Measuring Microscopes (go1b 9/04) Patents (Class 356/904)
  • Patent number: 10342477
    Abstract: The measurement system 110 comprises a light source 120 configured and arranged for emitting a light beam via a polarization modulator 130 to a target position inside the skin 160, wherein the polarization modulator 130 is configured and arranged to simultaneously provide, in use, a first and a second region in a cross-section of the light beam in the target position, the first and the second region being distinct and having a corresponding first and second direction of polarization, the first and the second polarization direction being different from each other, and the measurement system also comprises a detection unit 150 to simultaneously detect a first and a second intensity of reflected light 145, the first intensity corresponding to light reflected from the first region of the light beam in the target position 160, and the second intensity corresponding to light reflected from the second region of the light beam in the target position 160, and the measurement system further comprises a processor being
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: July 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Babu Varghese, Jonathan Alambra Palero, Martin Jurna, Margaret Ruth Horton, Rieko Verhagen
  • Patent number: 9001309
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 8829415
    Abstract: A correlation confocal microscope uses correlated photon pairs to improve resolution. It employs a source of a light beam converging to a point location on a sample, and an objective that gathers light from the point location and generates an image beam. A modulator applies a spatial pattern of modulation to the source light beam to define spatially correlated photons whose spatial correlations are preserved in modulated light gathered from the sample. A filter applies a modulation-selective filter function to the image light beam to generate a filtered light beam of like-modulated photons. A coincidence detector detects temporally coincident photon pairs in the filtered light beam, generating a pulse output that indicates the magnitude of a light-detectable property (such as transmissivity or reflectivity) of the sample at the point location. The modulator may apply phase modulation and the filter may be a phase-sensitive component such as an interferometer.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Trustees of Boston University
    Inventors: David Simon, Alexander Sergienko, Lee Edwin Goldstein, Robert H. Webb
  • Patent number: 8757871
    Abstract: An apparatus and methods for characterizing the response of a particle to a parameter that characterizes an environment of the particle. A change is induced in the parameter characterizing the environment of the particle, where the change is rapid on a timescale characterizing kinetic response of the particle. The response of the particle is then imaged at a plurality of instants over the course of a period of time shorter than the timescale characterizing the kinetic response of the particle. The response may be detected by measuring a temperature jump or by measuring correlation and anticorrelation between probe parameters across pixels. More particularly, the particle may be a molecule, such as a biomolecule, and the environment, more particularly, may be a biological cell. The parameter characterizing the environment of the particle may be a temperature, and change may be induced in the temperature by heating a volume that includes the particle, either conductively or radiatively.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: June 24, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Martin Gruebele, Simon Ebbinghaus, Apratim Dhar, J Douglas McDonald
  • Patent number: 7901945
    Abstract: A system and method for recognition of images may include the use of alignment markers. The image recognized may be a pattern from an array, a character, a number, a shape, and/or irregular shapes. The pattern may be formed by elements in an array such as an identification marking and/or a sensor array. More particularly, the system and method relate to discriminating between images by accounting for the orientation of the image. The size and/or location of alignment markers may provide information about the orientation of an image. Information about the orientation of an image may reduce false recognitions. The system and method of image recognition may be used with identification markings, biosensors, micro-fluidic arrays, and/or optical character recognition systems.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: March 8, 2011
    Assignee: Board of Regents the University of Texas System
    Inventors: Jason E. Meiring, Timothy B. Michaelson, C. Grant Willson
  • Patent number: 7738695
    Abstract: A method for high-resolution image recording of at least one object with a microscope, includes the steps of: (a) positioning the object in a receptacle being arranged in the optical axis of the microscope, (b) generating at least two first data sets per object which represent intermediate images of the object with at least two different orientations relative to the optical axis of the microscope, wherein the different orientations of the object are provided by moving the object relative to the receptacle, and (c) evaluating the data sets for obtaining quantitative three dimensional information.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 15, 2010
    Assignees: Institut Pasteur, PerkinElmer Cellular Technologies Germany GmbH
    Inventors: Spencer Shorte, Torsten Müller, Thomas Schnelle
  • Patent number: 7052650
    Abstract: Apparatus for the manipulating and testing of molecules and in particular of DNA comprising a surface on which the molecule is anchored on multiple points at one end and a paramagnetic bead on which said molecule is anchored on multiple points at its other end, magnetic means for applying a force to the bead, said magnetic means being used to control the stretching and rotation of said bead and molecule, optical magnification means and a camera for the visualisation of said bead, computer means to which the images of the camera are transmitted, said computer means comprising means for analyzing the motions of the bead. A method for the manipulating and testing of molecules and in particular of DNA in which a molecule is anchored at one end to a fixed surface and at its other end to a paramagnetic bead wherein said molecule is anchored on multiple points at each of said ends.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 30, 2006
    Assignee: Center National de la Recherche Scientifique (CNRS)
    Inventors: Terrence R. Strick, Jean F. Allemand, David Bensimon, Aaron Bensimon, Vincent Croquette
  • Patent number: 6922279
    Abstract: A harmonic generation microscopy employs a laser device that emits a laser beam having a predetermined wavelength that causes no autofluorescence in a biological sample and that, after excited, induces both the second and third harmonic waves. The laser beam is projected onto a sample and an observation beam from the sample is received. The observation beam is directed through a splitter to separate the second harmonic wave and the third harmonic wave both of which are then converted into corresponding electrical signals. The electrical signals are fed to a computer-based image processing equipment to form an image of the sample on the basis of the second and third harmonic waves.
    Type: Grant
    Filed: September 20, 2003
    Date of Patent: July 26, 2005
    Assignee: National Taiwan University
    Inventors: Chi-Kuang Sun, Shi-Wei Chu
  • Patent number: 6674078
    Abstract: Phase manipulation is used to produce a high contrast electron microscope image. A phase plate is placed at the back focal plane of an objective lens and used to form a differential contrast image.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: January 6, 2004
    Assignees: Jeol Ltd.
    Inventors: Kuniaki Nagayama, Radostin S. Danev
  • Patent number: 6602716
    Abstract: A method and device for fluorimetric determination of a biological, chemical or physical parameter of a sample utilize at least two different luminescent materials, the first of which is sensitive to the parameter, at least with respect to luminescence intensity, and the second of which is insensitive to the parameter, at least with respect to luminescence intensity and decay time. The luminescent materials have different decay times. The time- or phase behaviour of the resulting luminescence response is used to form a reference value for determination of a parameter.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: August 5, 2003
    Assignee: PreSens Precision Sensing GmbH
    Inventor: Ingo Klimant
  • Patent number: 6468736
    Abstract: A system which can analyze compounds with high efficiency, such as in a high throughput drug screening system. The high throughput drug screening system which can test the action of a drug candidate upon a group of cells in a monolayer. A microspace corresponding to a microscopic field area, for example on the order of 100-200 microns in diameter, is isolated from the other cells on the monolayer by creating a seal between a drug delivery perfusion unit and the cells to create the microspace for analysis. A drug candidate is then provided into the isolated microspace. The interaction between the drug candidate and the cells in the isolated microspace can then be evaluated. With the high throughput drug screening system the vast majority of cells on a monolayer can be used for drug testing. The high throughput drug system also makes it more readily available to use primary cells in addition to immortal cells as the cell layer.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: October 22, 2002
    Assignee: Atto Instruments, LLC.
    Inventor: Gary Brooker