Selective Wavelength Transmission Or Reflection Patents (Class 359/589)
  • Patent number: 6870687
    Abstract: The object is to provide an optical system with a wavelength selecting device. According to one aspect of the present invention, an optical system with a wavelength selecting device includes, in order from an object along an optical axis, an objective optical system composed of optical elements having refractive power and an aperture stop, a no-power optical group composed of optical elements having no refractive power, and an imaging device. The no-power optical group includes the wavelength selecting device for making short wavelength light be selectively substantially non-transparent. The wavelength selecting device preferably satisfies the predetermined conditional expressions.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: March 22, 2005
    Assignee: Nikon Corporation
    Inventors: Akihiko Obama, Kouichi Ohshita
  • Patent number: 6859323
    Abstract: An optical thin film stack provides reflection of essentially all light except for a selected amount of transmission over a selected wavelength range. Reflecting, rather than absorbing, unwanted light avoids heating caused by light absorption and allows productive use of the non-transmitted light in some applications. In some embodiments, reflector designs are “stacked” on an optical substrate to provide serial optical reflectors. Stacking dichroic filters provides reduced sensitivity to cone angle and manufacturing advantages.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: February 22, 2005
    Assignee: Optical Coating Laboratory, Inc.
    Inventors: Paul J. Gasloli, Andrew T. Taylor, Serge J. Bierhuizen
  • Patent number: 6859320
    Abstract: Multi-stage, all-pass optical filters used to make low-loss, multi-channel dispersion compensation modules are disclosed. The all-pass optical filters can be ring resonators in waveguides, Gires-Tournois Interferometers (GTIs) in free space form, and the like. The coupling constants and circulating path lengths may also be distinctively varied in each of the series of GTIs, tuning the net dispersion spectrum of the GTI set, such that the sum of the dispersions from the series of GTI's can provide a system with greater bandwidth than the same number of identical GTIs. The local dispersion slope can also be tuned in this manner. Multi-cavity GTIs can also be formed with similar performance enhancing properties.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: February 22, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Pochi Albert Yeh, Scott Patrick Campbell, Zhiling Xu
  • Patent number: 6856435
    Abstract: Improved methods and systems for routing and aligning beams and optical elements in an optical device include a multiplexing device and/or a demultiplexing device, which includes an optical alignment element (OAE). The OAE can be configured to substantially compensate for the cumulative alignment errors in the beam path. The OAE allows the optical elements in a device, other than the OAE, to be placed and fixed in place without substantially compensating for optical alignment errors. The OAE is inserted into the beam path and adjusted. This greatly increases the ease in the manufacturing of optical devices, especially for devices with numerous optical elements, and lowers the cost of manufacturing. The multiplexing and/or demultiplexing device can reside within a standard small form factor, such as a GBIC. The devices fold the paths of the traversing beams with a geometry which allows a small package.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: February 15, 2005
    Assignee: Gigabit Optics Corporation
    Inventors: Jenkin A. Richard, Eric V. Chamness, David F. Moore, Steven J. Benerofe, Don A. Clark, Ryan D. Bruneau
  • Patent number: 6850365
    Abstract: Provided is an optical multilayer structure having a simpler configuration, flexibility in selection of materials and improved reliability in wiring and capable of high-speed response even in a visible light range. A optical multilayer structure (1) has a first layer (11) being light-absorptive and making contact with a substrate (10), a gap portion (12) having as large a size as light interference phenomenon can occur and being capable of varying the size, and a second layer (13) being transparent in this order on the substrate (10). Where a complex refractive index of the first layer (11) is N1 (=n1?i·k1, n1 is a refractive index, k1 is an extinction coefficient, and i is an imaginary unit), a refractive index of the second layer (13) is n2, and a refractive index of an incident medium is 1.0, the optical multilayer structure (1) is configured so as to satisfy the following formula. ( n 1 - n 2 2 + 1 2 ) 2 + k 1 2 - ( n 2 2 - 1 2 ) 2 = 0.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: February 1, 2005
    Assignee: Sony Corporation
    Inventor: Hiroichi Ishikawa
  • Patent number: 6850366
    Abstract: The invention provides a multi-cavity filter, and in particular, a multi-cavity bandpass filter having a predetermined centre wavelength. The filter includes a plurality of cavities, each cavity including two partially reflecting films separated by a layer of dielectric material. The two partially reflecting layers are formed from layers of material having alternating high and low refractive indices. Each layer of dielectric material has a thickness that is an integral number of half-waves of the centre wavelength. The filter has an asymmetric structure that causes the reflected chromatic dispersion from one side of the filter to be reduced relative to the reflected chromatic dispersion from the other side.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: February 1, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Karen Denise Hendrix, Charles Andrew Hulse, Frederik Kevin Zernik
  • Patent number: 6844976
    Abstract: The present invention relates to a heat filter and a process for manufacturing this filter. This heat filter may for example be used to filter surgical or examination lighting composed of a light source which emits energy, or radiation, in the visible and infrared ranges. It allows the light emitted by this source to be filtered so as to prevent infrared radiation from hindering the surgical team or the patient. It includes a substrate, at least one layer of an infrared reflecting material, and a coating forming an interference filter in the visible range. The invention process includes the deposition on a substrate of a layer of an infrared reflecting material and the deposition on this layer of an interference filter in the visible range.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: January 18, 2005
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Muriel Firon, Eric Monterrat, Jérôme Monnot
  • Patent number: 6844977
    Abstract: An exemplary embodiment of the invention is an optical filter including a mirror including a plurality of first dielectric layers having a first index of refraction and a plurality of second dielectric layers having a second index of refraction. A plurality of the first dielectric layers have an integer quarter wave optical thickness and at least one of the first dielectric layers has a non-integer quarter wave optical thickness. A plurality of the second dielectric layers have an integer quarter wave optical thickness and at least one of the second dielectric layers has a non-integer quarter wave optical thickness. In an exemplary embodiment, the non-integer quarter wave optical thickness first layer and the non-integer quarter wave optical thickness second layer are determined so as to enhance transmission at a predetermined wavelength.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: January 18, 2005
    Assignee: Ciena Corporation
    Inventor: Vladimir Pelekhaty
  • Patent number: 6839175
    Abstract: An image forming element is disclosed which is easy to manufacture, which can form images easily and at a low cost, and which is stable without fear of environmental problems arising at a time of disposal. Also disclosed is an image forming device which utilizes the image forming element and which can form color images. The image forming element contains at least a film in which rod-shaped bodies are oriented and which reflects incident light as colored interference light. The image forming device is equipped with at least the image forming element, and an ability to irradiate light onto the image forming element. The image forming element reflects, as interference light, the irradiated light. The wavelength of the interference light is 300 to 810 nm.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: January 4, 2005
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Shintaro Washizu
  • Publication number: 20040263983
    Abstract: An antireflective coating that is effective over an extended spectral region for a wide range of angles of incidence includes a number of homogeneous layers of equal optical thicknesses having small and constant differences (&dgr;n) between the refractive indices of two adjacent sublayers. The adjacent layers with small differences in refractive indices n have been removed from the coating when the AR performance, angular variation, and the bandwidth of the coating did not degrade beyond an acceptable threshold.
    Type: Application
    Filed: May 3, 2004
    Publication date: December 30, 2004
    Applicant: Lockheed Martin Corporation
    Inventor: Michael A. Acree
  • Patent number: 6833957
    Abstract: The invention provides a tunable filter that can minimize adjacent channel cross talk despite an increase of a number of available wavelengths and quickly switch a wavelength to be used, and manufacturing method thereof, and also an optical switching device comprising such tunable filter. In a tunable filter having a Fabry-Perot etalon structure, not less than two cavity gaps 114 to 116 are provided and separation between the cavity gaps is controlled by any of electrostatic drive, electromagnetic drive or piezoelectric drive. In this case, the cavity gaps can be formed through the steps of forming a sacrificial layer in advance where a cavity gap is to be formed; forming a plurality of optical multilayer films 100 to 103; and removing the sacrificial layer by etching. Substrates 107 and 109 are combined through a supporting column 108.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: December 21, 2004
    Assignee: NEC Corporation
    Inventor: Akinobu Sato
  • Patent number: 6831784
    Abstract: In a multilayered optical thin-film filter having multiple quarter wavelength thick optical thin films with different refractive indices, the filter includes a plurality of unit cavities that are stacked multiple times via a connection layer, each unit cavity including a first reflector layer, a spacer layer in contact with the first reflector layer, and a second reflector layer in contact with the spacer layer. The first reflector layer is a layered body and the second reflector layer is a layered body. The spacer layer is a multilayered optical thin film with a high refractive index obtained by layering even number of films, or is composed of a multilayered optical thin film with a low refractive index. The connection layer is a multilayered optical thin film with a low refractive index obtained by layering odd number of films.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: December 14, 2004
    Assignee: Kyocera Corporation
    Inventor: Shigeki Takeda
  • Publication number: 20040240068
    Abstract: An optical filter which can be manufactured at low cost and is excellent in optical characteristics is disclosed. The optical filter comprising a transparent substrate and a first layer which is formed on the surface of the transparent substrate. Here, the first layer has a first area which is substantially transparent and a second area which has colored ink and is light-amount adjustable, and the optical path lengths with respect to the first and the second areas are substantially equal.
    Type: Application
    Filed: May 5, 2004
    Publication date: December 2, 2004
    Inventors: Eriko Namazue, Ichiro Onuki, Takeshi Miyazaki, Masataka Yashima, Akio Kashiwazaki
  • Publication number: 20040240069
    Abstract: An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distiguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light.
    Type: Application
    Filed: June 15, 2004
    Publication date: December 2, 2004
    Applicant: Fujitsu Limited
    Inventors: Masataka Shirasaki, Simon Cao
  • Patent number: 6825983
    Abstract: Disclosed is an optical element comprising in order a light source, air, at least one thin layer having a thickness of 80 to 200 nm, and a thick layer, each layer varying in refractive index (RI) by at least 0.05 from the next adjacent layer, in an alternating manner.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: November 30, 2004
    Assignee: Eastman Kodak Company
    Inventors: Robert P. Bourdelais, Cathy Fleischer, James F. Elman, Cheryl J. Kaminsky
  • Patent number: 6813082
    Abstract: The wavefront aberrator of the present invention includes a pair of transparent windows, or plates, separated by a layer of monomers and polymerization initiator, including a broad class of epoxies. This monomer exhibits a variable index of refraction across the layer, resulting from controlling the extent of its curing. Curing of the epoxy may be made by exposure to light, such as ultraviolet light. The exposure to light may be varied across the surface of the epoxy to create a particular and unique refractive index profile.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: November 2, 2004
    Assignee: Ophthonix, inc.
    Inventor: Donald G. Bruns
  • Patent number: 6807008
    Abstract: A mirror which reflects input light from a lens which focuses light emitted from a VIPA, and returns the light to the lens is constituted as a multi-faced mirror including multiple reflection surfaces in the traveling direction of the input light which individually reflect light with a different wavelength, and have a different shape. As a result, an apparatus which has a small optical loss, and generates a different wavelength dispersion depending on a channel signal wavelength of a WDM signal.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: October 19, 2004
    Assignee: Fujitsu Limited
    Inventor: Nobuaki Mitamura
  • Patent number: 6804059
    Abstract: A tunable optical filter utilizes multiple electroholographic (EH) gratings with different center wavelengths to filter an optical signal over a wide wavelength range. The EH gratings are connected such that an input optical signal passes through at least one of the EH gratings. The EH gratings are activated and tuned by electrode pairs that are controlled through a voltage controller. The tunable optical filter is coarse tuned by activating the EH gratings having a wavelength range that includes the center wavelength that is to be filtered and fine tuned by adjusting the voltage that is applied across the activated EH gratings.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: October 12, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Ali R. Motamedi, Douglas M. Baney, Jeffrey N. Miller, Marshall T. Depue
  • Patent number: 6797396
    Abstract: A birefringent dielectric multilayer film that reflects in a wavelength region of interest, and preferably reflects at least 50% of light in a band at least 100 nm wide, preferably positioned between wavelengths from about 700 nm to about 2000 nm. The film is heat set to render the film capable of shrinking to conform without substantial wrinkling to a substrate having a compound curvature. The film may be laminated to form a wide variety of non-planar articles.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: September 28, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Yaoqi J. Liu, Jeffrey A. Boettcher, Heather K. Kranz, Andrew T. Ruff, Brian L. Koster, David K. Mortenson
  • Patent number: 6797366
    Abstract: Multilayer polymeric films and other optical bodies are provided which is useful in making colored mirrors and polarizers. The films are characterized by a change in color as a function of viewing angle.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 28, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Gary B. Hanson, James M. Jonza, Andrew J. Ouderkirk, John A. Wheatley
  • Patent number: 6788466
    Abstract: A multiple reflectivity band reflector (MRBR) includes a stack of dielectric layers, arranged so that the reflector has a reflectivity profile comprising a plurality of reflectivity bands, e.g. at least first and second wavelength bands with reflectivity above a lasing threshold reflectivity, separated by a third wavelength band between the first and second wavelength bands having reflectivity below the lasing threshold reflectivity. A laser having at least a first mirror and an MRBR as the second mirror has a laser cavity, at least a portion of which is defined by the first mirror and the MRBR. An active region located within the laser cavity contains a material that is capable of stimulated emission at one or more wavelengths in the first and second wavelength bands. The gain spectrum of the laser is adjusted to select one of the first and second wavelength bands, thereby providing for lasing at a wavelength within the selected wavelength band. The laser may be, e.g.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: September 7, 2004
    Assignee: Applied Optoelectronics, Inc.
    Inventors: James N. Baillargeon, Wen-Yen Hwang, Klaus Alexander Anselm, Chih-Hsiang Lin
  • Patent number: 6785052
    Abstract: A multilayer optical interference filter having a multiplicity of optical cavities separated by a dielectric reflector stacks to achieve either a very narrow passband region or sharp transition between the passband and reflective region is substantially free of stress to preserve the desired optical performance upon fabrication into miniature discrete filter elements. The substantial stress reduction is achieved by removing the filter from the substrate used in the deposition process in a controlled manner to preserve the structural integrity of the resulting free standing multilayer film structure. The structure can be further bonded or attached to other optical components to suppress a thermal shift in center wavelength without reintroducing stress or interposing a massive substrate in the optical path through the filter.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 31, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Georg Ockenfuss, Robert E. Klinger
  • Patent number: 6780515
    Abstract: A heat-absorbing system comprising at least a first layer (A) containing a ultraviolet absorber, a second layer (B) containing an organic infrared absorber and ultraviolet absorber and a third, interference layer (C) reflecting in the infrared range is disclosed. The system is suitable for shielding plastic glazing elements from heat radiation.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: August 24, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventor: Martin Döbler
  • Patent number: 6781758
    Abstract: An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 24, 2004
    Assignee: Fujitsu Limited
    Inventors: Masataka Shirasaki, Simon Cao
  • Patent number: 6771425
    Abstract: A system capable of tuning the wavelength and intensity of an output light includes an input end, a first output end, a second output end, a first rotatable optical device, a second rotatable optical device, and a third optical device. The input end is used to receive a first optical signal and a second optical signal. When the angle of the first rotatable optical device is adjusted, the first optical signal is able to pass through and the second optical signal is reflected. The second rotatable optical device allows the first optical signal to be outputted from the first output end. When the angle of the second rotatable optical device is adjusted, the intensity of the first optical signal outputted from the first output end changes. The angle of the third rotatable optical device is adjusted with respect to the angle of the first rotatable optical device, so that the second optical signal can be outputted from the second output end.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: August 3, 2004
    Assignee: Delta Electronics, Inc.
    Inventors: Sean Chang, Shih-chien Chang
  • Patent number: 6768581
    Abstract: A coated optical lens includes a lens element and a coating on the surface of the lens element. The coating exhibits a substantially balanced reflectance from the center to a radius proximate the edge of the lens element. The term “substantially balanced reflectance” means that where the thickness of the coating varies across the surface of the lens, the lightness, hue and chroma of the reflectance vary in a balanced manner such that variations in visual appearance are either imperceptible or generally acceptable to an observer. For example, variations in chromatic attributes, such as hue, from the center to the edge of the lens may be balanced by a reduction in lightness from the center to the edge. Preferably, the lens element includes a surface of high curvature upon which the balanced reflectance coating is deposited.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: July 27, 2004
    Assignee: Sola International Holdings Ltd.
    Inventors: Brandon Yip, Brian Douglas Adams, Paraic Begley
  • Patent number: 6765939
    Abstract: A monitored laser system has a laser having a first mirror; an exit mirror, at least a portion of a laser cavity defined by the first mirror and the exit mirror; and an active region located in the laser cavity, the active region containing a material that is capable of stimulated emission at one or more wavelengths of laser light within a tuning range of the laser. A multiple reflectivity band reflector (MRBR) is coupled to at least a portion of laser light emitted from the laser and transmits filtered laser light. The MRBR has a plurality of layers of material arranged in parallel such that the reflector has a plurality of reflectivity peaks within the tuning range, each reflectivity peak separated from neighboring reflectivity peak by a reflectivity trough having a trough minimum, said reflectivity peaks characterized by a peak profile and said trough minima between said reflectivity peaks characterized by a trough profile.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: July 20, 2004
    Assignee: Applied Optoelectronics, Inc.
    Inventors: James N. Baillargeon, Wen-Yen Hwang, Klaus Alexander Anselm, Chih-Hsiang Lin
  • Patent number: 6756732
    Abstract: A distributed Bragg reflector comprising a stack of alternate layers of a first material and a second material wherein the first and second materials are both organic materials. An organic electroluminescent light emitting element comprising: a transparent substrate, a transparent electrode formed on the substrate, a distributed Bragg reflector formed on the transparent electrode, an organic electroluminescent light emitting material formed on the distributed Bragg reflector, and an electrode formed on the light emitting material.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: June 29, 2004
    Assignee: Cambridge University Technical Services, Ltd.
    Inventor: Takeo Kawase
  • Patent number: 6754006
    Abstract: A diffraction grating includes a metallic base layer and layers of dielectric materials of varying refractive index, where a bottom interface of the layers is adherent to the metallic base layer. The dielectric layers are periodically spaced on top of the metallic base layer, leaving the metallic base layer exposed in regions. This grating allows for the polarization insensitive reflective properties of the base metallic layer to operate in conjunction with the polarization sensitive diffraction properties of the multilayer grating structure to provide near 100% diffraction efficiency over a reasonable wavelength bandwidth, independent of the polarization of the incident beam.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: June 22, 2004
    Assignee: General Atomics
    Inventors: Ian Michael Barton, Steve Mathew Herman
  • Patent number: 6751373
    Abstract: A WDM demultiplexer/multiplexer comprising a plurality of narrow band reflective filters linearly disposed along an optical axis, each narrow band reflective filter reflecting a single channel or group of channels and transmitting the remaining channels, is described. In a demultiplexing mode, an optical signal initially carrying channels at &lgr;1&lgr;2 . . . &lgr;N travels along the optical axis. Each narrow band reflective filter reflects a distinct channel and is tilted with respect to the optical axis such that it directs the reflected beam away from the optical axis to an output. Each narrow band reflective filter is substantially transparent to the remaining channels of the optical signal, such that the remainder of the optical signal proceeds along the optical axis substantially undisturbed.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: June 15, 2004
    Assignee: Gazillion Bits, Inc.
    Inventor: Hwan J. Jeong
  • Patent number: 6744561
    Abstract: Optical bodies, comprising: a plurality of first optical layers comprising a first polymer composition that comprises (i) a polyester portion having terephthalate comonomer units and ethylene glycol comonomer units, and (ii) a second portion corresponding to a polymer having a glass transition temperature of at least about 130° C.; and a plurality of second optical layers disposed in a repeating sequence with the plurality of first optical layers. Also disclosed are optical bodies comprising: (a) a plurality of first optical layers, each first optical layer being oriented; and (b) a plurality of second optical layers, disposed in a repeating sequence with the plurality of first optical layers, comprising a blend of polymethylmethacrylate and polyvinylidene fluoride. Methods of making the above-described optical bodies, and articles employing such optical bodies are also provided.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: June 1, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, Timothy J. Hebrink, John A. Wheatley, Andrew J. Ouderkirk, Andrew T. Ruff, Yaoqi J. Liu, Milton H. Andrus, Jr.
  • Patent number: 6738194
    Abstract: An optical modulating device capable of use as a light valve, display, or optical filter, which uses variation in incident angle to exploit color-selective absorption at a metal-dielectric interface by surface plasmons. The device includes a dielectric layer, at least one metallic layer through which electromagnetic radiation may be transmitted or reflected, and incident and exit layers which are both optically transmissive. A beam steering mechanism controls the incident angle of the electromagnetic radiation. In one embodiment, an external beam steering mechanism is used to set the incident light angle onto the filter. In another embodiment, the filter is formed as an integral part of, for example, a cantilever. The incident light angle is then controlled by the angle of the filter cantilever.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: May 18, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ayax D. Ramirez, Stephen D. Russell, Randy L. Shimabukuro
  • Publication number: 20040085642
    Abstract: Optical bodies, comprising: a plurality of first optical layers comprising a first polymer composition that comprises (i) a polyester portion having terephthalate comonomer units and ethylene glycol comonomer units, and
    Type: Application
    Filed: October 17, 2003
    Publication date: May 6, 2004
    Inventors: Peter D. Condo, Timothy J. Hebrink, John A. Wheatley, Andrew J. Ouderkirk, Andrew T. Ruff, Yaoqi J. Liu, Milton H. Andrus
  • Patent number: 6728038
    Abstract: A narrow bandpass optical filter for use in a WDM communication minimizes the system bit rate error by providing a sufficiently broad passband with respect to the data transfer rate yet has a low group delay across the passband. The passband shape is optimized to have a single maximum in the center of the passband and continuously decreasing transmission there from so as to minimize dispersion in GD across the passband.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: April 27, 2004
    Assignee: JDS Uniphase Corporation
    Inventor: Charles Andrew Hulse
  • Patent number: 6720081
    Abstract: There is provided a UV-reflective interference layer system for transparent substrates with broadband anti-reflection properties in the visible wavelength range. The interference layer system includes at least four individual layers. Successive layers have different refractive indices and the individual layers contain UV and temperature-stable inorganic materials.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: April 13, 2004
    Assignee: Schott Spezialglas GmbH
    Inventors: Bruno Vitt, Juergen Blankenburg, Werner J. Behr, Karl-Heinz Dasecke, Birgit Lintner
  • Patent number: 6721100
    Abstract: Thin film filters have been a basic building block of many wavelength division multiplexed (WDM) systems providing the means by which a signal, defined by a center wavelength, can be separated from a group of WDM signals. In an effort to maintain the same performance over a range of operating temperatures, thin film filters have been coated onto specially designed substrates, which expand and contract with the change in temperature to counteract the effects that the temperature change has on the thin film filters. Unfortunately, only very few materials provide the necessary thermal expansion characteristics to counteract the shift in center wavelength. Moreover, the application of a force onto only one side of the filter causes the thin film filter to bend or curve. Accordingly, the present invention solves the aforementioned problems by providing a thin film filter sandwiched between a substrate and a superstrate, which apply equal forces to each side of the filter.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: April 13, 2004
    Assignee: JDS Uniphase Corporation
    Inventor: Markus Tilsch
  • Patent number: 6717199
    Abstract: A method for tailoring properties of high k thin layer perovskite materials, and devices comprising such insulators are herein presented. The method comprise the steps of, first, substantially completing the manufacture of a device, which device contains the high k insulator in a polycrystalline form. The device, such as a capacitor, or an FET, went through the typically high temperature manufacturing process of a fabrication line. In the next step, the device is in situ ion implanted with such a dose and energy to convert a fraction of the polycrystalline material into an amorphous material state, hereby tailoring the properties of the insulator. The fraction of polycrystalline material converted to amorphous material might be 1. This process can be applied to many electronic devices and some optical devices. The process results in novel perovskite thin layer materials and novel devices fabricated with such materials.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Robert Benjamin Laibowitz, John David Baniecki, Johannes Georg Bednorz, Jean-Pierre A. Locquet
  • Patent number: 6717732
    Abstract: A vehicle rear-view mirror has a light-transmitting filtering layer for filtering out interfering fractions of the light entering the filtering layer in the yellow spectral range. The mirror includes an interference reflector which has a plurality of thin layers for the reflection of the light impinging on the mirror. The degree of reflection of the interference reflector is less in the yellow spectral range than in the green and/or red wavelength range.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: April 6, 2004
    Assignees: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Wolfgang Meyr, Joseph Laux, Helmut Piringer
  • Patent number: 6710922
    Abstract: A multi cavity comb filter for interleaving or de-interleaving WDM signals has a plurality of stacked optical cavities each having substantially the same thickness. The multiple cavity arrangement provides a comb reflection response and a comb transmission response with broad peaks, so that the filter can be used for transmitting one group of channels and reflecting another group of channels at interleaved positions. The cavities are preferably formed from silicon wafers, so that existing techniques can be employed to obtain specific cavity thicknesses with sufficient accuracy and uniformity.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: March 23, 2004
    Assignee: Nortel Networks Limited
    Inventor: Adrian P Janssen
  • Publication number: 20040047041
    Abstract: There is provided a complex frequency response filter providing a frequency response having a desired shape. A first complex frequency response filter includes a first and a second reflecting surfaces defining a resonant cavity therebetween. Each of the reflecting surfaces respectively has a predetermined surface finish providing a given reflectivity, therefore providing resonances with a predetermined shaped frequency response of a predetermined amplitude and of a predetermined periodicity. Those frequency responses can then be summed to generate an arbitrarily complex spectral response.
    Type: Application
    Filed: March 18, 2003
    Publication date: March 11, 2004
    Inventors: Jean-Francois Cliche, Michel Tetu, Christine Latrasse, Alain Zarka
  • Patent number: 6697195
    Abstract: Optical filters and their manufacture, as well as the use of the optical filters in optical devices, such as polarizers and mirrors are described. The optical filters typically include a first reflective multilayer film, a second reflective multilayer film, and a lossy element disposed between the first and second reflective multilayer films.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: February 24, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Michael F. Weber, Roger J. Strharsky, Timothy J. Nevitt, Andrew J. Ouderkirk
  • Patent number: 6692666
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made is with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: February 17, 2004
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Lalqudi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning, W. Wade Adams
  • Patent number: 6686042
    Abstract: Pigment flakes are provided which can be used to produce colorant compositions having color shifting properties. The pigment flakes can have a symmetrical coating structure on opposing sides of a reflector layer, can have an asymmetrical coating structure with all of the layers on one side of the reflector layer, or can be formed with encapsulating coatings around a reflector layer. The coating structure includes a selective absorbing layer on one or more sides of the reflector layer, a dielectric layer on the selective absorbing layer, and an absorber layer on the dielectric layer. The pigment flakes exhibit a discrete color shift such that the pigment flakes have a first color at a first angle of incident light or viewing and a second color different from the first color at a second angle of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks for subsequent application to objects or papers.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: February 3, 2004
    Assignee: Flex Products, Inc.
    Inventor: Charlotte R. LeGallee
  • Patent number: 6678093
    Abstract: Optical elements comprise stacked, optically matched and optically coupled etalons, at least one of the optically coupled etalons comprising first and second selectively transparent thin film mirror coatings on opposite surfaces of a bulk optic. The bulk optic defines the cavity spacing of the etalon and may, for example be formed of a monolithic body of silica or other optically transparent glass diced from a glass wafer. The bulk optic may further comprise a wedge coating of progressively increasing thickness overlying the monolithic glass body and compensating for, or offsetting non-parallelism of the bulk optic. The bulk optic may further comprise a thickness-adjustment layer of substantially uniform thickness. The disclosed optical elements optionally comprise other devices optically coupled to the stacked etalons. Novel methods are disclosed for producing the stacked etalons.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 13, 2004
    Assignee: Cierra Photonics, Inc.
    Inventors: Michael A. Scobey, Lucien P. Ghislain, Dennis J. Derickson, Loren F. Stokes
  • Patent number: 6677031
    Abstract: There is provided a multilayer film which is useful as a refractive polarizer film or a semi-transparent film. The multilayer film comprises a first layer comprising of a polyester whose main recurring unit is ethylene-2,6-naphthalene dicarboxylate and a second layer comprising mainly of a thermoplastic resin which is different from the polyester of the first layer, wherein at least one of the first and second layers contains 0.001 to 0.5 wt % of inert fine particles having an average particle diameter of 0.01 to 2 &mgr;m; the first and second layers each have a thickness of 0.05 to 0.3 &mgr;m and are laminated alternately to form a laminate comprising at least 11 layers; the laminate is oriented at least in one direction; and the second layer has a lower refractive index than the first layer at least in one direction. This multilayer film has excellent handling properties such as film formability and windability and an easily adjustable reflectance.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: January 13, 2004
    Assignee: Teijin Limited
    Inventors: Hirofumi Murooka, Hiroshi Tokuda
  • Patent number: 6671097
    Abstract: A polymeric photonic band gap structure can be defined by a block copolymeric species, a mixture of homopolymers, or a combination optionally with appropriate dielectric contrast enhancing additives. The structure includes periodic, phase-separated microdomains alternating in refractive index, the domains sized to provide a photonic band gap in the UV-visible spectrum.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: December 30, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Yoel Fink, Edwin L. Thomas
  • Patent number: 6661164
    Abstract: The invention relates to an incandescent lamp whose lamp vessel (20) has an interference filter (30) with locally differing layer thickness for producing red light. The interference filter (30) has a second absorber layer and additional layers of low optical refraction and high optical refraction for reducing its transmission in the violet, blue and green spectral regions.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: December 9, 2003
    Assignee: Patent-Treund-Gesellschaft F. Elektrische Gluehlampen mbH
    Inventors: Juergen Ruemmelin, Reinhard Schaefer
  • Patent number: 6657767
    Abstract: A rearview mirror assembly of the present invention includes a circuit board disposed behind the mirror. The circuit board may be a flexible circuit board and may include an LED mounted to project light through a transparent window in the flexible circuit board and through the mirror. The flexible circuit board may function as a mirror heater and may include conductive paths for connection to the LED and/or electrodes of an electrochromic mirror. The LED may include an LED chip mounted directly on the circuit board and encapsulated thereon by an encapsulant.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: December 2, 2003
    Assignee: Gentex Corporation
    Inventors: Timothy A. Bonardi, Frederick T. Bauer
  • Patent number: 6652778
    Abstract: A reversible thermochromic optical limiter incorporates a thermochromic material, such as a spiropyran, that has molecules present in one of two states. At ambient temperatures the material is transparent to light. Incident laser radiation causes localized heating that turns the material to a colored state, effectively limiting transmission of the laser radiation. A laser protection device may comprise an optical focusing assembly, a nonlinear thermochromic medium, and a collimating assembly. A far field image having an intrusive laser beam, is focused through the thermochromic medium. The laser beam is focused to a small volume, causing localized heating, a large increase in optical density, and absorption of the laser light. The thermochromic medium has a fast response time over a broad wavelength band and returns to its transparent state when the laser beam subsides. The far field image is focused to a much larger volume so that it does not cause significant heating or change in optical density.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: November 25, 2003
    Assignee: The Boeing Company
    Inventor: Allen J. Twarowski
  • Publication number: 20030214704
    Abstract: An antireflection substrate comprising a substrate which is transparent to ultraviolet and vacuum ultraviolet rays in the wavelength region from 155 nm to 200 nm and a mono-, bi- or tri-layer antireflection film formed on at least one side of the substrate, wherein the refractive index and the physical thickness of the antireflection film at the center wavelength &lgr;0 of the wavelength region of ultraviolet or vacuum ultraviolet light which needs antireflection satisfy particular conditions, and an optical component for a semiconductor manufacturing apparatus and a substrate for a low-reflection pellicle which is the ultraviolet and vacuum ultraviolet antireflection substrate
    Type: Application
    Filed: June 9, 2003
    Publication date: November 20, 2003
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Satoru Takaki, Kaname Okada, Shinya Kikugawa