Abstract: The present invention provides an optical microscope capable of suppressing unnecessary response light as a background and detecting desired response light in nonlinear optical response process with a good S/N ratio.
Abstract: The present invention relates to a method of identifying types of body fluids in a sample. This method involves providing a sample potentially containing one or more types of body fluids. The sample is subjected to Raman spectroscopy to produce a Raman spectroscopic signature for the sample. The Raman spectroscopy signature is identified to ascertain the types of body fluids in the sample. A method of establishing a reference Raman spectroscopic signature for specific types of body fluids is also disclosed as is a library of such reference signatures is also disclosed.
Type:
Grant
Filed:
June 2, 2009
Date of Patent:
June 18, 2013
Assignee:
The Research Foundation of State University of New York
Abstract: The present invention relates to a Raman spectroscopy system that includes a detection center. The detection center includes at least one light source for outputting exciting light which excites a detected object to generate Raman scattered light, and an analysis device for obtaining the Raman spectroscopy of the detected object. The Raman spectroscopy system further includes at least one detection terminal, each of which includes at least one Raman probe that each introduces the exciting light to the detected object, collects the Raman scattered light generated by the detected object, and returns said Raman scattered light to the detection center. The present invention also relates to a method for detecting Raman spectroscopy.
Type:
Grant
Filed:
June 26, 2009
Date of Patent:
January 31, 2012
Assignees:
Nuctech Company Limited, Tsinghua University
Abstract: An optical sensor, sensing system and method of sensing employ a half-core hollow optical waveguide adjacent to a surface of an optical waveguide layer of a substrate. The half-core hollow optical waveguide and the adjacent optical waveguide layer cooperatively provide both an optical path that confines and guides an optical signal and an internal hollow channel. The optical path and channel extend longitudinally along a hollow core of the half-core hollow optical waveguide. The system further includes an optical source at an input of the optical path and an optical detector at an output of the optical path. A spectroscopic interaction between an analyte material that is introduced into the channel and an optical signal propagating along the optical path determines a characteristic of the analyte material.
Type:
Grant
Filed:
October 16, 2008
Date of Patent:
September 28, 2010
Assignee:
Hewlett-Packard Development Company, L.P.