Microscope Objective Patents (Class 359/656)
  • Publication number: 20140247502
    Abstract: A microscope immersion objective having a numerical aperture of NA>1.36 includes a front lens group. The front lens group has a first, object-side optical element having a plane parallel plate and a second optical element having a hyper-hemisphere. The plane parallel plate is wrung together with a planar side of the hyper-hemisphere.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 4, 2014
    Inventors: Tobias Bauer, Christian Schulz
  • Patent number: 8824067
    Abstract: Provided is an endoscope objective optical system that is constituted of, in order from the object side, a positive first group, an aperture stop, and a positive second group, wherein the first group is constituted of a negative first lens whose surface on the object side is flat and a positive second lens; the second group is constituted of a combined lens formed of a positive third lens and a negative fourth lens; and Conditional Expressions (1) to (3) are satisfied. F31, F32, and f are the focal lengths of the third lens, the fourth lens, and the entire system, respectively; and R3 and R4 are the radii of curvature at the object-side surface and the image-side surface of the second lens, respectively. 1.2<f31/f<1.55 . . . (1), ?2.8<f32/f<?1.98 . . . (2), and 0.38<|R4+R3|/|R4?R3|<0.77 . . . (3).
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: September 2, 2014
    Assignee: Olympus Corporation
    Inventor: Hideyasu Takato
  • Patent number: 8817395
    Abstract: A portable high-power microscope magnification lens structure, mainly comprises: a main body, a high-power lens being disposed on a middle part thereof which is passed through, an adhesive portion being disposed on a rear edge of the main body, LED lamps used for light compensating illumination being disposed around the lens on a front side of the main body; and a rear cover, one side thereof being pivotally connected to the main body, the rear cover being foldable to cover a rear side of the main body, and a hollow space for receiving batteries being disposed on the rear cover and connected to the LED lamps through a switch; whereby, the additional unit can be attached to the lens of a cellular phone, tablet or camera, used to shoot and observe high-power microscopically magnified images, used as the teaching assistance for the observation of organisms or physical objects, and used for the microscopic magnification photography of the details of other industrial product structures, and the pictures taken from
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: August 26, 2014
    Assignee: Digilens Co., Ltd.
    Inventor: Chen-Feng Wu
  • Patent number: 8773757
    Abstract: The present invention provides a slit-scan multi-wavelength confocal lens module, utilizing at least two lenses having chromatic aberration for splitting a broadband light into continuously linear spectral lights having different focal length respectively. The present invention utilizes the confocal lens module employing slit-scan confocal principle and chromatic dispersion techniques and the confocal microscopy with optical sectioning ability and high resolution in spectral dispersion to establish a confocal microscopy method and system with long DOF and high resolution, capable of modulating a broadband light to produce the axial chromatic dispersion and focus on different depths toward an object's surface for obtaining the reflected light spectrum from the surface.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 8, 2014
    Assignee: National Taipei University of Technology
    Inventors: Liang-Chia Chen, Chao-Nan Chen, Yi-Wei Chang
  • Patent number: 8773765
    Abstract: An endoscope apparatus includes an objective optical system mounted at a distal end portion of an endoscope, which is inserted into a tube cavity, and configured to form an image of an object in the tube cavity, the objective optical system including a focusing lens movable in an optical axis direction, a solid-state image pickup device for color image pickup configured to pick up the image formed by the objective optical system, a color separation filter being arranged for each pixel in the solid-state image pickup device, a focus adjusting mechanism configured to move the focusing lens and automatically adjust the objective optical system to a focus position in a focused state, a moving range switching section configured to perform switching of a moving range of the focusing lens, a moving range limiting section configured to limit the moving range in association with the switching by the moving range switching section, and the like.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: July 8, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventor: Tsutomu Sasamoto
  • Publication number: 20140146396
    Abstract: A portable high-power microscope magnification lens structure, mainly comprises: a main body, a high-power lens being disposed on a middle part thereof which is passed through, an adhesive portion being disposed on a rear edge of the main body, LED lamps used for light compensating illumination being disposed around the lens on a front side of the main body; and a rear cover, one side thereof being pivotally connected to the main body, the rear cover being foldable to cover a rear side of the main body, and a hollow space for receiving batteries being disposed on the rear cover and connected to the LED lamps through a switch; whereby, the additional unit can be attached to the lens of a cellular phone, tablet or camera, used to shoot and observe high-power microscopically magnified images, used as the teaching assistance for the observation of organisms or physical objects, and used for the microscopic magnification photography of the details of other industrial product structures, and the pictures taken from
    Type: Application
    Filed: November 23, 2012
    Publication date: May 29, 2014
    Inventor: Chen-Feng Wu
  • Patent number: 8730582
    Abstract: A microscope apparatus includes a laser beam source for emitting a laser beam, an objective lens for irradiating a sample with the laser beam, a phase-modulating spatial light modulator placed between the laser beam source and the objective lens at a position optically conjugate with a pupil position of the objective lens, and a beam diameter variable unit placed between the laser beam source and the phase-modulating spatial light modulator for varying a beam diameter of the laser beam incident to the phase-modulating spatial light modulator.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Olympus Corporation
    Inventor: Eiji Yokoi
  • Patent number: 8730583
    Abstract: Described is a microscope objective (10, 100, 200) having an objective housing (12) which contains a lens system including a lens unit (60) capable of being moved along the optical axis (O) of the lens system to compensate for the thickness of the coverslip, and further having an adjusting device for adjusting the lens unit (60), said adjusting device including a drive unit (14, 102, 202) and a transmission (42, 44, 46, 48, 50, 52, 54, 56, 62) which is drivable by the drive unit (14, 102, 202) and coupled to the lens unit (60). According to the present invention, the drive unit (14, 102, 202) has a motor (34) and is mounted on the objective housing (12).
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: May 20, 2014
    Assignee: Leica Microsystems CMS GmbH
    Inventor: Stefan Schek
  • Patent number: 8724227
    Abstract: A high-aperture immersion objective, in particular for confocal applications in fluorescence microscopy and for TIRF applications, having three subsystems of lenses and/or lens groups. The design of the subsystems has made it possible for a relatively large object field of 0.25 mm to be present in the case of a high-resolution numerical aperture of 1.49. Furthermore, improved transparency is possible up to a wavelength of 340 nm.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 13, 2014
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Rolf Wartmann
  • Patent number: 8705178
    Abstract: A microscope objective lens includes, in an order starting from an object side, a first lens group having a positive power, a second lens group having a positive power, a third lens group having a negative power, and a fourth lens group having a positive power. The second lens group is configured to move in an optical axis direction between the first lens group and the third lens group so as to correct a variation in an aberration caused by a thickness of a cover glass. The following conditions are satisfied: 0.65<NA<1; and 1<f1/F<2, where NA is a numerical aperture of the microscope objective lens, F is a focal length of the microscope objective lens, and f1 is a focal length of the first lens group.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 22, 2014
    Assignee: Olympus Corporation
    Inventor: Yuso Fujita
  • Patent number: 8576482
    Abstract: An immersion microscope objective formed of thirteen or fewer lens elements includes, in order from the object side, first and second lens groups of positive refractive power, a third lens group, a fourth lens group having negative refractive power with its image-side surface being concave, and a fifth lens group having positive refractive power with its object-side surface being concave. The first lens group includes, in order from the object side, a lens component that consists of a lens element of positive refractive power (when computed as being in air) and a meniscus lens element having its concave surface on the object side. Various conditions are satisfied to ensure that images of fluorescence, obtained when the immersion microscope objective is used in a laser scanning microscope that employs multiphoton excitation to observe a specimen, are bright and of high resolution. Various laser scanning microscopes are also disclosed.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 5, 2013
    Assignee: Olympus Corporation
    Inventors: Masayoshi Saito, Eiji Yokoi, Kenichi Kusaka
  • Publication number: 20130271847
    Abstract: An immersion objective for a light microscope with a first lens group including a first and second lenses, with a third lens arranged behind the first lens group, a first air gap between the first lens group and the third lens, with a second lens group behind the third lens and including fourth, fifth and sixth lenses, a second air gap formed the third lens and the second lens group, and a third lens group behind the second lens group including seventh, eighth and ninth lenses. Tenth, eleventh and twelfth lens are provided behind the third lens group. For correction of aberrations a fourth air gap is formed between the third lens group and the tenth lens, a fifth air gap is formed between the tenth lens and the eleventh lens and a sixth air gap is formed between the eleventh lens and the twelfth lens.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 17, 2013
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Renhu Shi, Werner Kleinschmidt, Georg Herbst, Holger Richter, Carsten Hoyer
  • Publication number: 20130271829
    Abstract: A microscope objective comprises in order from an object side, a first lens group, a second lens group, and a third lens group. The first lens group includes a first cemented lens, and at least one positive single lens, the second lens group includes a second cemented lens, and the third lens group includes a first lens component and a second lens component. A positive lens and a meniscus lens are cemented in the first cemented lens. A surface nearest to an image side of the first lens component is a concave surface, and a surface nearest to the object side of the second lens component is a concave surface. The first lens component and the second lens component are disposed such that the both concave surfaces are face-to-face, and the following conditional expression (1) is satisfied. 0.5<(n0/nlo)/NAob<0.
    Type: Application
    Filed: March 17, 2013
    Publication date: October 17, 2013
    Inventor: Takashi Kasahara
  • Patent number: 8508856
    Abstract: An immersion microscope objective formed of thirteen or fewer lens elements includes, in order from the object side, first and second lens groups of positive refractive power, a third lens group, a fourth lens group having negative refractive power with its image-side surface being concave, and a fifth lens group having positive refractive power with its object-side surface being concave. The first lens group includes, in order from the object side, a lens component that consists of a lens element of positive refractive power (when computed as being in air) and a meniscus lens element having its concave surface on the object side. Various conditions are satisfied to ensure that images of fluorescence, obtained when the immersion microscope objective is used in a laser scanning microscope that employs multiphoton excitation to observe a specimen, are bright and of high resolution. Various laser scanning microscopes are also disclosed.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Olympus Corporation
    Inventors: Masayoshi Saito, Shuhei Horigome, Noriyuki Sugizaki
  • Publication number: 20130194678
    Abstract: A microscope objective lens satisfies the following conditional expressions (1) and (2). 0.05<NA<0.4??(1) 3 mm<D/NA<50 mm??(2) where, NA denotes a numerical aperture on an object side of the microscope objective lens, and D denotes a total thickness of the microscope objective lens.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 1, 2013
    Applicant: OLYMPUS CORPORATION
    Inventor: Olympus Corporation
  • Patent number: 8498048
    Abstract: A focusing apparatus for use with an optical system having a high NA objective lens includes an image forming and capturing mechanism for forming an image in an intermediate image zone and for capturing an image by receiving and refocusing light from a selected focal plane within the intermediate image zone, and a focus adjusting mechanism for adjusting the position of the selected focal plane within the intermediate image zone. The image forming and capturing mechanism includes at least one high NA lens. In use, spherical aberration introduced by the high NA objective lens is reduced.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 30, 2013
    Assignee: Isis Innovations Limited
    Inventors: Tony Wilson, Rimvydas Juskaitis, Martin James Booth, Edward Botcherby
  • Patent number: 8488248
    Abstract: An immersion microscope objective includes, in order from the object side, a first lens group having positive refractive power for converting the luminous flux from an object into convergent luminous flux, a second lens group having the refractive power lower than that of the first lens group, and a third lens group, and satisfies the following conditional expression where NA indicates the numerical aperture on the object side, and d0 indicates a working distance: 3 mm<NA×d0<8 mm.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: July 16, 2013
    Assignee: Olympus Corporation
    Inventors: Takashi Kasahara, Katsuyuki Abe, Kenichi Kusaka
  • Patent number: 8441529
    Abstract: An endoscope objective lens unit includes a front lens group and a rear lens group with a diaphragm interposed therebetween. The front lens group includes a first lens and a second lens, and the rear lens group includes a third lens, a fourth lens and a fifth lens. The endoscope objective lens unit satisfies following expressions (1A) to (4): (1A) ?3 <SF ?1; (2) ?3 <Fr/Ff <?1.1; (3) ?1.6 <Ff/f <?0.6; and (4) Ff/f1 <1.6, where SF is a shape factor, Ff is a focal length of the front lens group, Fr is a focal length of the rear lens group, f is a focal length of the entire unit, and f1 is a focal length of the first lens.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 14, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventor: Tsutomu Sasamoto
  • Publication number: 20130100537
    Abstract: The invention relates to a planapochromatically-corrected immersion microscope objective for high-resolution microscopy applications with changing dispersive immersion conditions, having a plurality of lenses and/or subsystems (T1, T2, T3) comprising lens groups and a corrective function (LA2) for eliminating spherical aberrations. According to the invention, the microscope objective has an additional corrective function (LA1) for eliminating longitudinal chromatic aberrations caused by dispersive changes in the immersion by changing the air gaps between the lenses or gap combinations, wherein the influence on the longitudinal chromatic aberration corresponds to a rotation of the curve s(?), which describes the color point (s) as a function of the wavelength (?).
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: Carl Zeiss Microscopy GmbH
    Inventor: Carl Zeiss Microscopy GmbH
  • Patent number: 8405903
    Abstract: An objective-optical-system positioning apparatus includes a positioning unit interposed between an objective optical system having a small-diameter end section and an examination optical system for examining light collected by the objective optical system; and a substantially cylindrical support unit, one end of which is secured to an organism, and which internally supports the small-diameter end section in a detachable manner. The positioning unit includes a holding part for holding the objective optical system and a moving mechanism supporting the holding part such that the holding part is freely movable in a direction intersecting with a direction of an optical axis of the objective optical system, and the other end of the support unit has a tapered inner surface whose diameter gradually increases toward the tip.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Olympus Corporation
    Inventors: Tadashi Hirata, Masahiro Oba
  • Patent number: 8358469
    Abstract: An immersion microscope objective comprises, in order from an object side, a first lens group having a positive refractive power comprising a cemented lens composed of a plano-convex lens whose plane surface faces the object side and a meniscus lens whose concave surface faces the object side, and at least one single lens having a positive refractive power; a second lens group having a positive refractive power comprising a three-piece cemented lens; and a third lens group having a negative refractive power including a Gaussian type lens structure, wherein the objective satisfies the following conditions when n1, NAob, d0 and ? are a refractive index at a d-line of the single lens having the highest refractive index included in the first lens group, a numerical aperture on the object side of the objective, a working distance of the objective, and a magnification of the objective, respectively. 1.7?n1 0.75?NAob?1.45 0.4?NAob*d0?3 0.03?NAob/??0.1.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 22, 2013
    Assignee: Olympus Corporation
    Inventor: Takashi Kasahara
  • Publication number: 20130016328
    Abstract: Methods and apparatus are described for delivering index-matching immersion liquid in high numerical-aperture optical microscopy and lithography. An array of immersion liquid droplets is delivered to a specimen substrate or specimen substrate cover by an immersion liquid printing apparatus. An immersion liquid reservoir provides immersion liquid to the printer by a precision pump. The printer delivers immersion liquid to the substrate or substrate cover in arrays of immersion liquid droplets of defined volumes and array patterns. The volumes and patterns of array droplets delivered to the substrate or substrate cover are optimized to maintain adequate immersion liquid between the substrate or substrate cover and an immersion objective while avoiding the formation of air bubbles in the immersion liquid and the accumulation of excess volumes of immersion liquid.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 17, 2013
    Applicant: APPLIED PRECISION, INC.
    Inventor: APPLIED PRECISION, INC.
  • Publication number: 20130010367
    Abstract: Described is a microscope objective (10, 100, 200) having an objective housing (12) which contains a lens system including a lens unit (60) capable of being moved along the optical axis (0) of the lens system to compensate for the thickness of the coverslip, and further having an adjusting device for adjusting the lens unit (60), said adjusting device including a drive unit (14, 102, 202) and a transmission (42, 44, 46, 48, 50, 52, 54, 56, 62) which is drivable by the drive unit (14, 102, 202) and coupled to the lens unit (60). According to the present invention, the drive unit (14, 102, 202) has a motor (34) and is mounted on the objective housing (12).
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Applicant: LEICA MICROSYSTEMS CMS GMBH
    Inventor: Stefan Schek
  • Publication number: 20130003187
    Abstract: A high-aperture immersion objective, in particular for confocal applications in fluorescence microscopy and for TIRF applications, having three subsystems of lenses and/or lens groups. The design of the subsystems has made it possible for a relatively large object field of 0.25 mm to be present in the case of a high-resolution numerical aperture of 1.49. Furthermore, improved transparency is possible up to a wavelength of 340 nm.
    Type: Application
    Filed: February 25, 2011
    Publication date: January 3, 2013
    Applicant: CARL ZEISS MICROSCOPY GMBH
    Inventor: Rolf Wartmann
  • Patent number: 8243129
    Abstract: An objective lens includes, in order from an object side, a front group having negative refractive power, an aperture stop, and a rear group having positive refractive power, wherein the front group includes, in order from the object side, a first lens which is a negative meniscus lens with a convex surface turned to the object side and a second lens which is a negative lens with a concave surface turned to the object side; the rear group includes, in order from the object side, a positive third lens and a fourth lens made up of a positive lens and a negative lens cemented together, and the objective lens satisfies conditional expression (1) below: ?0.8<f—F/f—R<?0.3 ??(1), where f_F is a focal length of the front group, and f_R is a focal length of the rear group.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 14, 2012
    Assignee: Olympus Medical Systems Corp.
    Inventor: Tsutomu Uzawa
  • Patent number: 8199407
    Abstract: An immersion objective for microscopic investigation of a specimen is provided wherein an outer lens is disposed in an objective body. A delivery device including a cap that is disposed over the objective body so as to form a space adapted to receive an immersion liquid is also provided. The cap is open in a region of the outer lens so as to form a gap with the outer lens. The cap includes at least one connector configured to provide a continuous supply of the immersion liquid to the space so that the immersion liquid emerges through the gap to a region between the outer lens and at least one of the specimen and a specimen slide.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 12, 2012
    Assignees: Leica Microsystems CMS GmbH, EMBL European Molecular Biology Laboratory
    Inventors: Urban Liebel, Siegfried Winkler, Frank Sieckmann
  • Patent number: 8199408
    Abstract: An immersion microscope object lens including, in order from an object: a first lens group having positive refractive power as a whole, and including a first lens component in which a meniscus lens having a concave surface facing the object and a meniscus lens having a convex surface facing an image are cemented, a second lens component constituted by a single lens having positive refractive power, and a third lens component in which a negative lens and a positive lens are cemented; a second lens group having positive refractive power as a whole, and including a lens component in which a negative lens and a positive lens are cemented; and a third lens group having negative refractive power as a whole.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 12, 2012
    Assignee: Nikon Corporation
    Inventor: Kotaro Yamaguchi
  • Patent number: 8189268
    Abstract: A lens unit is equipped with a lens, through which light from an object enters, and a lens barrel for holding the lens. An optical extending member is employed when observing a focal image of the lens with a microscope. A receiving portion having a receiving surface, for receiving a front end facet of the optical path extending member within the lens barrel that faces toward the lens, is formed at a portion of the lens barrel. A mounting portion positioned further rearward from a rear end facet of the optical path extending member, having a guide insertion aperture that extends in a direction perpendicular to the receiving surface and a mounting surface that extends in a direction parallel to the receiving surface is formed at the periphery of the guide insertion aperture is formed at a portion of the lens barrel.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 29, 2012
    Assignee: Fujifilm Corporation
    Inventors: Takashi Aoki, Yoichi Iwasaki, Kenji Hoshino, Takayuki Matsuura
  • Patent number: 8184367
    Abstract: An optical system includes a dynamically focused lens that variably changes focal length to focus light on a material under evaluation at discrete axial depths, and a scanning element that laterally scans the material to focus light on the material at points that are laterally adjacent the axial depth.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: May 22, 2012
    Assignee: University of Central Florida Research Foundation
    Inventors: Jannick Rolland, Supraja Murali
  • Publication number: 20120113524
    Abstract: An immersion microscope objective includes, in order from the object side, a first lens group having positive refractive power for converting the luminous flux from an object into convergent luminous flux, a second lens group having the refractive power lower than that of the first lens group, and a third lens group, and satisfies the following conditional expression where NA indicates the numerical aperture on the object side, and d0 indicates a working distance.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Applicant: OLYMPUS CORPORATION
    Inventors: Takashi KASAHARA, Katsuyuki Abe, Kenichi Kusaka
  • Patent number: 8174773
    Abstract: An anamorphic imaging objective having multiple effective optical surfaces. One of the effective surfaces is implemented as anamorphic and one of the effective surfaces is implemented as a free-form surface, which has an aspheric contour in at least one of the two main sections and which has precisely two planes of mirror symmetry, the main sections lying in the planes of mirror symmetry.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 8, 2012
    Assignee: Carl Zeiss AG
    Inventor: Marco Pretorius
  • Patent number: 8164836
    Abstract: The inventive objective lens for endoscopes has independently a zooming function and a focusing function, and is capable of magnified viewing. The objective lens has an angle of view (2?) of 100° or greater, and comprises a positive first group G1, a negative second group G2 and a positive third group G3. The third group G3 comprises a positive first (3-1) subgroup G31 and a positive second (3-2) subgroup G32. A subgroup in at least the second group G2 moves to (1) bring about a change in the focal length of the whole system and (2) correct an image position for movement in association with a focal length change, and one subgroup in the second group G2 and the third group G3 moves to the image side from a longer side toward a shorter side of the working distance (WD) to (3) correct the focal position for movement in association with a working distance change.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 24, 2012
    Assignee: Olympus Medical Systems Corp.
    Inventors: Tsutomu Uzawa, Hideyasu Takato
  • Patent number: 8144395
    Abstract: A focusing apparatus for use with an optical system having a high NA objective lens includes an image forming and capturing apparatus for forming an image in an intermediate image zone, and for capturing an image by receiving and refocusing light from a selected focal plane within the intermediate image zone, and a focus adjusting apparatus for adjusting the position of the selected focal plane within the intermediate image zone. The image forming and capturing apparatus includes at least one high NA lens. In use, spherical aberration introduced by the high NA objective lens is reduced.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 27, 2012
    Assignee: Isis Innovation Limited
    Inventors: Tony Wilson, Rimvydas Juskaitis, Martin James Booth, Edward Botcherby
  • Patent number: 8130454
    Abstract: An endoscope objective optical system used in an endoscope has an objective optical system including a first lens group having a positive refractive power, an aperture stop, a second lens group having a negative refractive power and a third lens group having a positive refractive power, the first lens group, the aperture stop and the second and third lens group being successively disposed from the object side. The second lens group is made movable along an optical axis to change the focal length of the objective optical system. The lens surface at the object-side outermost position in the first lens group is formed so as to be convex on the object side.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 6, 2012
    Assignee: Olympus Medical Systems Corp.
    Inventor: Azusa Noguchi
  • Patent number: 8107170
    Abstract: An objective optical system includes, in sequence from the object side, a first group having positive refractive power and including a plano-convex lens with the convex surface facing the image side; a second group having positive refractive power and including a lens whose extreme-object-side lens surface is convex facing the object side; a third group having negative refractive power and including a lens whose extreme-image-side lens surface is concave facing the image side; a fourth group having positive refractive power and including a lens disposed on the extreme object side, whose image-side lens surface is convex facing the image side and a lens disposed on the extreme image side, whose object-side lens surface is convex facing the object side; and a fifth group having positive refractive power and including a combined lens by joining a convex lens and a concave lens, the joined surface having negative refractive power.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: January 31, 2012
    Assignee: Olympus Corporation
    Inventor: Masato Fujiwara
  • Patent number: 8098441
    Abstract: An objective lens for endoscopes has a front lens unit and a rear lens unit with an aperture stop between them. The front lens unit includes a first lens element with negative refracting power and a second lens element with positive refracting power, and the rear lens unit includes a third lens element with positive refracting power, a cemented lens component of a fourth lens element with positive refracting power and a fifth lens element with negative refracting power. The objective lens satisfies the following conditions: ?2<SF<?0.9 0.94<D/(f×sin ?)<1.7 0.86<(D1+D2?f1)/(2×f3)<1.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 17, 2012
    Assignee: Olympus Medical Systems Corp.
    Inventor: Tsutomu Sasamoto
  • Patent number: 8090229
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 8072701
    Abstract: The present invention relates to a positioning apparatus (10) of a positioning unit for positioning an optical device of the positioning unit comprising at least one optical element in the ray path of a microscope in front of an eye to be observed, wherein the positioning apparatus comprises a carrier device (11) for coupling the positioning apparatus to the microscope and a holding apparatus (12) for holding the optical element, whereby the holding apparatus comprises holding devices (20) for connection of the optical device to the holding apparatus which are configured in such a manner that a distance space (24) is formed between the optical device and the holding apparatus.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: December 6, 2011
    Assignee: Oculus Optikgeraete GmbH
    Inventors: Carsten Feiertag, Günter Pfeiffer
  • Patent number: 8054561
    Abstract: An optical system is described for merging a first and a second partial image beam emanating from a specimen into a resultant image beam allowing modification of the areal proportion of the respective first or second partial image beam in the resultant image beam. A stop arrangement comprises at least a first and a second movable stop element each comprising at least one stop region adapted to be brought into a working position with the first or second partial image beam. Movably arranged connecting means for connecting the two stop elements are provided to modify the respective areal proportions of the partial image beams in the resultant image beam by movement of the connecting means.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 8, 2011
    Assignee: Leica Microsystems CMS GmbH
    Inventor: Claus Bender
  • Patent number: 8054558
    Abstract: A multiple magnification optical system has a single objective focused upon a specimen at a given working distance. A graded-index lens receives light passing through the objective from the specimen. A beam splitter splits the light exiting the gradient-index lens into a first optical axis and a second optical axis. A first lens is aligned in the first optical axis between the beam splitter and a first camera to focus a magnified image at the first camera. A second camera is situated along the second optical axis from the rear principal plane of the objective so as to obtain unity magnification when the working distance of the objective is set at twice its focal length. Multiple magnifications can be obtained with a single objective by moving the optical system axially to set different working distances from a specimen, and by using multiple beam splitters, or combinations thereof.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 8, 2011
    Assignee: Omniprobe, Inc.
    Inventors: Herschel M. Marchman, Gonzalo Amador
  • Publication number: 20110222146
    Abstract: The present invention relates to an afocal zoom system for a microscope with a shutter for controlling the depth of focus of the microscopic image produced by an object, wherein at least one shutter is disposed in front of the first lens group of the zoom system, viewed from the object, in the direction of the beam path passing through the zoom system, and/or at least one shutter is disposed on a lens group of the zoom system the diameter of which can be varied in order to control the depth of focus, without causing vignetting of the edge beams.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 15, 2011
    Applicant: Leica Microsystems (Schweiz) AG
    Inventor: Manfred Kuster
  • Patent number: 8004756
    Abstract: A catadioptric objective includes a plurality of optical elements arranged along an optical axis to image a pattern from an object field in an object surface of the objective to an image field in an image surface region of the objective at an image-side numerical aperture NA with electromagnetic radiation from a wavelength band around a central wavelength ?<300 nm. The optical elements include a concave mirror and a plurality of lenses. The projection objective forms an image of the pattern in a respective Petzval surface for each wavelength ? of a wavelength band, the Petzval surfaces deviating from each other for different wavelengths. The plurality of lenses include lenses made from different materials having substantially different Abbe numbers.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 23, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Alexander Epple
  • Patent number: 7965450
    Abstract: A microscope objective includes at least five lens components, which are divided into three groups that are, in order from an object side: a front group having a positive refracting power as a whole and having a meniscus lens component with an object-side surface thereof being concave toward the object side; a middle group having a positive refracting power as a whole and having a plurality of cemented lens components; and a rear group having a pair of concave air-contact surfaces arranged adjacent and opposite to one another, wherein the following conditions are satisfied: 3?D0/f?6 and 1?H2/H1?1.5, where D0 is an axial distance from an object surface to a rearmost surface of the microscope objective, f is a focal length of the microscope objective, H2 is a height of a marginal ray as emergent from the rearmost surface of the microscope objective, and H1 is a maximum height of the marginal ray as passing through the front group and the middle group.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 21, 2011
    Assignee: Olympus Corporation
    Inventor: Atsushi Yonetani
  • Patent number: 7933476
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 26, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 7920080
    Abstract: Error introduced by analog to digital conversion of a set of laser pulses can be reduced by shifting the clock reference time associated with the firing of the laser pulse. A timing offset module shifts the timing reference of each laser pulse. Digital codes generated by the ADC from the received signals are realigned and summed eliminating systematic error introduced by clock driven operations of the ADC. A comparison of the total ADC output of detected laser pulses over a select number of clock intervals enables a return signal to be distinguishable over the systematic error.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 5, 2011
    Assignees: Laser Technology, Inc., Kama-Tech (HK) Limited
    Inventors: Jeremy G. Dunne, Samuel J. Andrews
  • Publication number: 20110063735
    Abstract: An immersion microscope object lens including, in order from an object: a first lens group having positive refractive power as a whole, and including a first lens component in which a meniscus lens having a concave surface facing the object and a meniscus lens having a convex surface facing an image are cemented, a second lens component constituted by a single lens having positive refractive power, and a third lens component in which a negative lens and a positive lens are cemented; a second lens group having positive refractive power as a whole, and including a lens component in which a negative lens and a positive lens are cemented; and a third lens group having negative refractive power as a whole.
    Type: Application
    Filed: March 5, 2010
    Publication date: March 17, 2011
    Inventor: Kotaro YAMAGUCHI
  • Patent number: 7907347
    Abstract: An optical composite material comprises an amorphous optical material (6) with a first refractive index (na), into which crystalline nanoparticles (7) having a second, higher refractive index (nn) are embedded, wherein the amorphous material (6) and the nanoparticles (7) are resistant to UV radiation. A microlithography projection exposure apparatus comprises a projection objective (2) with at least one optical element (3) which is, in particular, operated in transmission and consists of an optical composite material of this type. In a method for producing the optical composite material, crystalline nanoparticles are introduced into the amorphous optical material during flame deposition in a soot or direct process.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: March 15, 2011
    Assignee: Carl Zeiss SMT AG
    Inventors: Eric Eva, Wilfried Clauss
  • Patent number: 7907348
    Abstract: The invention relates to a microscope objective with preferably anti-symmetric lenses or lens groups with an optical magnification of ?100 and a visual field factor of 20. According to the invention the microscope objective consists of 9 lenses with 3 cemented elements, starting from the object side (left), a lens which is almost a hemisphere L1 with positive refractive power, a meniscus lens L2 with positive refractive power, a two-part cemented element G1 with positive refractive power, another two-art cemented element G2 with positive refractive power, a two-part cemented element G3 with negative refractive power, and finally a meniscus lens L9 with negative refractive power. By using cemented elements and lens pairings of the same construction, production costs can be reduced compared with methods of the prior art while image contrast is improved.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 15, 2011
    Assignee: Carl Zeiss MicroImaging GmbH
    Inventors: Renhu Shi, Werner Kleinschmidt, Thomas Bocher
  • Publication number: 20110043924
    Abstract: An immersion microscope objective formed of thirteen or fewer lens elements includes, in order from the object side, first and second lens groups of positive refractive power, a third lens group, a fourth lens group having negative refractive power with its image-side surface being concave, and a fifth lens group having positive refractive power with its object-side surface being concave. The first lens group includes, in order from the object side, a lens component that consists of a lens element of positive refractive power (when computed as being in air) and a meniscus lens element having its concave surface on the object side. Various conditions are satisfied to ensure that images of fluorescence, obtained when the immersion microscope objective is used in a laser scanning microscope that employs multiphoton excitation to observe a specimen, are bright and of high resolution. Various laser scanning microscopes are also disclosed.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: OLYMPUS CORPORATION
    Inventors: Masayoshi SAITO, Shuhei Horigome, Noriyuki Sugizaki
  • Patent number: 7889432
    Abstract: An immersion microscope objective lens of the present invention has: in order from an object, a first lens group G1 having positive refractive power and having a cemented lens of a plano convex lens having a plane facing the object and a meniscus lens having a concave surface facing the object, and a single meniscus lens having a convex surface facing the object; a second lens group having positive refractive power and having a plurality of cemented lenses; and a third lens group having negative refractive power and having a cemented meniscus lens having a concave surface facing an image, and a cemented meniscus lens having a concave surface facing the object. And the following conditional expressions 0.12<d0/f<0.25, 0.04<?Ct(p)??Ct(n)<0.09 and ?0.03<?hg(p)??hg(n)<0.00 are satisfied.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 15, 2011
    Assignee: Nikon Corporation
    Inventors: Katsuya Watanabe, Takayuki Morita