Multiple Pass Patents (Class 359/347)
  • Publication number: 20090052016
    Abstract: Several examples of double-pass fiber amplifiers including a polarization maintaining (PM) gain-fiber are disclosed. In each example, input and twice-amplified output are separated by an all-fiber, polarization-maintaining polarization splitter combiner. In one example, light is first passed through a gain fiber in a first polarization direction and then is passed through the gain fiber in a second polarization direction. The light exits the splitter combiner in the first polarization direction.
    Type: Application
    Filed: September 21, 2007
    Publication date: February 26, 2009
    Inventors: Andrei Starodoumov, Paul Crittenden
  • Patent number: 7440180
    Abstract: An integrated device is disclosed which has a substrate and a Rare-Earth Doped Semiconductor layer (REDS layer) integrated with the substrate. The REDS layer is patterned to define one or more optically amplifying structures each having a first I/O port for receiving or outputting a first optical signal, and at least one pump energy receiving port for receiving pumping energy in the form of at least one of electrical pump energy and/or optical pump energy. In one particular set of embodiments, at least one of the optical amplifying structures is a Raman type amplifier where a corresponding pump energy receiving port is structured for receiving Raman type pumping energy having an effective frequency which is about one optical phonon frequency higher than a signal frequency of an optical signal supplied at a corresponding I/O port.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: October 21, 2008
    Inventor: Yin S. Tang
  • Patent number: 7440181
    Abstract: Several examples of double-pass fiber amplifiers including a polarization maintaining (PM) gain-fiber are disclosed. In each example, input and twice-amplified output are separated by an all-fiber, polarization-maintaining polarization splitter combiner. One example includes a double-pass fiber amplifier which relies on a double pass through a 45 degree fiber based rotator to rotate the polarization of the light.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: October 21, 2008
    Assignee: Coherent, Inc.
    Inventors: Andrei Starodoumov, Paul Crittenden
  • Publication number: 20080225384
    Abstract: A high extraction efficiency laser system. The novel laser system includes a laser amplifier and a laser source adapted to provide a laser beam to the amplifier such that polarization states for incident and reflected light within the amplifier are perpendicular one to another. In an illustrative embodiment, the laser beam is input to the amplifier such that the beam reflects back and forth between the side walls of the amplifier with an angle of incidence of about 45 degrees, and the laser beam is linearly polarized in the plane of incidence. This arrangement reduces interference fringes in the amplifier. In an alternative embodiment, the system includes an aberrator adapted to add time-varying aberrations in the laser beam at a rate exceeding an inversed lifetime of an inverted population in the amplifier to increase spatial homogenization of saturation and extraction patterns in the amplifier.
    Type: Application
    Filed: April 18, 2008
    Publication date: September 18, 2008
    Inventors: Alexander A. Betin, Vladimir V. Shkunov
  • Publication number: 20080159346
    Abstract: The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 3, 2008
    Inventors: James F. Brennan, Laurent Vaissie, Michael Mielke
  • Patent number: 7289263
    Abstract: Several examples of double-pass fiber amplifiers including a polarization maintaining (PM) gain-fiber are disclosed. In each example, input and twice-amplified output are separated by an all-fiber, polarization-maintaining polarization splitter combiner. The examples include double-pass fiber amplifiers not including any bulk components and double pass fiber amplifiers including a bulk component or a Faraday rotating mirror located in a position in the amplifier wherein the component is exposed only to radiation amplified on the first pass through the gain-fiber.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: October 30, 2007
    Assignee: Coherent, Inc.
    Inventors: Andrei Starodoumov, Paul Crittenden
  • Patent number: 7242520
    Abstract: A method for optimizing multipass laser amplifier output utilizes a spectral filter in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the filter is placed such that early passes intersect the filter while later passes bypass it. The filter position may be adjust offline in order to adjust the number of passes in each category. The filter may be optimized for use in a cryogenic amplifier.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 10, 2007
    Assignee: The Regents of the University of Colorado
    Inventors: Sterling J. Backus, Henry C. Kapteyn
  • Patent number: 7224505
    Abstract: A manufacturing process of an electro-optical apparatus substrate is provided wherein a substrate is coated with a photosensitive resin. A first exposure process is executed with a first reticle to form an uneven portion on the substrate. Subsequently, a second exposure process is executed with a second reticle to remove all the photosensitive resin on portions other than the uneven portion. After the second exposure process, the substrate is developed so as to form an underlying film having an uneven portion.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: May 29, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Toshihiro Otake, Tomohiko Kojima, Hideki Kaneko, Toshinori Uehara, Tomoyuki Nakano, Keiji Takizawa
  • Patent number: 7209500
    Abstract: A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: April 24, 2007
    Assignee: Metal Improvement Company, LLC
    Inventors: C. Brent Dane, Lloyd Hackel, Fritz B. Harris
  • Patent number: 7193772
    Abstract: A thermal nonlinear cell and method. The cell includes a substantially planar nonlinear medium and a mechanism for removing thermal energy from the medium in a direction substantially orthogonal to said medium. In one embodiment, the mechanism for removing thermal energy is a thermally conductive window mounted adjacent to the medium. Preferably, the mechanism includes plural thermally conductive windows between which the nonlinear medium is disposed. In the best mode, the windows are sapphire and the nonlinear medium is a fluid. The windows and the medium are transmissive with respect to first and second beams that interfere with each other and create an interference pattern in the cell. The interference pattern is sampled by a sampling hologram created within the multiple layers of the medium. The interference pattern is used via a sampling hologram to create a phase conjugate of a signal beam. The windows move thermal energy from the medium in a direction transverse to the longitudinal axis of the medium.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: March 20, 2007
    Assignee: Raytheon Company
    Inventors: Alexander A. Betin, N. Peter Davis, Joseph J. Ichkhan
  • Patent number: 7110171
    Abstract: A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: September 19, 2006
    Assignees: Metal Improvement Company, LLC, The United States of America as represented by the Department of Energy
    Inventors: C. Brent Dane, Lloyd Hackel, Fritz B. Harris
  • Patent number: 7095555
    Abstract: An apparatus for and a method of amplifying Faraday or Voigt rotation by passing light through a sample many times using multiple internal reflections and successive mirrored chambers that repeatedly send the light back through the sample. The sample is placed in a sample chamber that is adjacent to an optical amplifier chamber, and the optical amplifier chamber is adjacent to one or more additional chambers. The sample has a magnetic field applied thereto. The sample chamber receives light from a light source. The light reflects within the sample chamber and the sample to accumulate rotation of the light. The sample chamber transmits the light to the optical amplifier chamber. The optical amplifier chamber transmits the light to the additional chambers and reflects the light back to the sample where the light undergoes further rotation. Each one of the additional chambers transmits the light to the next additional chamber and reflects the light back to a previous chamber.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: August 22, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Frederick W. Clarke, Saulius Balevicius
  • Patent number: 7006283
    Abstract: The present invention relates to a multi-pass three-dimensional amplifier structure in which a beam of light traverses an amplifier medium multiple times via distinct multiple paths. The distribution of the multiple paths being such that the volume occupied by the multiple paths inside the amplifier medium substantially overlaps with the volume of the amplifier medium being optically pumped by an optical pump beam. The distribution of the optical paths is such that no more than two of the multiple paths lie in a same plane. The astigmatism induced by anisotropic amplifying crystals is self-compensated by aligning the crystallographic axes of the amplifying crystal at a 45° angle to the longitudinal axis of the redirecting means.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: February 28, 2006
    Assignee: JDS Uniphase Corporation
    Inventors: Laurent Lefort, Patrick Georges, Francois Balembois, Pierre Jean Devilder, Sebastien Forget
  • Patent number: 6937388
    Abstract: Disclosed is an L-band optical amplifier for amplifying optical signals with the wavelength band of the L-band. The L-band optical amplifier comprises an optical-amplifying section for emitting spontaneous emission and for amplifying the optical signals by pumping of the spontaneous emission, a mirror for reflecting the optical signals amplified by the optical-amplifying section to re-enter back to the optical-amplifying section, and a feedback loop connected with both terminals of the optical-amplifying section for causing spontaneous emission emitted from the optical-amplifying section to be fed back to the optical-amplifying section.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: August 30, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwan-Woong Song, Seong-Taek Hwang, Yun-Je Oh
  • Patent number: 6920253
    Abstract: A modulator having a waveguide and a microdisk resonator is disclosed. The waveguide has an input port for receiving a light signal of wavelength ? and an output port for transmitting modulated light. The microdisk resonator has a resonance at ? and is coupled to the waveguide between the input and output ports such that at least 10 percent of the light traveling in the waveguide is coupled to the microdisk resonator. The microdisk resonator further includes a material having a first state and a second state, the material absorbing more of the light in the first state than in the second state. The first and second states are selectable by a signal that is applied to the microdisk resonator. In one embodiment, the waveguide and the microdisk resonator occupy different portions of a sheet of material having the various layers used to construct the resonator.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: July 19, 2005
    Assignee: Agilent Technologies, Inc
    Inventors: Michael R. Tan, Scott W. Corzine, Mihail Sigalas, Chaokun Lin, Kostadin Djordjev
  • Patent number: 6917464
    Abstract: Disclosed is a multi-lambda source for outputting an optical signal having a plurality of channels, the multi-lambda source comprising an optical fiber amplifier, having a back and front end, for amplifying an optical signal received from the back end and outputting ASE light to the back end, a reflector coupled to the back end of the optical fiber amplifier for reflecting a received optical signal, and a comb filter arranged between the optical fiber amplifier and the reflector and having a pass band of wavelengths for filtering the ASE light and generating the optical signal of the channels according to a transmission spectrum of the filtered ASE light.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: July 12, 2005
    Assignee: Samsung Electronics Co., LTD
    Inventors: Hong-Seok Shin, Seong-Taek Hwang, Yun-Je Oh
  • Patent number: 6894828
    Abstract: The present invention is directed to guided wave systems, beam transport and waveguide techniques. The invention may comprise passive or active, hollow and dielectric core self-imaging mode wave guide systems, beam amplifiers (10, 40), laser resonators (70), beam transports, and waveguides. Embodiments may include rectangular cross-section waveguides, and preferably maintaining spatial profile of an input beam, such as a Gaussian beam, through the self-imaging period of the waveguide while unique new capabilities to mitigate non-linear distortions that corrupt spatial, spectral and temporal coherence and polarization. Additional aspects may include, for example, transport, amplification, phase/frequency control or modulation, deflection, conversion, synthetic aperture, distributed aperture, beam forming, beam steering, beam combining, power sampling, power combining and power splitting, among other features.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: May 17, 2005
    Assignee: Coherent Technologies, Inc.
    Inventors: Wayne S. Pelouch, Duane D. Smith, Narasimha S. Prasad
  • Patent number: 6831779
    Abstract: A high-gain, saturated output, double-pass, fault-tolerant optical amplifier has an extended range of stability, output power, and efficiency and fall back modes of operation. The optical amplifier is typically configured in a two-stage polarization maintaining configuration, employing erbium-doped fibers as the gain media in both of the stages. At least one optical element in a loss-insensitive region of the amplifier can have a loss substantially higher than optical elements in the gain paths outside of the loss-insensitive region without substantially reducing the overall output power and efficiency of the amplifier. These elements can influence the amplified signal waveform, spectrum, signal-to-noise ratio, or subsequent performance in an optical network, as well as amplifier characteristics, such as output power, stability, efficiency, and reliability. The optical amplifier is suitable for both free-space and fiber optic network applications.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: December 14, 2004
    Assignee: Massachusetts Institute of Technology
    Inventor: David O. Caplan
  • Publication number: 20040196544
    Abstract: “A DOUBLE PASS OPTICAL AMPLIFIER WITH UNIDIRECTIONAL COMPENSATION OF CHROMATIC DISPERSION AND OBSTRUCTION OF BACKSCATTERING”, composed by an EDFA, whose input/output stage is integrated by a circulator (6), and the amplification stage is composed by a pump laser (1) and an Erbium-doped fiber connected to a multiplexer (3), said amplifier, in which the optical signal undergoes an initial amplification while passing through the Erbium-doped fiber on the way through the fiber and a second amplification on the way back of the same fiber, presents, after the amplification stage, at least one dispersion compensating fiber (11), whose input and output are connected to the free extremity of the Erbium-doped fiber (2), through at least one device (12) arranged in the circuit in order to prevent the backscattering generated in the dispersion compensating fiber (11) from returning to the Erbium-doped fiber (2) and to allow the signal to travel through the dispersion compensating fiber (11) only once and in o
    Type: Application
    Filed: December 19, 2003
    Publication date: October 7, 2004
    Inventors: Joao Batista Rosolem, Antonio Amauri Juriollo, Miriam Regina Xavier De Barros, Mariza Rodriguez Horiuchi
  • Patent number: 6728273
    Abstract: A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 27, 2004
    Assignee: The Regents of the University of California
    Inventor: Michael D. Perry
  • Patent number: 6700698
    Abstract: A multi-pass optical amplifier system is provided comprising an amplifier medium (20) and at least one relay imaging telescope (18, 24) for imaging light from the amplifier medium onto a primary light directing optical component, such as a mirror (26, 29) and for imaging light directed back from a primary light directing optical component (26, 28) into the amplifier medium so that light is re-passed through the amplifier medium. The system further includes a phase conjugate mirror arrangement for intercepting light between passes for the amplifier medium to generate a phase conjugate reflection of the light incident on it. Preferably, the system is arranged such that a light beam is incident on phase conjugate mirror (22), after having passed through the amplifier medium a predetermined number of times and the phase conjugate reflection retraces the path of the incident beam.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: March 2, 2004
    Assignee: QinetiQ Limited
    Inventor: Andrew M Scott
  • Patent number: 6654163
    Abstract: An optical amplifier arrangement, including an amplifying medium, which exhibits an approximately rectangular cross section with a long edge and a short edge, as well as at least two highly reflecting mirrors, between which the amplifying medium is disposed, whereby the long or the short edge of the cross section is along the X axis or the Y axis; the Z axis is the optical axis; and the X, Y and Z axis form a rectangular coordinate system. The mirrors are designed and arranged in such a manner that one beam, which is to be amplified and beamed in by an oscillator, passes repeatedly through the amplifying medium in the XZ plane and is amplified; and the size of the beam to be amplified in the X direction becomes larger after each passage.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 25, 2003
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten
    Inventors: Keming Du, Peter Loosen, Reinhart Poprawe
  • Publication number: 20030161035
    Abstract: A multi-pass three-dimensional amplifier structure in which a beam to be amplified traverses an amplifier medium multiple times through distinct multiple paths. The distribution of the multiple paths being such that the volume occupied by said multiple paths inside the amplifier medium substantially overlaps with the volume of the amplifier medium being optically pumped by an optical pump beam. Also, the distribution of said optical paths being such that no more than two of the multiple paths lie in a same plane.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 28, 2003
    Applicant: JDS UNIPHASE CORPORATION
    Inventors: Patrick Georges, Francois Balembois, Pierre Jean Devilder, Sebastien Forget
  • Publication number: 20020167721
    Abstract: A high-gain, saturated output, double-pass, fault-tolerant optical amplifier has an extended range of stability, output power, and efficiency and fall back modes of operation. The optical amplifier is typically configured in a two-stage polarization maintaining configuration, employing erbium-doped fibers as the gain media in both of the stages. At least one optical element in a loss-insensitive region of the amplifier can have a loss substantially higher than optical elements in the gain paths outside of the loss-insensitive region without substantially reducing the overall output power and efficiency of the amplifier. These elements can influence the amplified signal waveform, spectrum, signal-to-noise ratio, or subsequent performance in an optical network, as well as amplifier characteristics, such as output power, stability, efficiency, and reliability. The optical amplifier is suitable for both free-space and fiber optic network applications.
    Type: Application
    Filed: April 27, 2001
    Publication date: November 14, 2002
    Applicant: Massachusetts Institute of Technology
    Inventor: David O. Caplan
  • Patent number: 6476959
    Abstract: Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: November 5, 2002
    Assignee: California Institute of Technology
    Inventor: X. Steve Yao
  • Patent number: 6456429
    Abstract: Novel optical amplifier designs are disclosed. The optical amplifier generally comprises an amplification section having an anti-reflection coating on a first end face and a reflector optically coupled to a second end face. The amplification section of the amplifier interacts with the input and reflected optical signals to produce an amplified optical signal. The amplification section may include rare earth doped glass amplifiers (e.g., erbium-doped amplifiers), rare earth doped waveguide amplifiers (e.g. erbium-doped waveguide amplifiers), polymer amplifiers or parametric amplifiers. The amplifier may include a waveguide structure proximate the amplification section to confine optical signals within the amplification section and/or guide signals into and out of the amplifier. The amplifier may be combined with optical components for coupling signals between optical fibers and the amplifier. The waveguide may have a modified “V” shape where the “V” with at two legs.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: September 24, 2002
    Assignee: Onetta, Inc.
    Inventor: Yongan Wu
  • Patent number: 6392791
    Abstract: The present invention provides optical systems and methods that use a plurality of optical reflectors to fold the optical path of an optical beam used in the optical system. By folding the optical path of the optical beam, the optical system and method of the present invention can in one instance minimize the over-all volume and mass of the optical system. Specifically, the present invention provides an optical amplifier that has a plurality of active and passive reflectors. The passive reflectors are oriented to fold the optical beam in a minimized volume and direct the optical beam repeatedly at the active reflectors to amplify the optical beam to a selected power level. The folding aspects of the optical reflectors may also decrease the operating temperature of the optical system.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: May 21, 2002
    Assignee: University of Alabama in Huntsville
    Inventors: Richard Lynn Fork, Spencer Trent Cole
  • Patent number: 6384966
    Abstract: The 4-pass amplifier comprises an optical isolator (7), a polarizing beamsplitter (2), a gain material (3) and a first and a second reflecting element (5, 6). It further comprises means (4) for modifying the polarization state of a light beam after passing through said gain material for a first time and before passing through said gain material for a second time with respect to two orthogonal axes in a way which is equivalent to exchanging said two orthogonal axes. The polarization-rotating means (4) rotate the polarization of the light by 45° and are preferably a Faraday rotator. The reflecting element (5) is, e.g., a multilayer dielectric mirror. An incident light beam (1) is linearly polarized by the polarizing beamsplitter (2), amplified by the gain material (3), its polarization plane is rotated by the polarization rotator (4) by 45°, and the light beam is reflected by the reflecting element (5). It passes again through the polarization rotator (4) and the gain material (3).
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: May 7, 2002
    Assignee: Time-Bandwidth Products AG
    Inventor: Michael John Peter Dymott
  • Patent number: 6347007
    Abstract: A high power laser optical amplifier system for material processing comprises multiple stage fiber amplifiers with rejection of propagating ASE buildup in and between the amplifier stages as well as elimination of SBS noise providing output powers in the range of about 10 &mgr;J to about 100 &mgr;J or more. The system is driven with a time varying drive signal from a modulated semiconductor laser signal source to produce an optical output allowing modification of the material while controlling its thermal sensitivity by varying pulse shapes or pulse widths supplied at a desire repetition rate via modulation of a semiconductor laser signal source to the system to precisely control the applied power application of the beam relative to the thermal sensitivity of the material to be processed. The high power fiber amplifier system has particular utility in high power applications requiring process treatment of surfaces, such as polymeric, organic, ceramic and metal surfaces, e.g.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: February 12, 2002
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, David F. Welch, Raymond Zanoni
  • Patent number: 6330105
    Abstract: A pump light source provides pump light to an optical fiber arranged to guide the pump light to a first optical isolation device. Light output by the first optical isolation device is input to a wavelength division multiplexer. A gain fiber is connected to the wavelength division multiplexer and arranged to be optically pumped by the pump light such that the gain fiber emits broadband light that propagates to the wavelength division multiplexer. An output optical fiber is connected to the wavelength division multiplexer and arranged to guide a portion of the broadband light emitted by the gain fiber to a second optical isolation device for input to a fiber optic rotation sensor.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: December 11, 2001
    Assignee: Litton Systems, Inc.
    Inventors: David M. Rozelle, Ronald J. Michal, Leo K. Lam, John F. Cappi
  • Publication number: 20010040809
    Abstract: The luminaire has a molded reflector body (1) comprising a reflective coating (3) with light reflective particles (10) and a binder (11) and having a substrate side (12) and an outer surface (13). The coating (3) has a smooth optical waveguiding surface due to the absence of particles (10) at its outer surface (13) and to the light-transmission properties of the binder (11). Owing to these properties, the coating (3) has a high degree of specular reflection, thereby both increasing the lumen output ratio and improving the light directional properties of the luminaire.
    Type: Application
    Filed: April 2, 2001
    Publication date: November 15, 2001
    Inventors: Franciscus Guillaume Peter Sools, Jean Paul Entrop
  • Patent number: 6278543
    Abstract: The invention relates to devices for the quantum-optical amplification of modulated light, in particular in optical free-space communications systems. In the process a light beam (4) is conducted through a plurality of adjoining crystals (66), (68), (70), which are delimited from each other by means of polarization-selectively reflecting layers (104), (106). The light beam (4) is repeatedly reflected at the edge areas of the crystals into quarter-wave plates (86), (88), (90), (92), (94), and in the process its polarization is respectively rotated by 90 degrees.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: August 21, 2001
    Assignee: Contraves Space AG
    Inventors: Juerg Balmer, Thomas Graf, Jean-Michel Mayor
  • Patent number: 6201637
    Abstract: An long-wavelength optical fiber amplifier includes an erbium doped optical fiber (EDF) for amplifying an input signal light having a wavelength in the range of 1580 nanometers (nm) using pump light, a pumping unit positioned in front of and to the rear of the erbium doped optical fiber, for supplying the pump light to the erbium doped optical fiber, and an amplified spontaneous emission (ASE) reflecting unit positioned in front of the pumping unit, for coupling backward amplified spontaneous emission generated in the erbium doped optical fiber to the long-wavelength input signal light and inputting again the same to the erbium doped optical fiber. Fewer laser diodes and optical devices are necessary in amplifying an signal light having a long wavelength, by providing a reflector for reflecting amplified spontaneous emission. Also, the gain is increased in the case when the power of an input signal is small.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: March 13, 2001
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Johan Nilsson, Jeong-mee Kim, Sung-jun Kim
  • Patent number: 6195200
    Abstract: In accordance with the invention, a multiwavelength light source comprises a length of optical waveguide amplifier, a multiwavelength reflector for reflecting a plurality of different spectrally separated wavelengths optically coupled to one side of the amplifier and a low reflection output coupled to the other side. A broadband source is provided for passing broadband light to the multiwavelength reflector. In the preferred embodiment, the reflector is a plurality of reflective Bragg gratings, the waveguide amplifier is a length of rare-earth doped fiber (e.g. EDF) and the broadband source is the amplifier pumped to generate ASE. In operation, broadband light is transmitted to the gratings. Light of wavelength channels corresponding to the reflection wavelengths of the gratings is reflected back through the amplifier for further amplification before it arrives at the output.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: February 27, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: John Joseph DeMarco, Justin Boyd Judkins, Paul Francis Wysocki
  • Patent number: 5909306
    Abstract: A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system utilizes a fiber amplifier in a resonant cavity. An acousto-optic or electro-optic modulator is incorporated into the cavity in such a way that the energy stored in the gain medium is efficiently extracted in the form of high-peak-power, short-duration pulses. In addition, narrow bandwidth and linearly polarized output are simultaneously achieved. The light from the cavity is converted into the ultraviolet by frequency tripling, quadrupling, and/or quintupling the infrared light. The narrow bandwidth, or relatively pure light, is preserved with intracavity filtering, and the high peak light powers increase the efficiency of the nonlinear crystals in the frequency conversion stage.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: June 1, 1999
    Assignee: President and Fellows of Harvard College
    Inventors: Lew Goldberg, Dahv A. V. Kliner, Jeffrey P. Koplow
  • Patent number: 5822113
    Abstract: An optical amplifier achieves multistage amplification with a four port optical circulator with fiber amplifiers and Faraday rotators and mirrors connected to at least two of the ports. The fiber amplifiers permit the signal to pass through the fiber amplifiers twice.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: October 13, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Jean-Marc Pierre Delavaux, Jonathan A. Nagel
  • Patent number: 5812308
    Abstract: A laser system has a high reflector and an output coupler defining a laser cavity with an optical axis. Included is a pump source, a mode-locking apparatus and at least one fold mirror positioned in the laser cavity along the optical axis. A gain media is positioned adjacent to the fold mirror. The gain media has an overlap region where an intracavity beam entering the gain media substantially overlaps the intracavity beam exiting the gain media.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: September 22, 1998
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: James D. Kafka, Jan-Willem Pieterse
  • Patent number: 5737105
    Abstract: An optical repeater is provided between terminal stations and amplifies optical signals that have entered via optical fibers in upward and downward directions and outputs the amplified optical signals to optical fibers in respective directions. The optical fiber on the output side of an upward optical amplifier and the optical fiber on the output side of a downward optical amplifier are optically coupled, with a prescribed loss, by a photocoupler. The upward optical signal is looped back to the optical fiber in the downward direction upon being attenuated by, say, 40 dB via the photocoupler, and the downward optical signal is looped back to the optical fiber in the upward direction upon being attenuated by, say, 40 dB, via the photocoupler.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: April 7, 1998
    Assignee: Fujitsu Limited
    Inventors: Kenji Ohta, Mitsuo Kitamura
  • Patent number: 5646773
    Abstract: A solid-state laser architecture producing a beam of extremely high quality and brightness, including a master oscillator operating in conjunction with a zig-zag amplifier, an image relaying telescope and a phase conjugation cell. One embodiment of the laser architecture compensates for birefringence that is thermally induced in the amplifier, but injects linearly polarized light into the phase conjugation cell. Another embodiment injects circularly polarized light into the phase conjugation cell and includes optical components that eliminate birefringence effects arising in a first pass through the amplifier. Optional features permit the use of a frequency doubler assembly to provide output at twice optical frequencies, and an electro-optical switch or Faraday rotator to effect polarization angle rotation if the amplifier material can only be operated at one polarization.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: July 8, 1997
    Assignee: TRW Inc.
    Inventors: Hagop Injeyan, Randall J. St. Pierre, Rodger C. Hilyard, George M. Harpole, Carolyn S. Hoefer
  • Patent number: 5644424
    Abstract: Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: July 1, 1997
    Assignee: Washington State University Research Foundation
    Inventors: Sterling Backus, Henry C. Kapteyn, Margaret M. Murnane
  • Patent number: 5615043
    Abstract: A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator.
    Type: Grant
    Filed: May 7, 1993
    Date of Patent: March 25, 1997
    Assignee: Lightwave Electronics Co.
    Inventors: Henry Plaessmann, William M. Grossman
  • Patent number: 5572358
    Abstract: A regenerative amplifier includes a resonant cavity having a gain medium and a spectral filter located in the cavity. A source is provided to pump the gain medium and thereby-raise it to an excited state. Elements are also provided for creating laser seed pulses which are then injected into the resonant cavity, these elements preferably include in part a mode-locked oscillator having a wavelength substantially the same as that at which the gain medium can support amplification of the energy of the injected pulse. In a preferred embodiment the gain medium is Ti:Sapphire for both the amplifier and oscillator. Also, in the preferred embodiment the seed pulse from the oscillator is stretched in time by multiplicative factors sufficient to ensure that upon amplification, the seed pulse power density remains below the self-focusing threshold of the material through which the pulse is passed.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: November 5, 1996
    Assignee: Clark-MXR, Inc.
    Inventors: Edward F. Gabl, David R. Walker, Yang Pang
  • Patent number: 5568309
    Abstract: An optical amplification system and method that allows an optical seed beam to pass through an optical amplifier more than two times, even when the seed beam is highly depolarized. This is accomplished by using a polarizing beamsplitter that separates a highly depolarized seed beam into two diverging orthogonally polarized beams. The orthogonally polarized beams perform a first pass through the amplifier and are re-directed back into the amplifier so that each beam makes a second pass through the amplifier by propagating back along the other beam's first path. Because of the path exchange, the two orthogonally polarized beams diverge from each other when they pass back through the polarizing beamsplitter. The diverging beams are phase conjugated and retrace their respective paths through the system so that each beam performs a third and fourth pass through the amplifier. After the fourth pass, the orthogonally polarized beams are recombined into a single depolarized return beam by the polarizing beamsplitter.
    Type: Grant
    Filed: April 24, 1994
    Date of Patent: October 22, 1996
    Assignee: Hughes Aircraft Company
    Inventor: David A. Rockwell
  • Patent number: 5555254
    Abstract: A solid-state laser architecture producing a beam of extremely high quality and brightness, including a master oscillator operating in conjunction with a zig-zag amplifier, an image relaying telescope and a phase conjugation cell. One embodiment of the laser architecture compensates for birefringence that is thermally induced in the amplifier, but injects linearly polarized light into the phase conjugation cell. Another embodiment injects circularly polarized light into the phase conjugation cell and includes optical components that eliminate birefringence effects arising in a first pass through the amplifier. Optional features permit the use of a frequency doubler assembly to provide output at twice optical frequencies, and an electro-optical switch or Faraday rotator to effect polarization angle rotation if the amplifier material can only be operated at one polarization.
    Type: Grant
    Filed: November 5, 1993
    Date of Patent: September 10, 1996
    Assignee: TRW Inc.
    Inventors: Hagop Injeyan, Randall J. St. Pierre, Rodger C. Hilyard, George M. Harpole, Carolyn S. Hoefer
  • Patent number: 5546222
    Abstract: A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator.
    Type: Grant
    Filed: June 18, 1993
    Date of Patent: August 13, 1996
    Assignee: Lightwave Electronics Corporation
    Inventors: Henry Plaessmann, William M. Grossman, Todd E. Olson
  • Patent number: 5543912
    Abstract: A reflectomerry method and device are disclosed for measuring the loss distribution of an optical waveguide on the basis of Rayleigh back-scattered signals from an optical waveguide under test. Light output from a tunable low-coherent. light source, in which laser oscillation is suppressed, is divided into first and second lights. Local oscillator light is generated by propagating the first light over a variable optical path length determined by a movable mirror. The second light is used as a probe light which is launched into the optical waveguide under test. The local oscillator light is combined with light reflected from the waveguide under test. An average value of the Rayleigh back-scattered signals from the waveguide under test is obtained at respective center wavelengths of the light source by measuring the intensity of the combined light while maintaining the variable optical path length constant and varying the center wavelength of the light source.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: August 6, 1996
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kazumasa Kada, Masaharu Horigichi, Hiroaki Yamada
  • Patent number: 5335236
    Abstract: A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: August 2, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John S. Toeppen
  • Patent number: 5309453
    Abstract: A system for providing a single pulse of laser oscillator radiation of broad spectral range operative to excite a plurality of modes of a ring laser operating as an injection locked oscillator. In order to provide injection locking of the ring oscillator at multiple modes, a pump laser for the laser oscillator has its cavity length substantially similar to that of the laser oscillator thereby producing partial mode locking of the laser oscillator by amplitude modulation of the pump laser. In this manner the laser oscillator provides a single pulse of mode rich frequencies which are chosen within the band desired in the ring laser. This pulse continuously circulates within the cavity of the laser oscillator. The output of the laser oscillator through an output mirror thus forms a series of pulses separated in time by the roundtrip delay of the laser oscillator cavity. A single such pulse is selected by Pockels cell gating for injection into the ring oscillator.
    Type: Grant
    Filed: July 27, 1981
    Date of Patent: May 3, 1994
    Assignee: Jersey Nuclear-Avco Isotopes, Inc.
    Inventor: Edmond B. Treacy
  • Patent number: 5295016
    Abstract: A polarization-independent amplification device comprising an optical semiconductor amplifier. The amplification device input signal is fed to one side of the amplifier and a reflector is provided at the other side. The amplification device output signal, formed by the amplification device input signal reflected by the reflector and amplified by the amplifier, is taken off at the first side of the amplifier. The reflector is reciprocal, a signal or signal component fed thereto and having a polarization perpendicular to the principal axis of the amplifier being reflected as a reflection signal having a polarization which is virtually parallel to said principal axis and vice versa.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: March 15, 1994
    Assignee: Koninklijke Ptt Nederland, N.V.
    Inventor: Mattijs O. Van Deventer
  • Patent number: 5280491
    Abstract: The disclosure is directed to a laser amplifier system utilizing a pair of scanning mirrors driven in tandem by piezo actuators. A control provided to direct a low power laser beam while the beam is trapped and circulates between the pair of scanning mirrors. Each bounce of the laser beam between the mirrors discretely increases the power of the beam and changes the angle of exit of the beam from the amplifier providing for precise angular beam exit control in two dimensions.
    Type: Grant
    Filed: August 2, 1991
    Date of Patent: January 18, 1994
    Inventor: Shui T. Lai