Particular Pumping Type (e.g., Electrical, Optical, Nuclear, Magnetic, Etc.) Patents (Class 359/345)
  • Patent number: 10348057
    Abstract: A high power diode laser system selects the central wavelength and narrows the spectral bandwidth by employing one or more atomic line filters (ALFs) as the wavelength selective element in the external cavity to optimize high power multi-mode operation. The high power diode laser system may include multiple diode laser sources, such as multiple diode laser bar stacks, providing multiple output beams. In an “in-line” or “straight through” configuration, a partially reflective surface terminates the external cavity to feed beam power back through the external cavity and to provide one or more output beams. In a “splitter” or “power divider” configuration, a highly reflective surface terminates the external cavity and one or more beam splitters between the diode laser source(s) and the ALF are used to provide one or more output beams. An afocal telescope may be used to image the diode laser source(s) at the reflective surface terminating the external cavity.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 9, 2019
    Assignee: UNIVERSITY OF NEW HAMPSHIRE
    Inventors: William Hersman, Michael Hersman
  • Patent number: 10214147
    Abstract: A rearview mirror assembly includes a housing, a bezel and an electro-optic mirror element. The electro-optic mirror element includes a first substantially transparent substrate having an edge extending around at least a portion of a perimeter of the first substantially transparent substrate and a second substrate having a second edge extending around at least a portion of a perimeter of the second substrate and a fourth surface. The first substantially transparent substrate and the second substrate define a cavity therebetween. An electro-optic material is disposed within the cavity. The edge of the first substantially transparent substrate and the second edge of the second substrate are coupled to at least one of the bezel and the housing.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: February 26, 2019
    Assignee: GENTEX CORPORATION
    Inventors: William L. Tonar, Joel A. Stray, Danny L. Minikey, Jr., Mathias R. Fox, Kenneth R. Filipiak, Niels A. Olesen
  • Patent number: 9997428
    Abstract: An apparatus, a semiconductor package including the apparatus and a method are disclosed. The apparatus includes a substrate, pluralities of vias disposed in the substrate. The vias are disposed in a hexagonal arrangement.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 12, 2018
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Marshall Maple, Ashish Alawani, Li Sun, Sarah Haney
  • Patent number: 9887076
    Abstract: A system for controlling convective flow in a light-sustained plasma includes an illumination source configured to generate illumination, a bulb-less gas containment structure, and a collector element arranged to focus illumination from the illumination source into the volume of gas in order to generate a plasma within the volume of gas contained within the bulb-less gas containment structure. Further, the plasma is generated within a concave region of the collector element, where the collector element includes an opening through the collector element for propagating a portion of a plume of the plasma from a first region of the bulb-less gas containment structure to a second region of the bulb-less gas containment structure, wherein the first region of the bulb-less gas containment structure and the second region of the bulb-less gas containment structure are at least partially separated by a surface of the collector element.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: February 6, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Matthew Derstine, Kenneth P. Gross, David W. Shortt, Wei Zhao, Anant Chimmalgi, Jincheng Wang
  • Patent number: 9843397
    Abstract: An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: December 12, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Feng Wang, Xuejin Yan, Bo Gao, Frank Effenberger
  • Patent number: 9835420
    Abstract: The invention relates to an optronic device (16) capable of emitting a plurality of wavelengths comprising: an observation camera (24), and a laser unit (26) for each wavelength of the plurality of wavelengths, wherein each laser unit (26) comprises a laser source (36) capable of emitting a laser beam at the wavelength and an optical system (38) having a maximal transmission coefficient for the wavelength.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: December 5, 2017
    Assignee: THALES
    Inventors: Jean-Claude Fontanella, Pascal Rousseau
  • Patent number: 9390902
    Abstract: A system for controlling convective flow in a light-sustained plasma includes an illumination source configured to generate illumination, a plasma cell including a bulb for containing a volume of gas, a collector element arranged to focus illumination from the illumination source into the volume of gas in order to generate a plasma within the volume of gas contained within the bulb. Further, the plasma cell is disposed within a concave region of the collector element, where the collector element includes an opening for propagating a portion of a plume of the plasma to a region external to the concave region of the collect element.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: July 12, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Matthew Derstine, Kenneth P. Gross, David W. Shortt, Wei Zhao, Anant Chimmalgi, Jincheng Wang
  • Patent number: 9281899
    Abstract: An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: March 8, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Feng Wang, Xuejin Yan, Bo Gao, Frank Effenberger
  • Patent number: 9172467
    Abstract: A Raman pump may include a dual output laser configured to output two optical signals; a delay interferometer configured to delay a first of the two optical signals to decorrelate the two optical signals from each other; and a combiner configured to combine the delayed first of the two optical signals and a second of the two optical signals to provide a Raman amplification signal.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: October 27, 2015
    Assignee: Infinera Corporation
    Inventors: Mehrdad Ziari, Scott Corzine, Masaki Kato, Michael Francis Van Leeuwen, Radhakrishnan L. Nagarajan, Matthew L. Mitchell, Fred A. Kish, Jr.
  • Publication number: 20140300951
    Abstract: A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulses or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 9, 2014
    Inventors: Michael J. Messerly, Jay W. Dawson, Christopher P.J. Barty, David J. Gibson, Matthew A. Prantil, Eric Cormier
  • Publication number: 20140293404
    Abstract: An apparatus includes a pulse conditioner and an amplifier. The pulse conditioner configured modifies a temporal intensity profile of an input laser pulse, thereby creating a conditioned laser pulse having conditioned temporal intensity profile with a misfit parameter, M, of less than 0.13, where: M 2 = ? [ ? ? ? 2 - ? ? Pfit ? 2 ] 2 ? ? t ? ? ? ? 4 ? ? t , where |?(t)|2 represents the pulse temporal intensity profile of the conditioned laser pulse and |?Pfit(t)|2 represents a parabolic fit of the conditioned laser pulse. The amplifier increases the power of the conditioned laser pulse creating an amplified laser pulse. In a method a temporal intensity profile of an input laser pulse having a pulse duration of at least 1 ps is modified to create a conditioned laser pulse, which is amplified to create an amplified laser pulse, which is temporally compressed to generate a compressed laser pulse having a compressed pulse duration less than the input pulse duration.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 2, 2014
    Applicant: EOLITE SYSTEMS
    Inventors: Simonette Pierrot, Francois Salin
  • Publication number: 20140293405
    Abstract: An optical parametric amplification device and method. The method includes providing a pump pulse having a pump pulse duration, providing a chirped seed pulse having a seed pulse duration, sequentially passing the pump and seed pulses through amplification stages, wherein the pump and seed pulses are coupled into the amplification stages with varying mutual temporal overlap and the seed pulse is amplified at each amplification stage, an amplified signal pulse is provided by the seed pulse after amplification in a last ampli-fication stage, the seed pulse duration is longer than the pump pulse duration, the mutual temporal overlap of the pump and seed pulses is varied with different temporal ranges of the seed pulse amplified at each amplification stage. Compared with the seed pulse, the signal pulse has an increased energy in the spectral regions determined by the temporal overlap of the seed pulse with the pump.
    Type: Application
    Filed: August 1, 2012
    Publication date: October 2, 2014
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Yunpei Deng, Ferenc Krausz
  • Publication number: 20140268313
    Abstract: A high power pulsed light generation device includes: a master clock generator that generates a master signal; an optical oscillator that generates a pulsed light synchronized with the master clock signal; an optical amplifier that amplifies the pulsed light emitted from the optical oscillator to output a high power pulsed light; a pump semiconductor laser that generates a pulsed light for pumping the optical amplifier; a driving unit that drives the pump semiconductor laser by a pulsed driving current synchronized with the master clock signal; and a control unit which controls the driving unit and controls a gain of the optical amplifier for each pulse by changing a pulse width of the pulsed drive current from driving unit so as to change the pulse width of the pumping pulsed light.
    Type: Application
    Filed: January 17, 2014
    Publication date: September 18, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Michihiro NAKAI
  • Patent number: 8837885
    Abstract: The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hong Seok Seo, Bong Je Park, Joon Tae Ahn, Jung-Ho Song
  • Publication number: 20140218791
    Abstract: Method and system for emitting optical pulses in view of a desired output energy of the optical pulses and a variable external trigger signal, using a laser system having a seed laser oscillator optically coupled to one or more cascaded optical amplification stages. For each amplification stage, a plurality of sets of pump pulse parameters are provided, each associated with specific values of the output energy and the trigger period. Proper pumping parameters associated with the received desired value of the output energy and the trigger period of the received trigger signal are selected for each amplification stage, which is pumped accordingly before a seed optical pulse is launched through the system.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Inventors: Louis Desbiens, Michel Jacob
  • Publication number: 20140198375
    Abstract: A method for amplifying optical signals includes determining a source optical signal, generating a first resultant signal including a pump signal and the source optical signal, sending the first resultant signal through a non-linear element to generate a second resultant signal including the first resultant signal and an idler signal, and sending the second resultant signal through a non-linear element to perform phase-sensitive amplification. The phase-sensitive amplification results in a third resultant signal including an amplified source optical signal, the pump signal, and the idler signal. The method also includes filtering the third resultant signal to remove the pump signal and the idler signal and outputting the amplified source optical signal.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Jeng-Yuan Yang, Motoyoshi Sekiya, Yoichi Akasaka
  • Publication number: 20140177033
    Abstract: The present invention relates to a pulse laser device, and more particularly, to a pulse laser device which can be operated in a burst mode, in which the output of a low-output laser generator is adjusted so as to enable the uniform control of the profile of the peak output of a final output optical pulse train, and in a variable burst mode, in which the profile of the final output optical pulse train can be controlled into an arbitrary waveform.
    Type: Application
    Filed: October 28, 2013
    Publication date: June 26, 2014
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young-Chul NOH, Woojin SHIN, Bong-Ahn YU, Yeung Lak LEE, Changsoo JUNG
  • Patent number: 8761211
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 24, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Publication number: 20140055844
    Abstract: The invention relates to an optical pumping device comprising: a fibre light source emitting controlled radiation having a very high transverse modal quality, with a wavelength shorter than 1000 nm; at least one element consisting of an amplifying material doped with a rare earth dopant; means for introducing a pumping light into said doped amplifying material element; and means for cooling said amplifying material. Said optical pumping device is characterised in that the pumping light is emitted by the fibre light source with an average power of higher than 2 W and a modal quality characterised by an M2<5 factor.
    Type: Application
    Filed: February 16, 2012
    Publication date: February 27, 2014
    Applicant: UNIVERSITE BORDEAUX 1
    Inventors: Eric Cormier, Jérôme Lhermite, Dominique Descamps, Guillaume Machinet
  • Publication number: 20140055845
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 27, 2014
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20130308179
    Abstract: In one aspect, an optical gain device is provided. The optical gain device comprises a metallic film and an optical gain medium. The metallic film has a plurality of slits therethrough. The plurality of slits are configured such that the film selectively and resonantly transmits light over a preselected frequency range. The optical gain medium is situated within or substantially near at least one slit of the plurality of slits.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: Lucent Technologies Inc.
    Inventors: Gang Chen, Ronen Rapaport
  • Patent number: 8574468
    Abstract: A benzo-fused-heterocyclic elongated dye having a superior molecular hyperpolarizability and yet having an acceptably-low optical absorbance of light near 1550 nm in wavelength, which is an important optical communication band for telecommunication applications.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 5, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Matthew C. Davis, Andrew P. Chafin, Geoffrey A. Lindsay
  • Patent number: 8574467
    Abstract: A benzo-fused-heterocyclic elongated dye having a superior molecular hyperpolarizability and yet having an acceptably-low optical absorbance of light near 1550 nm in wavelength, which is an important optical communication band for telecommunication applications.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 5, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Matthew C. Davis, Andrew P. Chafin, William Lai, Geoffrey A. Lindsay
  • Patent number: 8547632
    Abstract: An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: October 1, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Andy J. Bayramian
  • Publication number: 20130222890
    Abstract: For the purpose of reducing the cost and power consumption of an optical amplification system provided with an optical amplifier, an excitation light distribution device of the present invention comprises an excitation light source output unit which outputs excitation light, an optical branching unit with variable branching ratio which branches and outputs the excitation light, and a control unit which, on the basis of information on an optical signal to be amplified by the excitation light outputted by the optical branching unit, controls at least either the branching ratio of the optical branching unit or the optical output power of the excitation light source output unit.
    Type: Application
    Filed: September 20, 2011
    Publication date: August 29, 2013
    Applicant: NEC CORPORATION
    Inventor: Masahiro Sakauchi
  • Publication number: 20130215496
    Abstract: A device and related fabrication method is provided for an organic/inorganic hybrid optical amplifier with a function of converting infrared light to visible light. The hybrid device integrates an inorganic heterojunction phototransistor (HPT), an embedded metal electrode mirror with a dual function as an optical mirror and charge injection electrode, and an organic light emitting diode (OLED). This integrated optical amplifier is capable of amplifying the incoming light and producing light emission with a power greater than that of the incoming signal. In the second aspect of the invention, the optical amplifier is capable of detecting an incoming infrared electromagnetic wave and converting the wave back to a visible light wave. The optical device has dual functions of optical power amplification and photon energy up-conversion. The optical amplifier device consists of an InGaAs/InP based HPT structure as photodetector, gold-coated metals as embedded mirror and a top-emission OLED.
    Type: Application
    Filed: August 16, 2011
    Publication date: August 22, 2013
    Inventors: Dayan Ban, Zhenghong Lu, Jun Chen
  • Publication number: 20130121689
    Abstract: An optical amplifying device includes an optical amplification medium configured to be excited by excitation light and amplify signal light, a light loss detector configured to detect a light loss of an optical component optically connected to the optical amplification medium in the amplifying device, and a noise figure deterioration detector configured to detect, based on the light loss detected by the light loss detector, deterioration of a noise figure of the optical amplification medium.
    Type: Application
    Filed: August 30, 2012
    Publication date: May 16, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Tomoaki TAKEYAMA
  • Publication number: 20130114130
    Abstract: Devices and techniques are disclosed for amplifying a plurality of optical signals using a single pump laser coupled to a set of optical splitters arranged in a binary tree configuration for powering a plurality of fiber optical amplifying path circuits (FOAP circuits) each configured to amplify one of the plurality of optical signals, where each of the optical splitters at the leaves of the binary tree is coupled to one of the plurality of FOAP circuits to provide the power required to amplify the optical signal.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Inventors: LEONTIOS STAMPOULIDIS, EFSTRATIOS KEHAYAS
  • Publication number: 20130010351
    Abstract: A system for conversion or amplification using quasi-phase matched four-wave-mixing includes a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform Raman-active or uniform Kerr-nonlinear material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the Raman susceptibility or Kerr susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase-matched four-wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for four-wave-mixing.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 10, 2013
    Inventors: Nathalie Vermeulen, John Edward Sipe, Hugo Jean Arthur Thienpont
  • Publication number: 20120320935
    Abstract: An optical fibre laser or amplifier comprising an optical fibre and a pump radiation source configured to generate pump radiation which is received through an input end of the optical fibre. The optical fibre may include a doped core which is configured to guide the pump radiation and to generate or amplify and guide signal radiation when pump radiation passes through it. The optical fibre laser or amplifier may include a first reflector configured to reflect pump radiation and further comprises a second reflector configured to selectively reflect a portion of pump radiation. The selection of the portion of pump radiation to be reflected by the second reflector depends upon one or more of: the spatial position of the pump radiation, the direction of the pump radiation, and the polarisation of the pump radiation.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: LASER QUANTUM INC.
    Inventor: Alan Cox
  • Publication number: 20120243076
    Abstract: Embodiments of the present invention disclose a method, an apparatus, and a system for amplifying a burst optical signal. The method includes: monitoring an input status of a signal light; when no signal light is input, controlling output power of a pump light so that a gain medium has output optical power and the output optical power is less than a maximum optical power that the gain medium is capable of outputting when a signal light is input; inputting the pump light into a wavelength division multiplexer so that the wavelength division multiplexer combines the signal light and the pump light and inputs the combined light into the gain medium. With the preceding manners, when no signal light is input, the power of the pump light is controlled.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Feng DING, Hong LIU
  • Publication number: 20120243563
    Abstract: A compact solid state laser that generates multiple wavelengths and multiple beams that are parallel, i.e., bore-sighted relative to each other, is disclosed. Each of the multiple laser beams can be at a different wavelength, pulse energy, pulse length, repetition rate and average power. Each of the laser beams can be turned on or off independently. The laser is comprised of an optically segmented gain section, common laser resonator with common surface segmented cavity mirrors, optically segmented pump laser, and different intra-cavity elements in each laser segment.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: United States of America, as represented by the Secretary of the Army
    Inventor: Lew Goldberg
  • Patent number: 8259391
    Abstract: The present invention relates to an amplification device comprising an amplifying medium (2) of parallelepiped shape and pumping means comprising lamps (5) emitting first radiation in a frequency range useful for the amplification and second radiation capable of degrading the amplifying medium. It is characterized in that lamps (5) are integrated into a jacket (3) that absorbs at least some of the second radiation.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 4, 2012
    Assignee: Thales
    Inventor: Stéphane Branly
  • Publication number: 20120212804
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 23, 2012
    Inventors: Samvel Sarkisyan, Paul B. Lundquist, Eric A. Wilson, Kyle Christine Heideman
  • Publication number: 20120212800
    Abstract: An optical receiving apparatus includes an optical amplification medium that receives an excitation light and an input light, an optical loss medium that receives an output light from the optical amplification medium, a monitor that detects a power level of an output light from the optical loss medium, a controller that controls a power of the excitation light such that the power level of the output light detected by the monitor is at a target value, and a receiver that receives the output light from the optical loss medium, the output light not being optically amplified.
    Type: Application
    Filed: January 23, 2012
    Publication date: August 23, 2012
    Applicant: FUJITSU LIMITED
    Inventor: Masao NAKATA
  • Patent number: 8248687
    Abstract: There is provided a wide-band optical amplifier (10) that is capable of amplifying a wide-band signal. The wide-band optical amplifier (10) includes a first amplifier (NOPA1) that emits, based on a to-be-amplified light beam having a predetermined range of wavelengths and a first pump beam (L2) having a first wavelength, the to-be-amplified light beam having a first range of amplified wavelengths, where the first range is a part of the predetermined range, and a second amplifier (NOPA2) that emits, based on the to-be-amplified light beam having the first range of amplified wavelengths and a second pump beam (L3) having a second wavelength different from the first wavelength, the to-be-amplified light beam having a second range of amplified wavelengths, where the second range is different from the first range.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 21, 2012
    Assignee: Nikon Corporation
    Inventor: Kumiko Nishimura
  • Publication number: 20120162749
    Abstract: It is disclosed a method for driving a laser diode such as to enable mitigation or elimination of so called spiking effects related to the number of injected carriers in the laser overshooting the equilibrium value at the beginning of the lasing process. In this manner, among other things, the efficiency of a master oscillator power amplifier that may be utilized in range finding applications will be improved. It is further disclosed an optical pulse transmitter comprising such a laser diode.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 28, 2012
    Applicant: TRIMBLE AB
    Inventors: Yuri Gusev, Mikael Hertzman, Evgeny Vanin, Christian Grässer
  • Publication number: 20120105948
    Abstract: A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Andrew James Bayramian, Alvin Charles Erlandson, Kenneth Rene Manes, Mary Louis Spaeth, John Allyn Caird, Robert J. Deri
  • Patent number: 8139287
    Abstract: Apparatus and methods are disclosed for amplifying an energy beam such as a beam of laser light or a charged particle beam. An exemplary method includes providing a liner having a first end, a second end, a liner axis, and a lumen extending along the liner axis and being bound by interior reflective walls of the liner. An energy beam is introduced into the first end of the liner. The beam propagates through the lumen from the first end to the second end as the beam reflects multiple times from the interior walls of the liner. Meanwhile, an implosive force is applied to the liner. The implosive force compresses the interior walls implosively toward the liner axis in a manner that amplifies the beam as the beam propagates through the lumen of the imploding liner. The amplified energy beam can be used for any of various purposes including ignition of a fusion target.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 20, 2012
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventor: Friedwardt M. Winterberg
  • Publication number: 20120026579
    Abstract: Methods and systems for resonant optical amplification are disclosed, including generating electromagnetic radiation from a seed laser; coupling the seed laser electromagnetic radiation into an etalon, wherein the etalon comprises a gain medium comprising a gain, a length, and a roundtrip gain, wherein the gain medium is positioned between a first reflective surface comprising a first power reflectivity and a second reflective surface comprising a second power reflectivity; optically or electrically pumping the gain medium using a flash lamp, an arc lamp, a laser, an electric glow discharge, or an electric current to generate an amplified seed laser electromagnetic radiation; and coupling out the amplified seed laser electromagnetic radiation from the etalon. Other embodiments are described and claimed.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Peng Wan, Lihmei Yang
  • Patent number: 8027082
    Abstract: A Raman amplifier provided with a pump source outputting a pumping light; a rare-earth doped fiber inputting the pumping light and outputting an excitation light; and a guiding unit guiding the excitation light to an optical fiber to a direction opposite to which a signal light propagates in the optical fiber. Also a Raman amplifier provided with a plurality of pump sources outputting a plurality of pumping lights; a plurality of rare-earth doped fibers inputting the each of the plurality of pumping lights and outputting a plurality of excitation lights; a guiding unit guiding the plurality of excitation lights to an optical fiber to a direction opposite to which a signal light propagates in the optical fiber.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: September 27, 2011
    Assignee: Fujitsu Limited
    Inventors: Shinichirou Muro, Tomoaki Takeyama
  • Publication number: 20110200063
    Abstract: An optical amplifier for pulsed laser with short or ultra-short and energetic pulses includes an optical pumping source for generating a pump wave, an elongate amplifying medium including an input interface for receiving an optical signal to be amplified, the medium being able to amplify the optical signal propagating along the amplifying medium and to extract an amplified signal and an optical system for coupling the pump wave in the amplifying medium so as to pump the amplifying medium longitudinally. The amplifying medium has a minimum transverse dimension ?3 and the optical system focuses the pump wave inside the gain medium, the focused pump wave having a transverse dimension ?6 which is smaller than the dimension ?3 of the medium and a smaller numerical aperture than the numerical aperture of the medium, so that the pump wave propagates freely over a part of the amplifying medium and then in a confined manner over a part of the amplifying medium.
    Type: Application
    Filed: October 15, 2009
    Publication date: August 18, 2011
    Applicant: FIBERCRYST
    Inventors: Francois Daniel Balembois, Patrick Marcel Georges, Damien Sangla, Julien Didierjean
  • Publication number: 20110176202
    Abstract: An optical amplifier amplifies signal light and includes a pump light source that outputs pump light of a wavelength different from that of the signal light; a combining unit that combines the signal light and the pump light output by the pump light source, to output combined light; an amplifying unit that has non-linear optical media that transmit the combined light to amplify the signal light, the amplifying unit further removing, in the non-linear optical media, idler light generated from the signal light and the pump light, and outputting light that results; and an extraction filter that extracts the signal light from the light output by the amplifying unit.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 21, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Tomoyuki KATO, Fumio Futami, Shigeki Watanabe
  • Patent number: 7963958
    Abstract: The present invention includes an apparatus and method of surgical ablative material removal “in-vivo” or from an outside surface with a short optical pulse that is amplified and compressed using either an optically-pumped-amplifier and air-path between gratings compressor combination or a SOA and chirped fiber compressor combination, wherein the generating, amplifying and compressing are done within a portable system.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: June 21, 2011
    Assignee: Raydiance, Inc.
    Inventors: Richard Stoltz, Jeff Bullington
  • Patent number: 7965916
    Abstract: There is a problem that in the connection portion between a rare-earth-doped double clad fiber and a single mode fiber, pumping light leaks in a portion having the coating, and the fiber generates heat partially with this energy and deteriorates. Also, there is another problem that the output is limited as the oscillation wavelength becomes shorter. Accordingly, in a laser light source device formed by combining a fiber laser and a fiber amplifier, by using the residual pumping light in the fiber laser as the pumping light in the fiber amplifier, it is possible to enhance the reliability by preventing the fiber deterioration caused by the residual pumping light. Further, by amplifying the output in the fiber amplifier in the latter stage without any limitation on the pumping light output, it is possible to increase an output of the oscillation light.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Furuya, Kazuhisa Yamamoto, Kiminori Mizuuchi
  • Publication number: 20110122482
    Abstract: Fiber-laser light is Raman shifted to eye-safer wavelengths prior to spectral beam combination, enabling a high-power, eye-safer wavelength directed-energy (DE) system. The output of Ytterbium fiber lasers is not used directly for spectral beam combining. Rather, the power from the Yb fiber lasers is Raman-shifted to longer wavelengths, and these wavelengths are then spectrally beam combined. Raman shifting is most readily accomplished with a “cascaded Raman converter,” in which a series of nested fiber cavities is formed using fiber Bragg gratings.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 26, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventor: Roy D. Mead
  • Publication number: 20110090558
    Abstract: The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 21, 2011
    Inventors: Aravanan Gurusami, Douglas Llewellyn Butler, Timothy K. Zahnley, Scott R. Dahl, Peter G. Wigley
  • Publication number: 20110043897
    Abstract: A system for optical communication including an optical amplifier card configured to receive a plurality of pump laser modules. The optical amplifier card includes a receptacle configured to receive the pump laser module, a connector configured to couple the pump laser module to the optical amplifier card, a monitor configured to measure at least the optical output power of the pump laser module, and a pump combiner communicatively coupled to the monitor. The pump combiner is configured to receive a signal from the monitor indicating a drop in the output power of a first pump laser module below a threshold level, and, in response to the signal, switch the optical amplifier card from using the optical power of the first pump laser module to using the optical power of a second pump laser module without substantially affecting normal operation of the optical amplifier card.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 24, 2011
    Inventors: Youichi Akasaka, Takao Naito
  • Patent number: RE42499
    Abstract: An efficient, powerful and reliable system for amplifying optical pulses. Seed-pulses are generated by a seed-pulse source and are transmitted to an optical amplifier for amplification. The power for the amplification is provided by a Q-switched, diode-pumped, intracavity-doubled pump laser.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: June 28, 2011
    Assignee: Coherent, Inc.
    Inventors: Jeremy Weston, William Eugene White, Leigh John Bromley, Frank Godwin Patterson
  • Patent number: RE45177
    Abstract: Use of quasi-phase-matched (QPM) materials for parametric chirped pulse amplification (PCPA) substantially reduces the required pump peak power and pump brightness, allowing exploitation of spatially-multimode and long duration pump pulses. It also removes restrictions on pump wavelength and amplification bandwidth. This allows substantial simplification in pump laser design for a high-energy PCPA system and, consequently, the construction of compact diode-pumped sources of high-energy ultrashort optical pulses. Also, this allows elimination of gain-narrowing and phase-distortion limitations on minimum pulse duration, which typically arise in a chirped pulse amplification system. One example of a compact source of high-energy ultrashort pulses is a multimode-core fiber based PCPA system. Limitations on pulse energy due to the limited core size for single-mode fibers are circumvented by using large multimode core.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 7, 2014
    Assignee: IMRA America, Inc.
    Inventors: Almantas Galvanauskas, Donald Harter, Gregg Sucha