portion. The first and second cavity portions are provided having a predetermined depth offset. A polymer or other dielectric material is disposed within the first and second cavity portions. An interference spectrum resulting from a light source of a known wavelength is reflected through the sensor and produces a first refractive index from the first cavity portion offset by a second refractive index from the second cavity portion. The difference in refractive indices can be used to determine various physical parameters. An optical sensor according to the present technology may be used with vapor sensing, pressure sensing, protein detection, photo-acoustic imaging, and the like.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 11, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Xudong Fan, Karthik Reddy, Yunbo Guo
  • Patent number: 9097505
    Abstract: A fiber optic transducer is provided. The fiber optic transducer includes a fixed portion configured to be secured to a body of interest, a moveable portion having a range of motion with respect to the fixed portion, a spring positioned between the fixed portion and the moveable portion, and a length of fiber wound between the fixed portion and the moveable portion. The length of fiber spans the spring. The fiber optic transducer also includes a mass engaged with the moveable portion. In one disclosed aspect of the transducer, the mass envelopes the moveable portion.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 4, 2015
    Assignee: US Seismic Systems, Inc.
    Inventors: James Kengo Andersen, Eric Lee Goldner, Agop Hygasov Cherbettchian, Gerald Robert Baker, David T. Beatson
  • Publication number: 20150036147
    Abstract: A device and method include a broadband light source in communication with a waveguide to provide a light signal for interrogating each of a plurality for sensors within the waveguide. An analyzer modulates the light signal with a microwave signal and demodulates and evaluates light signals reflected by the sensors. An amplitude and a phase of each reflected signal from each sensor is distinguished in the time domain and the modulated signal is reconstructed in the frequency domain.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Hai Xiao, Jie Huang, Xinwei Lan, Ming Luo
  • Patent number: 8940238
    Abstract: The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly comprises a waveguide, a monolithic substrate optically coupled to the waveguide, and a thin-film layer directly bonded to the sensing side of the monolithic substrate. The refractive index of the monolithic substrate is higher than the refractive index of the transparent material of the thin-film layer. A spectral interference between the light reflected into the waveguide from a first reflecting surface and a second reflecting surface varies as analyte molecules in a sample bind to the analyte binding molecules coated on the thin-film layer.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: January 27, 2015
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Yushan Tan, Erhua Cao, Ming Xia, Robert F. Zuk
  • Publication number: 20140368829
    Abstract: An optical sensor including a MEMS structure, and a grating coupled resonating structure positioned adjacent to the MEMS structure, the grating coupled resonating structure comprising an interrogating grating coupler configured to direct light towards the MEMS structure. The interrogating grating coupler is two dimensional, and the interrogating grating coupler and the MEMS structure form an optical resonant cavity.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: John Marcel Dell, Mariusz Martyniuk, Adrian John Keating, Gino Michael Putrino, Lorenzo Faraone, Dilusha Silva, Roger Jeffery
  • Patent number: 8897610
    Abstract: A method for fabricating a sensor is provided, with the sensor including a reflective element and an optical fiber positioned relative to the reflective element such that light emitted from the optical fiber is reflected by the reflective element and propagates in an optical cavity between the optical fiber and the reflective element. The method includes positioning an element within the optical cavity. The element has a coefficient of thermal expansion and a thickness that compensate a refractive index change with temperature of a medium within the optical cavity.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 25, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Can Akkaya, Michel J. F. Digonnet, Onur Kilic, Gordon S. Kino, Olav Solgaard
  • Patent number: 8885170
    Abstract: A gyroscope and a method of detecting rotation are provided. The gyroscope includes a structure configured to be driven to move about a drive axis. The structure is further configured to move about a sense axis in response to a Coriolis force generated by rotation of the structure about a rotational axis while moving about the drive axis. The structure further includes at least one first torsional spring extending generally along the drive axis and at least one second torsional spring extending generally along the sense axis. The gyroscope further includes an optical sensor system configured to optically measure movement of the structure about the sense axis.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 11, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Publication number: 20140327919
    Abstract: A system for sensing downhole pressure in in a hydrocarbon well using a Fabry-Perot (F-P) sensor in series with a Fiber Bragg Grating and maintaining the back pressure on the sensor system with a surface sealing system and a surface pressure control system.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Applicant: Halliburton Energy Services. Inc.
    Inventors: Mikko Jaaskelainen, William N. Gibler, Ian B. Mitchell
  • Patent number: 8867026
    Abstract: An method and apparatus for measuring gravitational force are described where at least one first radiation can be provided to at least one optomechanical oscillator, the at least one optomechanical oscillator being structured to deform under the gravitational force to cause a shift in resonance associated with the at least one optomechanical oscillator. In addition, at least one second radiation is received from the at least one optomechanical oscillator, wherein the at least one second radiation is associated with the shift in the resonance, and the shift in the resonance can be determined based on the first and second radiations.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: October 21, 2014
    Assignee: The Johns Hopkins University
    Inventors: Chee Wei Wong, Ying Li, Jiangjun Zheng, Daniel J. Rogers
  • Patent number: 8848197
    Abstract: A mass sensor system including multiple Fabry-Perot microcavities connected in parallel by multiple waveguides. Each of the mass sensors includes a microbridge having a fundamental resonance frequency, and a movable reflective mirror etched into the microbridge; a fixed reflective mirror etched in a substrate, the fixed reflective mirror being fixed to the substrate in a region spaced apart from the movable reflective mirror; and an optical waveguide etched in the substrate that connects the movable mirror and the fixed mirror forming the Fabry-Perot microcavity interferometer. The system includes a tunable continuous-wave laser operative to optically interrogate the Fabry-Perot microcavity of each of the plurality of mass sensors, and a receiver operative to receive sensor signals from each of the plurality of mass sensors, the sensor signals comprising reflective signals and transmitted signals.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 30, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Marcel W. Pruessner, Todd H. Stievater, William S. Rabinovich
  • Patent number: 8823947
    Abstract: The invention relates to an optical sensor comprising an optical waveguide (1) and a light-sensitive element (4) for detecting light coupled out of the waveguide (1) and also various ring resonators (2), the ring resonators (2) being coupled optically to the mentioned waveguide (1) and, with the exception of at most one of the ring resonators (2), each having a means (5) for adjusting resonance frequencies of the respective ring resonator (2) and/or of the coupling between the ring resonator (2) and the waveguide (1) and at least two of the ring resonators (2) having different optical lengths in an initial state and being disposed for having their resonance frequencies influenced by means of different variables to be measured which are specific for each of these ring resonators (2). The invention refers furthermore to a method which can be implemented with a sensor of this type for detecting molecules of at least one substance.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: September 2, 2014
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Helmut Heidrich, Peter Lútzow, Herbert Venghaus, Hugo Joseph Wilhelmus Maria Hoekstra
  • Patent number: 8773666
    Abstract: Device and method for acquiring position with a confocal Fabry-Perot interferometer. In a general aspect, the device for acquiring position may include an arrangement for acquiring position where the acquiring arrangement has a confocal Fabry-Perot interferometer. In another general aspect, a method for acquiring position may include generating an interference pattern dependent on a position of an object by a confocal Fabry-Perot interferometer; detecting the interference pattern to obtain a measuring signal; and evaluating the measuring signal.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 8, 2014
    Assignee: Attocube Systems AG
    Inventors: Khaled Karrai, Pierre-Francois Braun
  • Publication number: 20140168659
    Abstract: The present invention relates to micro machined metal diaphragm for Fabry-Perot interferometer sensor and Fabry Perot Fiber optic Sensor system using said metal diaphragm and method of fabrication thereof. Fabry Perot sensor with micro machined metallic diaphragms at the fiber optic end is developed ensuring accuracy, controllability by deterministic process. Advantageously, the system involves the metal diaphragm with high reflectivity inside surface facing the fiber end as a basic functional element. Importantly, the micro machined metal diaphragm is miniaturized to suit various critical applications including bio medical sensing devices for measuring various physiological parameters with desired accuracy.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 19, 2014
    Applicant: THE SECRETARY, DEPARTMENT OF ATOMIC ENERGY, GOVT. OF INDIA
    Inventors: Vinod Kumar Suri, Shivam Mishra, R. Balasubramaniam, Shrinkhla Ghildiyal
  • Patent number: 8743372
    Abstract: A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 3, 2014
    Assignees: Michigan Aerospace Corporation, Southern Methodist University
    Inventors: Dominique Claire Fourguette, M. Volkan Otugen, Liane Marie Larocque, Greg Alan Ritter, Jason Jeffrey Meeusen, Tindaro Ioppolo
  • Publication number: 20140139843
    Abstract: An apparatus for detecting a deflection of a beam, the apparatus comprising a beam having a first side and a second side; and a grating structure positioned adjacent the second side of the beam, the grating structure including an interrogating grating coupler configured to direct light towards the beam; wherein the beam and the interrogating grating coupler form a resonant cavity, and light input to the resonant cavity is modulated according to the deflection of the beam.
    Type: Application
    Filed: December 30, 2013
    Publication date: May 22, 2014
    Applicant: University of Western Australia
    Inventors: John Marcel Dell, Mariusz Martyniuk, Adrian John Keating, Gino Michael Putrino, Lorenzo Faraone, Dilusha Silva
  • Patent number: 8711363
    Abstract: A gyroscope and a method of detecting rotation are provided. The gyroscope includes a structure configured to be driven to move about a drive axis. The structure is further configured to move about a sense axis in response to a Coriolis force generated by rotation of the structure about a rotational axis while moving about the drive axis. The structure further includes at least one first torsional spring extending generally along the drive axis and at least one second torsional spring extending generally along the sense axis. The gyroscope further includes an optical sensor system configured to optically measure movement of the structure about the sense axis.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 29, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon Kino, Olav Solgaard
  • Patent number: 8659762
    Abstract: An optical measuring element measures forces in at least one direction. The measuring element has a single-piece structure. There is an outside wall with notches introduced therein. Each notch defines parallel edges, and the notches define more or less elastically flexible zones in the structure and constitute the only connection between a first region and a second region of the structure. For optical distance measurements between the two regions of the structure, one or more optical fibers are each attached with one end thereof to a region of the structure such that reflective surfaces are located close to the ends. The reflective surfaces are firmly connected to another region. The optical fibers are disposed on the outside wall.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: February 25, 2014
    Assignee: Sensoptic SA
    Inventors: Axel Bertholds, Pere Llosas, Simon Henein
  • Patent number: 8649018
    Abstract: An apparatus for detecting a presence of one or more analytes in a sample. The apparatus comprises a cantilever (205) and a grating coupled resonating structure (210). The cantilever (205) comprises an analyte selective coating that is selective to the one or more analytes. The grating coupled resonating structure (210) is positioned adjacent to the cantilever (205). The first grating coupled resonating structure comprises a first interrogating grating coupler (220) which together with the cantilever forms an optical resonant cavity.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 11, 2014
    Assignee: University of Western Australia
    Inventors: John Marcel Dell, Mariusz Martyniuk, Adrian John Keating, Gino Michael Putrino, Lorenzo Faraone
  • Patent number: 8597578
    Abstract: The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly comprises a waveguide, a monolithic substrate optically coupled to the waveguide, and a thin-film layer directly bonded to the sensing side of the monolithic substrate. The refractive index of the monolithic substrate is higher than the refractive index of the transparent material of the thin-film layer. A spectral interference between the light reflected into the waveguide from a first reflecting surface and a second reflecting surface varies as analyte molecules in a sample bind to the analyte binding molecules coated on the thin-film layer.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Yushan Tan, Erhua Cao, Min Xia, Robert F. Zuk
  • Patent number: 8593638
    Abstract: Resonant sensors and molecule detection methods utilizing split frequency. Optical energy is introduced into a microcavity, such as a toroid-shaped or spherical microcavity. A portion of the optical energy is backscattered and interacts with the introduced optical energy to form first and second modes of optical energy at respective first and second frequencies, also referred to as split frequency or mode doublets. One or more molecules bind to an outer surface of the microcavity and interact with an evanescent field of optical energy resonating within the microcavity. Binding of one or more molecules to the outer surface is detected based at least in part upon a change of the split frequency relative to a baseline split frequency.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: November 26, 2013
    Assignee: California Institute of Technology
    Inventors: Tao Lu, Tsu-Te Judith Su, Kerry J. Vahala, Scott E. Fraser
  • Patent number: 8558994
    Abstract: An apparatus for estimating a property, the apparatus includes: a hollow core tube having a first opening and a second opening; a first optical waveguide disposed within the first opening; and a second optical waveguide disposed within the second opening and spaced a distance from the first optical waveguide, the distance being related to the property; wherein a portion of at least one of the optical waveguides within the tube is perimetrically isolated from the tube.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 15, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel S. Homa, Robert M. Harman, Brooks A. Childers, Alexander M. Barry, Brian S. Lucas
  • Patent number: 8542365
    Abstract: A change in mass of a microbridge in a mass sensor can be sensed by applying a time-varying amplitude modulated electrostatic force to excite the microbridge into resonance at the frequency of amplitude modulation. An optical energy is then transmitted at a wavelength close to a resonant wavelength of a Fabry-Perot microcavity, which is formed by etching a movable reflective mirror into a region of the microbridge and by etching a fixed reflective minor in a region spaced apart from the microbridge. The two mirrors are interconnected by an optical waveguide. The movable mirror and fixed mirror reflect the optical energy to a receiver, and a change in the Fabry-Perot microcavity's reflectivity is interferometrically determined. The change in reflectivity indicates a change in the microbridge's resonant frequency due to increased mass of the microbridge resulting from sorption of a target chemical by a layer of chemoselective material deposited on the microbridge.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 24, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Marcel W. Pruessner, Todd H. Stievater, William S Rabinovich
  • Patent number: 8542956
    Abstract: An acoustic sensor includes a diaphragm having a reflective element. The sensor has an optical fiber positioned relative to the reflective element such that light emitted from the optical fiber is reflected by the reflective element. A first end of the optical fiber and the reflective element form an optical cavity therebetween. The acoustic sensor further includes a structural element mechanically coupled to the diaphragm and the optical fiber. The structural element includes a material having a coefficient of thermal expansion substantially similar to the coefficient of thermal expansion of the optical fiber. For example, the material can be silica.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: September 24, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Can Akkaya, Michel J. F. Digonnet, Onur Kilic, Gordon S. Kino, Olav Solgaard
  • Patent number: 8537368
    Abstract: A method detects an acceleration. The method includes providing a spatial mode filter positioned such that light emitted from the spatial mode filter is reflected by at least a portion of a reflective surface. The spatial mode filter and the portion of the reflective surface form an optical resonator having an optical resonance with a resonance lineshape. The method further includes emitting light from the spatial mode filter and irradiating the portion of the reflective surface. The portion of the reflective surface is responsive to acceleration of the optical resonator by changing curvature. The method further includes measuring a change of the resonance lineshape due to the acceleration of the optical resonator.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 17, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 8499631
    Abstract: Nondestructive inspection of a plurality of aircraft hat stiffeners includes exciting cavities of the stiffeners with electromagnetic radiation, and analyzing electromagnetic field responses of the cavities to detect state changes of the stiffeners.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 6, 2013
    Assignee: The Boeing Company
    Inventors: Jason Philip Bommer, Gary E. Georgeson, Dennis M. Lewis
  • Patent number: 8488125
    Abstract: An optical tomography imaging a tomogram by using a coherent light by a backscattering light of a measured object and a reflected light of a reference mirror, which has supercontinuum light sources, an optical system having group velocity dispersion connected to the supercontinuum light source, an optical detection element detecting a coherent light by a backscattering light of the measured object and a reflected light of the reference mirror, a timing detection element detecting a timing of each wavelength component in an output light from the optical system having the group velocity dispersion, and a unit sampling a signal from the optical detector by using a timing signal from the timing detection element with a signal from the supercontinuum light source as a trigger, and detecting an optical tomogram signal imaging a tomogram, thereby acquiring an optical tomogram at a higher speed than a conventional SS-OCT.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: July 16, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kentaro Furusawa, Natsuhiko Mizutani, Ryo Kuroda
  • Patent number: 8451453
    Abstract: The subject of the present invention is a dynamic sensor of physical quantities with optical waveguide with optically-pumped amplifier medium, which requires no interferometer or reference sensor and which makes it possible to obtain at least the same level of performance, in terms of sensitivity, as known sensors of this type, and this waveguide is linked at one end to a selective mirror, and comprises at its other end an interrogation laser, the reflection of which on the selective mirror produces a wave which, by interference with the incident wave, provokes the periodic saturation of the gain of the waveguide.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Thales
    Inventors: Stéphanie Molin, Daniel Dolfi, Jean-Pierre Huignard, Martine Doisy
  • Patent number: 8432552
    Abstract: A sensor assembly having an optical fiber, a lens in optical communication with the optical fiber, a reflective surface spaced from the lens, for reflecting light from the beam back to the lens, a partially reflective surface positioned between the reflective surface and the lens, the partially reflective surface for reflecting light from the beam back to the lens, and an alignment device for aligning the lens and reflective surface with respect to one another, such that light from the beam of light transmitted from the lens reflects from the reflective surface back to the lens. The alignment device can have a rotational component and a base component, where the rotational component rotates to align a beam of light transmitted from the lens. The rotational component can also cooperate with the base component to move axially with respect to the reflective surfaces to align the beam for optimum power.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: April 30, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William N. Gibler, Larry A. Jeffers, Richard L. Lopushansky, Frederick J. Gillham, Michel LeBlanc
  • Patent number: 8422024
    Abstract: A hollow-core optical-fiber filter is provided. The hollow-core optical-fiber filter includes a hollow-core optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The hollow-core optical-fiber filter also includes a first reflective end-cap positioned at the first end-face and a second reflective end-cap positioned at the second end-face. When an optical beam from a laser is coupled into one of the first end-face or the second end-face, an optical output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 16, 2013
    Assignee: Honeywell International Inc.
    Inventors: Glen A. Sanders, Lee K. Strandjord, Tiequn Qiu, John Feth, Andrew W. Kaliszek
  • Patent number: 8400640
    Abstract: Provided is an optical sensor interrogation system. The optical sensor interrogation system includes: a light source unit which matches round-trip time of light and wavelength tunable cycle time of light in a resonator and emits light; a sensing unit which receives an optical signal in which a center wavelength periodically tunes, from the light source unit and tunes the center wavelength of the optical signal according to physical changes applied from the outside; and a signal processing unit which receives the optical signal reflected from the sensing unit, detects data, and images the data. In particular, the light source unit includes a delaying unit which delays the round-trip time of light and a tunable filter which tunes the wavelength of light so as to match the round-trip time of light with the wavelength tunable cycle time of light.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 19, 2013
    Assignee: Pusan National University Industry-University Cooperation Foundation
    Inventors: Chang-Seok Kim, Myung-Yung Jeong, Jae-Seok Park, Eun-Joo Jung, Hyung-Seok Lee
  • Patent number: 8400639
    Abstract: The use of optical microcavities, high-Q resonators and slow-light structures as tools for detecting molecules and probing conformations and measuring polarizability and anisotropy of molecules and molecular assemblies using a pump-probe approach is described. Resonances are excited simultaneously or sequentially with pump and probe beams coupled to the same microcavity, so that a pump beam wavelength can be chosen to interact with molecules adsorbed to the microcavity surface, whereas a probe beam wavelength can be chosen to non-invasively measure pump-induced perturbations. The induced perturbations are manifest due to changes of resonance conditions and measured from changes in transfer characteristics or from changes of the scattering spectra of a microcavity-waveguide system. The perturbations induced by the pump beam may be due to polarizability changes, changes in molecular conformation, breakage or formation of chemical bonds, triggering of excited states, and formation of new chemical species.
    Type: Grant
    Filed: September 15, 2007
    Date of Patent: March 19, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Frank Vollmer, Juraj Topolancik
  • Patent number: RE44605
    Abstract: Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 19, 2013
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Dale C. Flanders, Petros Kotidis, Mark E. Kuznetsov