Optical Fiber Patents (Class 359/341.1)
  • Publication number: 20120076504
    Abstract: A high peak intensity laser amplification system and the method therein implemented are provided. In a first aspect of the invention, the laser system includes at least one optical member (27) operably introducing a phase function into a high peak intensity laser pulse (25). A further aspect includes introducing destructive interference in an unchirped laser pulse prior to amplification and reconstructive interference in the output laser pulse after amplification. Dynamic pulse shaping is employed in another aspect of the present invention.
    Type: Application
    Filed: February 26, 2010
    Publication date: March 29, 2012
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Publication number: 20120069428
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Application
    Filed: March 12, 2010
    Publication date: March 22, 2012
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITÄT JENA, FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Publication number: 20120062984
    Abstract: Techniques and devices for producing short laser pulses based on chirped pulse amplification.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 15, 2012
    Applicant: Calmar Optcom, Inc. dba Calmar Laser, Inc.
    Inventors: Sha Tong, Jerry Prawiharjo, Hong Cong, Daniel Beom Soo Soh, Lawrence C. West, Anthony Hong Lin
  • Patent number: 8130802
    Abstract: A tunable laser includes an optical gain medium, a first resonator, a periodically tunable optical filter, and a second resonator in which light of a laser wavelength exhibits a round trip time T. The optical filter is arranged between the first resonator and the second resonator and is tuned with a period t. The period t is governed by t=(n/m) T, where n and m are integers and m/n is not an integer.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 6, 2012
    Assignee: Ludwig-Maximilians-Universitaet Muenchen
    Inventor: Robert Alexander Huber
  • Patent number: 8125705
    Abstract: A processing method for suppressing photodarkening in an Yb-doped optical fiber, comprising: a first step of preparing the Yb-doped optical fiber by doping a core with Yb, and irradiating at least one of a gamma ray, a X-ray, or an electron beam onto the Yb-doped optical fiber with an energy greater than a light to be transmitted through the optical fiber when a laser is being oscillated; a second step of measuring a loss spectrum of an infrared region of the optical fiber after the first step, and selecting an optical fiber with the loss in a specific wavelength falling within a predetermined range; and a third step of treating the optical fiber selected in the second step in an atmosphere containing hydrogen to obtain an Yb-doped optical fiber with suppressed photodarkening.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Fujikura Ltd.
    Inventors: Kentaro Ichii, Hideyuki Hosoya
  • Patent number: 8125704
    Abstract: An ultra-short pulsed laser system comprises an optical combiner, optical amplifier, optical pulse compressor, and optical separator. The optical combiner is configured to combine a primary optical pulse with a secondary optical signal to generate a combined optical signal. The primary optical pulse and the secondary optical signal have a distinguishable characteristic. The optical amplifier is configured to optically amplify the combined optical signal. The optical pulse compressor is configured to compress at least the primary optical pulse contained within the optically amplified combined optical signal and output a compressed combined optical signal. The optical separator is configured to separate the compressed combined optical signal into an output primary optical pulse and an output secondary optical signal according to the distinguishable characteristic.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: February 28, 2012
    Assignee: Raydiance, Inc.
    Inventors: Michael M. Mielke, Robert G. Waarts, Sha Tong, Kok Wai Chang
  • Patent number: 8107161
    Abstract: A short-pulse fiber amplifier system (10) is designed so that nonlinear phase shifts and third-order dispersion are purposely introduced that compensate each other. In particular, the nonlinear phase shift accumulated in the amplifier is compensated by the third-order dispersion of the combination of a fiber stretcher (12) and a grating compressor (16). In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: January 31, 2012
    Assignee: Cornell University
    Inventors: Frank W. Wise, Shian Zhou, Lyuba Kuznetsova, Chin Yu Chong
  • Patent number: 8102594
    Abstract: Methods and systems for compensation of Self-Phase Modulation 35 in fiber-based amplifier systems 20.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 24, 2012
    Assignee: Cornell University
    Inventors: Chunhui (Chris) Xu, James W. van Howe, Guanghao Zhu
  • Patent number: 8098424
    Abstract: The present invention relates to an optical fiber amplifying module equipped with a structure for stably attaining a high gain even when amplifying light having a low duty cycle. The optical fiber amplifying module comprises at least three amplification optical fibers successively arranged from an input connector to an output collimator. A bandpass filter is arranged between the first- and second-stage amplification optical fibers. Control means having a structure constituted by optically passive components alone or a feedback structure functions so as to render an upper limit to a gain for input light in the first-stage amplification optical fiber, thereby preventing the deterioration in performances such as destruction of the bandpass filter from occurring in optical components positioned on the upstream side of the final-stage amplification optical fiber.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Motoki Kakui
  • Patent number: 8094370
    Abstract: An optical fibre laser or amplifier device is disclosed, comprising: a rare-earth-doped multi-clad optical fibre having at least three cladding layers, one or more multimode pump laser diodes, and a means of multiplexing a laser signal and the pumping radiation, adapted so that a fraction of the stray signal light originating within the device is captured by one of the intermediate cladding layers of the rare-earth-doped fibre and guided out of the laser structure through the multiplexing system resulting in a reduction in the amount of stray signal radiation impinging upon the pump laser diodes.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: January 10, 2012
    Assignee: GSI Group Ltd.
    Inventor: Steffan Lewis
  • Patent number: 8094984
    Abstract: The invention includes optical signal conduits having rare earth elements incorporated therein. The optical signal conduits can, for example, contain rare earth elements incorporated within a dielectric material matrix. For instance, erbium or cerium can be within silicon nanocrystals dispersed throughout dielectric material of optical signal conduits. The dielectric material can define a path for the optical signal, and can be wrapped in a sheath which aids in keeping the optical signal along the path. The sheath can include any suitable barrier material, and can, for example, contain one or more metallic materials. The invention also includes methods of forming optical signal conduits, with some of such methods being methods in which the optical signal conduits are formed to be part of semiconductor constructions.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: January 10, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8094986
    Abstract: A double clad fiber includes a core, a first cladding provided so as to cover the core, and a second cladding provided so as to cover the first cladding. The second cladding has a plurality of pores extending in a length direction and arranged so as to surround the first cladding. In at least one fiber end, the second cladding has been removed by mechanical processing so that the at least one fiber end is formed by the core and the first cladding.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 10, 2012
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Masatoshi Tanaka, Tetsuya Yamamoto
  • Patent number: 8089689
    Abstract: Apparatus and method for amplifying laser signals using segments of fibers of differing core diameters and/or differing cladding diameters to suppress amplified spontaneous emission and non-linear effects such as four-wave mixing (FWM), self-phase modulation, and stimulated Brillouin and/or Raman scattering (SBS/SRS). In some embodiments, different core sizes have different sideband spacings (spacing between the desired signal and wavelength-shifted lobes). Changing core sizes and providing phase mismatches prevent buildup of non-linear effects. Some embodiments further include a bandpass filter to remove signal other than the desired signal wavelength and/or a time gate to remove signal at times other than during the desired signal pulse. Some embodiments include photonic-crystal structures to define the core for the signal and/or the inner cladding for the pump.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 3, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Matthias P. Savage-Leuchs
  • Patent number: 8085464
    Abstract: An optical amplifier for amplifying an optical signal (1002), the optical amplifier comprising: an optical fibre, the optical fibre including a doped core, an inner cladding extending substantially radially outwardly from the doped core and an outer cladding extending substantially radially outwardly from the inner cladding; a signal coupler for receiving the optical signal and guiding the optical signal into the doped core; a first pump light source for producing a first pump light having a first power, the first pump light source being optically coupled to the optical fibre at a first location therealong for guiding the first pump light into the inner cladding at the first location; and a second pump light source for producing a second pump light having a second power, the second power being larger than the first power, the second pump light source being optically coupled to the optical fibre at a second location therealong for guiding the second pump light into the inner cladding at the second location; wh
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: December 27, 2011
    Assignee: Genia Photonics Inc.
    Inventors: François Gonthier, Alain Villeneuve
  • Publication number: 20110310467
    Abstract: The system includes a light-transmitting medium positioned on a base. The light-transmitting medium included a ridge and a slab region. The ridge extends upward from the slab region and defines a portion of a waveguide on the base. The waveguide is configured to guide a light signal through the device. The device also includes an avalanche effect light sensor positioned on the base and configured to detect the presence of the light signal. The light sensor includes a light-absorbing medium positioned on the ridge of the light-transmitting medium such that the light signal is coupled from the light-transmitting medium into the light-absorbing medium. The light-transmitting includes a charge layer located at an interface of the light-transmitting medium and the light-absorbing medium. A multiplication region is formed in the slab regions of the light-transmitting medium such that the multiplication region receives charge carriers from the charge layer during the operation of the light sensor.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Inventors: Ning-Ning Feng, Shirong Liao, Dawei Zheng, Dazeng Feng
  • Publication number: 20110310468
    Abstract: A master oscillator power-amplifier stages includes multiple stages of fiber-amplification with a final power amplifier stage in the form of a multi-pass amplifier. With a thin-disk gain medium in one example the thin-disk amplifier includes a common optical arrangement for providing multiple incidences of radiation to be amplified and multiple incidences of a pump-radiation beam on the thin-disk gain medium.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: Coherent, Inc.
    Inventors: Michael Hertwig, Norman Hodgson, Luis A. Spinelli
  • Publication number: 20110305251
    Abstract: Provided is a multi-cladding optical fiber which includes: a core with an average refractive index n1; and a cladding including an inner cladding with an average refractive index n2 formed on the periphery of the core, an intermediate cladding with an average refractive index n3 formed on the periphery of the inner cladding, and an outer cladding with an average refractive index n4 formed on the periphery of the intermediate cladding where n1>n2>n3>n4. Two or more axisymmetric modes exist in the core at a wavelength of the signal light; the two or more axisymmetric modes including a fundamental mode and at least a high-order mode. When the fiber is bent at a predetermined bending diameter, the high-order mode in the core disperses within the inner cladding due to coupling with an inner cladding mode, so that only the fundamental mode substantially propagates through the core.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 15, 2011
    Applicants: National University Corporation Hokkaido University, FUJIKURA LTD.
    Inventors: Shoji TANIGAWA, Kentaro ICHII, Katsuhiro TAKENAGA, Kunimasa SAITOH
  • Patent number: 8073019
    Abstract: Methods and systems for generating ultra-short fiber laser pulses are disclosed, including generating a signal laser pulse from a seed fiber laser; using a pulse stretcher comprising an input and an output, wherein the signal laser pulse is coupled into the input of the pulse stretcher; using a Tm:ZBLAN fiber comprising an input and an output, wherein the stretched signal laser pulse from the output of the pulse stretcher is coupled into the input of the Tm:ZBLAN fiber; using a pump laser coupled to either the output or the input of the Tm:ZBLAN fiber to amplify the stretched signal laser pulse; and using a compressor comprising an input and an output, wherein the output of the Tm:ZBLAN fiber is coupled to the input of the compressor and the output of the compressor emits the amplified signal laser pulse. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: December 6, 2011
    Inventors: Jian Liu, Lihmei Yang
  • Publication number: 20110292498
    Abstract: A method and apparatus for providing a high peak power optical beam. The method includes interleaving pulse trains of different wavelengths and spatially and temporally overlapping the different wavelengths to produce an amplified output beam with very high peak power.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Bien Chann, Tso Yee Fan, Antonio Sanchez-Rubio, Steven J. Augst
  • Publication number: 20110292496
    Abstract: A laser device having a semiconductor gain element optically coupled to an optical fiber by using an angled anamorphic fiber lens and including a wavelength-selective front reflector. The laser device possesses improved output characteristics such as a highly linear laser emission output, even when the amplification section produces a high amount of gain. Such a laser source can also be used in various applications such as pump lasers for fiber amplifiers or frequency doubling systems.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 1, 2011
    Inventors: Stefan Mohrdiek, Evgeny Zibik, Hans Ulrich Pfeiffer, Boris Sverdlov
  • Patent number: 8059334
    Abstract: An optical fiber amplifier system is described and comprises a first optical fiber having a doped core with a first gain spectral profile upon being pumped. The first optical fiber is adapted to receive an optical signal from a light source. A second optical fiber has a doped core with a second gain spectral profile upon being pumped. The second optical fiber is optically coupled to the first optical fiber. A continuous wave pump light system is optically coupled to the fibers so as to store energy in the fibers for a subsequent amplification of the optical signal from the light source. An overlapping configuration is provided between the first gain spectral profile and the second gain spectral profile so as to reduce energy depletion in one of the optical fibers from amplification of spontaneous emission generated by another of the optical fibers.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: November 15, 2011
    Assignee: Institut National d'Optique
    Inventors: François Brunet, Pascal Deladurantaye, Yves Taillon
  • Patent number: 8054537
    Abstract: The present invention relates to a light source apparatus that has a base structure capable of generating SC light and further having a structure that enables the shaping of the spectral waveform of the SC light, power adjustment of the SC light, or adjustment of the frequency of repetition of the pulse train that contains the SC light. For example, a light source apparatus that enables shaping of spectral waveforms comprises a seed light source that emits seed light which is a pulse train or continuous light; an optical fiber that generates SC light from the seed light, and spectrum shaping means for completely or partially changing the spectral waveform of the SC light. The shaping of the spectral waveform changes the maximum power of the seed light by changing the optical coupling efficiency of the seed light source and optical fiber, for example, thereby suitably deforms the spectrum of the SC light.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: November 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshiaki Okuno
  • Publication number: 20110268389
    Abstract: A tiled Bragg grating (BG) includes a plurality of BGs that are paralleled and optically contacted to one another. Each BG includes an optically transparent substrate within a predetermined wavelength or wavelength range having a length dimension and a transverse dimension. The BGs have a grating period along their length dimension. The BGs have optical contact regions along edges in their transverse dimension where the BGs are optically contacted to one another.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: Lockheed Martin Corporation
    Inventor: Edward Miesak
  • Publication number: 20110267671
    Abstract: Two pulsed lasers (14) or sets of lasers propagate beams of pulses (20) having orthogonally related polarization states. A beam combiner (24) combines the orthogonal beams to form a combined beam propagating along a common beam path (16) to intersect an optical modulator (30) that selectively changes the polarization state of selected pulses of either beam to provide a composite beam (18) including similarly polarized pulses from the orthogonal beams. The composite polarized beam has a composite average power and a composite repetition rate that are greater than those provided by either laser. The optical modulator can also selectively control the polarization states of pulses from either laser to pass through or be blocked by a downstream polarizer (32). Additional modulators may facilitate pulse shaping of the pulses. The system is scalable by addition of sets of single lasers or pairs of lasers with beam combiners and modulators.
    Type: Application
    Filed: March 27, 2009
    Publication date: November 3, 2011
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Xiaoyuan Peng, William J. Jordens
  • Publication number: 20110261439
    Abstract: The present invention relates to a device and a method for selective transmission of an optical signal. It is an object of the present invention to provide a light modulator and a method for light modulation capable of selecting very short optical pulses of up to the femtosecond range with a low repetition frequency, wherein the repetition frequency can be variable in a range between several Hz up to the GHz range. To this end, the device has a first optical waveguide (3), a first drive circuit (14), a second optical waveguide (1, 2) and a second drive circuit (15), wherein the spacing between a switching element of the first drive circuit (14) and the first optical waveguide (3) is less than 3 mm, and the distance between a switching element of the second drive circuit (15) and the second optical waveguide (1, 2) is less than 3 mm, and the first optical waveguide (3) has a first absorber section (5), a pulse picker section (4) and a second absorber section (18).
    Type: Application
    Filed: October 30, 2009
    Publication date: October 27, 2011
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Andreas Klehr, Armin Liero
  • Patent number: 8045259
    Abstract: The invention relates to optical fibers for use in optical amplification of light, such as in optical fiber amplifiers and lasers and for use in delivery of high power light, in particular to a scheme for reducing amplified spontaneous emission at undesired wavelengths. The invention further relates to articles, methods and use. An object of the invention is achieved by a micro-structured optical fiber, which is adapted to guide light by the photonic bandgap effect and to have one or more pass bands and at least one stop-band over a wavelength range from ?stop1 to ?stop2. In an aspect of the invention, the at least one stop-band provides filter functions that suppress nonlinear effects.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: October 25, 2011
    Assignee: NKT Photonics A/S
    Inventors: Anders Petersson, Jes Broeng, René Engel Kristiansen
  • Publication number: 20110249319
    Abstract: An apparatus and method that provide optical isolation by permitting substantially all forward-propagating light into a delivery fiber from an optical amplifier and substantially preventing backward-traveling light from the delivery fiber entering the optical amplifier without the use of a conventional optical isolator. Eliminating the isolator improves efficiency and reduces cost. Some embodiments use a delivery fiber having a non-circular core in order to spread a single-mode signal into multiple modes such that any backward-propagating reflection is inhibited from reentering the single-mode amplifier.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 13, 2011
    Applicant: Lockheed Martin Corporation
    Inventor: Matthias P. Savage-Leuchs
  • Patent number: 8035891
    Abstract: A photonic bandgap fiber includes a core and a cladding that surrounds the core. In this photonic bandgap fiber, high refractive index portions which have a refractive index higher than that of a medium of the cladding are provided in the cladding so as to form a triangular lattice structure with a lattice constant ?, and the refractive index of the core is higher than the refractive index of the medium of the cladding and lower than the refractive index of the high refractive index portion. The coupling length between the core and the high refractive index portion that is closest to the core is longer than the coupling length between adjacent high refractive index portions, or a periodic structure formed by the high refractive index portions is not provided around the entirely of the area along the circumference of the core.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 11, 2011
    Assignee: Fujikura Ltd.
    Inventor: Ryuichiro Goto
  • Publication number: 20110235165
    Abstract: An amplification optical fiber with an optical component capable of efficiently absorbing pumping light and a fiber laser device including the same are provided. An amplification optical fiber with an optical component in a fiber laser device 1 includes: an amplification optical fiber 30 having a core 31 doped with an active element and a clad 32 through which pumping light for amplifying light to be amplified propagating through the core 31 propagates; and an optical component 50 including at least one optical fiber 53a to 53f having a first end coupled to a portion of the clad 32 and a second end coupled to at least another portion of the clad 32 at one end 35 of the amplification optical fiber 30.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: FUJIKURA LTD.
    Inventors: Ryo Sugimoto, Kuniharu Himeno
  • Publication number: 20110235166
    Abstract: A first optical fiber (12) having a first end and a second end is connected to a multimode second optical fiber (14) at the second end. The first optical fiber (12) outputs a substantially single mode optical beam at its second end. The multimode second optical fiber (14) converts light in the optical beam of single mode from the first optical fiber to light of multiple modes, and provides an output beam that has less diffractive spreading than that of a Gaussian beam.
    Type: Application
    Filed: October 14, 2009
    Publication date: September 29, 2011
    Applicant: The Arizona Board of Regents on Behalf of the Univerity of Arizona
    Inventors: Xiushan Zhu, Axel Schulzgen, Nasser Peyghambarian
  • Patent number: 8023538
    Abstract: Embodiments of parametric chirped pulse amplifiers seeded with a single pulse source which is subsequently split into a signal arm and a pump arm with appropriate signal and pump conditioning stages are disclosed, which advantageously improve the utility of high average power and/or high energy ultrafast amplification systems. In various embodiments, at least one of the signal or the pump conditioning stages is non-linear, allowing for a great range of seed sources to be utilized. Chirped pulse amplification in the pump conditioning stage may be used to simplify the parametric amplification of pulses with pulse widths of the order of 10 fs. The parametric pump can include coherently combined fiber arrays, hybrid fiber solid-state amplifiers, and/or cryogenically cooled solid-state amplifiers to increase or optimize the energy extraction of high average powers.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 20, 2011
    Assignee: IMRA America, Inc.
    Inventors: Andrius Marcinkevicius, Martin E. Fermann
  • Patent number: 8018936
    Abstract: A method and apparatus is shown for communicating Fibre Channel frames between distinct fabrics. A proxy zone is established in each fabric with a physically present local device and a remote fabric device. A router creates a proxy device in each fabric for every device not physically connected to the fabric. The proxy devices appear to be directly attached to the router. The router handles all address translations between proxy and physical addresses. When multiple routers are encountered, the ingress router does all address translation. No routing or encapsulation headers are used except when routing between two routers. The source ID and the originator exchange identifier are stored at the egress router for all link requests that require special handling. When replies pass through that router, the destination ID and originator exchange identifier are compared with the stored information. On a match, the reply is specially handled.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: September 13, 2011
    Assignee: Brocade Communications Systems, Inc.
    Inventor: David Peterson
  • Publication number: 20110210252
    Abstract: A pulse laser apparatus includes a laser configured to generate a pulse of a laser beam, a fiber amplifier, and a pulse compressor. The fiber amplifier includes a rare-earth doped fiber that exhibits normal dispersion at a wavelength of the laser beam generated from the laser. The pulse laser apparatus further includes a unit configured to give a loss to energy portions in a wavelength region corresponding to a zero-dispersion wavelength of the rare-earth doped fiber and/or a wavelength region longer than the zero-dispersion wavelength within a wavelength spectrum of the laser beam having been chirped in the fiber amplifier.
    Type: Application
    Filed: April 25, 2011
    Publication date: September 1, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Toshihiko Ouchi, Takashi Katagiri, Kentaro Furusawa
  • Patent number: 8008600
    Abstract: The fiber laser apparatus comprises an amplifying section for amplifying seed light by cladding-pumping, and has a structure for further using a residual component of pumping light for cladding-pumping in order to heat the object. A guiding optical fiber is provided between an amplifying optical fiber of the amplifying section and an output optical system converging the single-mode amplified seed light on the object, the guiding optical fiber serving to increase the degree of freedom in arranging the output optical system. The guiding optical fiber has a structure enabling the single-mode propagation of the amplified seed light outputted from the amplifying optical fiber and multimode propagation of the residual pumping light. Because the object is irradiated with the converged amplified seed light, while being heated with the residual pumping light outputted from the output optical system, even an object with a complex shape can be subjected to efficient laser processing.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: August 30, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuo Nakamae, Motoki Kakui, Shinobu Tamaoki
  • Patent number: 8009937
    Abstract: An optical resonator configured to be tuned using a charge-based memory cell includes an optical cavity configured to transmit light and receive injected charge carriers; a charge-based memory cell in proximity to or within the optical cavity, the memory cell containing a number of trapped charges which influence the resonant optical frequency of the optical resonator. A method of tuning an optical resonator includes applying a voltage or current to a charge-based memory cell to generate a non-volatile charge within the memory cell, the nonvolatile charge changing a resonant frequency of the optical resonator.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Mathai, Alexandre Bratkovski, Duncan Stewart
  • Publication number: 20110194166
    Abstract: Apparatus for combining laser radiation (1) 5 which apparatus comprises a seed laser (2), a splitter (3), a plurality of amplifier chains (4), a reference amplifier chain (7), detection means (5). demodulator means (6), and phase control means (12), wherein each of the amplifier chains (4) comprises at least one optical amplifier (11), optical radiation (17) emitted from the seed laser (2) is split into the plurality of amplifier chains (4) by the splitter (3).
    Type: Application
    Filed: October 23, 2009
    Publication date: August 11, 2011
    Inventors: Malcom Paul Varnham, Mikhail Nickolaos Zervas, Fabio Ghiringhelli, Andrew Thomas Harker
  • Patent number: 7995270
    Abstract: The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd: based lasers, especially Nd:YAG lasers.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 9, 2011
    Assignee: IMRA America, Inc.
    Inventors: Donald J. Harter, Martin E. Fermann, Ferenc Raksi, Almantas Galvanauskas
  • Publication number: 20110176203
    Abstract: The present invention relates to a laser apparatus capable of supplying laser beams from each of plural beam emitting ends constituting laser beam output ports, and realizes the overall low power consumption and low non-linearization. The laser apparatus comprises a seed light source, beam emitting ends, an intermediate optical amplifier, an optical branching device, and final-stage optical amplifiers. The number of beam emitting ends is greater than the number of seed light sources, and the final-stage optical amplifiers and the beam emitting ends correspond to each other one-on-one. The optical branching device includes an input port associated to the seed light source and plural output ports associated to the respective beam emitting ends so as to constitute a part of the light paths between the seed light source and the beam emitting ends.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinobu TAMAOKI, Motoki KAKUI
  • Patent number: 7982945
    Abstract: The present invention relates to an optical amplification module having a construction which effectively suppresses photodarkening, and to a laser light source including the same. The laser light source comprises a light source for outputting light to be amplified, and an optical amplification module. The optical amplification module comprises two types of optical amplification media having different rare earth element concentrations, and a pumping light source. The low concentration medium and the high concentration medium are disposed in the propagation direction of pumping light such that the population inversion of the low concentration medium is higher than that of the high concentration medium.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 19, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinobu Tamaoki, Motoki Kakui
  • Patent number: 7982943
    Abstract: The present invention relates to a light source apparatus that has a base structure capable of generating SC light and further having a structure that enables the shaping of the spectral waveform of the SC light, power adjustment of the SC light, or adjustment of the frequency of repetition of the pulse train that contains the SC light. For example, a light source apparatus that enables shaping of spectral waveforms comprises a seed light source that emits seed light which is a pulse train or continuous light; an optical fiber that generates SC light from the seed light, and spectrum shaping means for completely or partially changing the spectral waveform of the SC light. The shaping of the spectral waveform changes the maximum power of the seed light by changing the optical coupling efficiency of the seed light source and optical fiber, for example, thereby suitably deforms the spectrum of the SC light.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 19, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshiaki Okuno
  • Publication number: 20110157671
    Abstract: In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.
    Type: Application
    Filed: April 26, 2010
    Publication date: June 30, 2011
    Inventor: Jeffrey P. Koplow
  • Patent number: 7970248
    Abstract: Included among the many structures described herein are photonic bandgap fibers designed to provide a desired dispersion spectrum. Additionally, designs for achieving wide transmission bands and lower transmission loss are also discussed. For example, in some fiber designs, smaller dimensions of high index material in the cladding and large core size provide small flat dispersion over a wide spectral range. In other examples, the thickness of the high index ring-shaped region closest to the core has sufficiently large dimensions to provide negative dispersion or zero dispersion at a desired wavelength. Additionally, low index cladding features distributed along concentric rings or circles may be used for achieving wide bandgaps.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 28, 2011
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Xiang Peng
  • Publication number: 20110149285
    Abstract: An embodiment of the invention relates to an optical resonator. The optical resonator includes an input optical waveguide and a closed loop coupled to the input optical waveguide. The closed loop is adapted to receive light from the input optical waveguide, wherein the closed loop includes at least one hole formed within a portion of the closed loop.
    Type: Application
    Filed: May 29, 2008
    Publication date: June 23, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Xian Tong Chen, Shao Hua Tao, Guo-qiang Patrick Lo, Shi Yang Zhu
  • Publication number: 20110149384
    Abstract: A system is provided for amplification of laser light, the system having: a plurality of non-silica optical fibers, each the non-silica optical fiber disposed within a sheath; each the non-silica optical fiber being doped with a dopant such that the non-silica fiber has a low non-linear effect; a light source, directing a light beam into a first the non-silica optical fiber; heat dissipating components disposed about the plurality of non-silica optical fibers forming a package; and the package being not greater than 100 cm3.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Applicant: BAE SYSTEMS Information & Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, John C. McCarthy
  • Publication number: 20110149381
    Abstract: A gain-clamped semiconductor optical amplifier according to the present invention has a pair of DBR areas 2, 3 disposed in sandwiching relation to gain area 1 for amplifying guided light. A portion of a waveguide of gain area 1 comprises MMI waveguide 11.
    Type: Application
    Filed: December 26, 2003
    Publication date: June 23, 2011
    Inventor: Hiroshi Hatakeyama
  • Publication number: 20110149383
    Abstract: There are provided an amplification optical fiber, and an optical fiber amplifier and a resonator using the same capable of outputting light of high beam quality even when a higher-order mode that is axially symmetric is excited in addition to LP01 mode. An amplification optical fiber 50 includes: a core 51; a clad 52 coating the core 51; and an outer clad 53 coating the clad 52, wherein the core 51 has a larger refractive index than the clad 52, the core 51 allows light having a predetermined wavelength to propagate in at least LP01 mode and LP02 mode, and in the core 51, active element that stimulates to emit light of the predetermined wavelength is doped at a higher concentration at a position where an intensity of the LP02 mode becomes zero than center of the core 51.
    Type: Application
    Filed: November 5, 2010
    Publication date: June 23, 2011
    Applicant: FUJIKURA LTD.
    Inventors: Masahiro Kashiwagi, Kensuke Shima
  • Publication number: 20110149382
    Abstract: A fiber, such as a photonic bandgap fiber, is provided, the fiber including a core and a cladding. The core can extend longitudinally and can have a gain medium configured to provide laser amplification to laser radiation propagating along the core. For example, the gain medium may include a dopant configured to provide amplification, when activated by one or more modes of excitation radiation, of laser radiation propagating along said core. The cladding can be radially exterior to the core, and can be configured to provide a low-loss propagation the one or more modes of excitation radiation and a lossy propagation of all modes of laser radiation along the core, the lossy propagation higher than the low-loss propagation, in particular when the one or more modes of excitation radiation is substantially absent from the core. Associated methods and apparatuses are also provided.
    Type: Application
    Filed: July 8, 2010
    Publication date: June 23, 2011
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventor: Tsinghua Her
  • Patent number: 7965916
    Abstract: There is a problem that in the connection portion between a rare-earth-doped double clad fiber and a single mode fiber, pumping light leaks in a portion having the coating, and the fiber generates heat partially with this energy and deteriorates. Also, there is another problem that the output is limited as the oscillation wavelength becomes shorter. Accordingly, in a laser light source device formed by combining a fiber laser and a fiber amplifier, by using the residual pumping light in the fiber laser as the pumping light in the fiber amplifier, it is possible to enhance the reliability by preventing the fiber deterioration caused by the residual pumping light. Further, by amplifying the output in the fiber amplifier in the latter stage without any limitation on the pumping light output, it is possible to increase an output of the oscillation light.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Furuya, Kazuhisa Yamamoto, Kiminori Mizuuchi
  • Publication number: 20110141555
    Abstract: Embodiments of auto-cladded optical fibers are described. The fibers may have a refractive index profile having a small relative refractive index change. For example, the fiber may include an auto-cladded structure having, e.g., a trough or gradient in the refractive index profile. A beam of light propagating in the fiber may be guided, at least in part, with the auto-cladded structure. In some embodiments, the optical fiber may be all glass. In some embodiments, the optical fiber may include a large-core or an ultra large-core.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 16, 2011
    Applicant: IMRA America, Inc.
    Inventors: Martin E. Fermann, Liang Dong
  • Publication number: 20110142083
    Abstract: An ytterbium-doped optical fiber includes: a core which contains at least ytterbium, aluminum, and phosphorus; and a cladding which encircles the core, wherein an aluminum oxide equivalent concentration of the aluminum in the core is 0.2 mol % or more, a diphosphorus pentaoxide equivalent concentration of the phosphorus is higher than the aluminum oxide equivalent concentration, and the core either does not contain germanium or contains less than 1.1 mol % of germanium in a germanium dioxide equivalent concentration.
    Type: Application
    Filed: February 3, 2011
    Publication date: June 16, 2011
    Applicant: FUJIKURA LTD.
    Inventors: Shoji TANIGAWA, Teruno NAKAGUMA, Tomofumi ARAI, Kentaro ICHII